
Parametric Polymorphism Part 2
Week 5 Tuesday
COMP1100/1130

Another Polymorphic Data Type: Tuples

(1,2,3,4)

Tuples can contain elements of any type.

Each of the elements can be of different types.
Examples:

(1,“2”,3,4)
(1,“2”,True, False)
(1,“2”,(4,5), False)
(1,“2”,(), False)
(1,“2”,(True, 2), False)

Recall the definition of Pairs

Defining Pairs:

data (,) a b = (,) a b

ConstructorType
variables

We usually write it as (a,b)

Definition of Tuples
Defining Tuples:

data (,) a b = (,) a b We usually write it as (a,b)

data (,,) a b c = (,,) a b c

data (,,,) a b c d = (,,,) a b c d

data (,,,,) a b c d e = (,,,,) a b c d e

data (,,,,,) a b c d e f = (,,,,,) a b c d e f

We usually write it as (a,b,c)

and so on…

Using Tuples

lastInTriple :: (a, b, c) -> c
lastInTriple (_,_,x) = x

A function using tuples:

Can you write a function to get the middle item of a triple (or
3-tuple)?

Did we have to call it x above?

Parametric Polymorphic Functions in the Prelude

length :: [a] -> Int

The Prelude contains several parametric polymorphic list
functions, e.g.

head :: [a] -> a

What is the type signature of tail? It returns the end part
of a list, e.g. tail [1,2,3] returns [2,3].

init is similar to tail. It returns the first part of a list, e.g. init
[1,2,3] returns [1,2].

last returns the last
element of a list, e.g. last
[1,2,3] returns 3.

Parametric Polymorphic Functions in the Prelude

: :: a -> [a] -> [a]
Insert an element into the front of a list:

++ :: [a] -> [a] -> [a]

Join two lists together:

Return the element at the given position in the list (lists start at 0):

!! :: [a] -> Int -> a

Parametric Polymorphic Functions in the Prelude

replicate :: Int -> a -> [a]
Make a given number of copies of an item.

take :: Int -> [a] -> [a]

Return a given number of elements of a list.

Remove a given number of elements from the front of a list.

drop :: Int -> [a] -> [a]

Parametric Polymorphic Functions in the Prelude

concat :: [[a]] -> [a]

Some trickier ones:

This concatenates a list of lists into a single list,
e.g. concat [[1,2],[4,5],[3]] = [1,2,4,5,3]

splitAt :: Int -> [a] -> ([a],[a])

This splits a list at the given position.
What does the return type ([a],[a]) mean?

Parametric Polymorphic Functions in the Prelude

zip :: [a] -> [b] -> [(a,b)]

Combine two lists into a list of pairs, where each pair is
made up of an element from each list.

Example: zip [1,2,3] “bye” = [(1,’b’),(2,’y’),(3,’e’)]

Example: zip [1,2,3] [4,5,6] = [(1,4),(2,5),(3,6)]

Example: zip [1,2] [4,5,6] = [(1,4),(2,5)]

Parametric Polymorphic Functions in the Prelude

reverse :: [a] -> [a]

Reverse a given list.

unzip :: [(a,b)] -> ([a],[b])

Combine two lists into a list of pairs, where each pair is
made up of an element from each list.

Example: unzip [(1,5),(2,6)] = ([1,2],[5,6])

Example: reverse [1,2,3,4] = [4,3,2,1]

The Real Definitions in the Prelude

length :: [a] -> Int
Length is not really:

Some of the definitions are not quite what we’ve just seen, e.g.:

length :: Foldable t => t a -> Int

It’s actually:

We’ll learn this later. Now just replace t a with [a].

Monomorphic List Functions in the Prelude

and :: [Bool] -> Bool
Conjunction of a list of Booleans:

Example: or [True, False] = True

There are monomorphic list functions too (only allow one type):

or :: [Bool] -> Bool
Disjunction of a list of Booleans:

Example: and [True, True] = True

Ad-hoc Polymorphic List Functions in the Prelude

There are also ad-hoc polymorphic list functions in the Prelude,
but we’ll look at these later.

	Parametric Polymorphism Part 2�Week 5 Tuesday	
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14

