
Parametric Polymorphism
Week 4 Friday
COMP1100/1130

Review of Recursion: a mystery function

Consider the following function:

mysteryFunc :: [Int] -> Int
mysteryFunc list = case list of
 [] -> 0
 _:xs -> 5 + mysteryFunc xs

Can you explain what the result is?

Review of Recursion

Let’s step through it!
mysteryFunc :: [Int] -> Int
mysteryFunc list = case list of
 [] -> 0
 _:xs -> 5 + mysteryFunc xs

mysteryFunc [1,2,3]

5 + mysteryFunc [2,3]

5 + mysteryFunc [3]

5 + mysteryFunc []

0

Result = 5 + 5 + 5 + 0 = 15

A Closer Look at MysteryFunc

Consider the following function:

mysteryFunc :: [Int] -> Int
mysteryFunc list = case list of
 [] -> 100
 _:xs -> 5 + mysteryFunc xs

What does this change?

Do you get the same result for mysteryFunc [1,2] and
mysteryFunc [1000,2000]? Why?

Changing it to take a List of Strings

Consider the following function:

mysteryFunc :: [String] -> Int
mysteryFunc list = case list of
 [] -> 100
 _:xs -> 5 + mysteryFunc xs

How about now? What does this change?

What is the result for mysteryFunc [“hello”, “goodbye”]?

Does it work with any list?

Consider the following function:

mysteryFunc :: [Bool] -> Int
mysteryFunc list = case list of
 [] -> 100
 _:xs -> 5 + mysteryFunc xs

How about now? What does this change?

What is the result for mysteryFunc [True, False, True, True]?

Generalising MysteryFunc

Consider the following function:

mysteryFunc :: [a] -> Int
mysteryFunc list = case list of
 [] -> 100
 _:xs -> 5 + mysteryFunc xs

What does the [a] mean? This means any type.

Try it with mysteryFunc [1,2] and mysteryFunc[True, True].

Getting the head of a list

The head function returns the head of a list. It doesn’t matter
what type of elements the list has:

head :: [a] -> a

What happens if we give it an empty list [] ?

How can we prevent this?

Let’s try to write it

myHead :: [a] -> a
myHead list = case list of
 x:_ -> x

Why are there warnings?

What should we do in the [] case?

The Maybe type

data Maybe a = Nothing | Just a

Now we can return Nothing!

data Maybe String = Nothing | Just String

data Maybe int = Nothing | Just int

data Maybe Bool = Nothing | Just Bool

This is instantiated depending on the type, e.g. as follows:

An Improved Head Function

improvedHead :: [a] -> Maybe a
improvedHead list = case list of
 [] -> Nothing
 x:_ -> Just x

Now let’s try it with an empty list!

Another Polymorphic Data Type

(1,2,3,4)

Tuples can contain elements of any type.

Each of the elements can be of different types.
Examples:

(1,“2”,3,4)
(1,“2”,True, False)
(1,“2”,(4,5), False)
(1,“2”,(), False)
(1,“2”,(True, 2), False)

Another Polymorphic Data Type

Defining Pairs:

data (,) a b = (,) a b

ConstructorType
variables

first :: (a, b) -> a
first (x,_) = x

What is the return type? Why?

We usually write it as (a,b)

Checking the types

first :: (a, b) -> b
first (x,_) = x

Is this correct? Why/why not?

Remember that (a, b) -> a is talking about the types, not
saying that it has to be the same a object. Think about this:

addFour :: (Int, String) -> Int
addFour (x,_) = x + 4

Another Polymorphic Data Type

Defining Lists:
data [] a = [] | a : [a]

This is how lists are defined recursively.

e.g. 5 : 4 : 7 : 9 : []

5 : (4 : 7 : 9 : [])

5 : (4 : (7 : 9 : []))

5 : (4 : (7 : (9 : [])))

[5,4,7,9] This is syntactic sugar.

When to use Parametric Polymorphism

When should you use parametric polymorphism?

mysteryFunc :: [a] -> Int
mysteryFunc list = case list of
 [] -> 100
 _:xs -> 5 + mysteryFunc xs

Think about whether the function needs a particular type of list.

Checking the types

Could this be done with parametric polymorphism?

addFour :: (Int, String) -> Int
addFour (x,_) = x + 4

The x has to be a number.

Next Lecture

We’ll look at how to define standard list functions provided in the
prelude using parametric polymorphism.

	Parametric Polymorphism�Week 4 Friday	
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18

