
.....
.
....

.
....

.
.....

.
....

.
....

.
....

.
.....

.
....

.
....

.
....

.
.....

.
....

.
....

.
....

.
.....

.
....

.
.....

.
....

.
....

.

.

......
COMP6700/2140 Abstract Data Types: Lists and Iteration

Alexei B Khorev and Josh Milthorpe

Research School of Computer Science, ANU

19 April 2017

Alexei B Khorev and Josh Milthorpe (RSCS, ANU) COMP6700/2140 Abstract Data Types: Lists and Iteration 19 April 2017 1 / 14

http://cs.anu.edu.au/courses/comp6700/lectures.html#A1


.....
.
....

.
....

.
.....

.
....

.
....

.
....

.
.....

.
....

.
....

.
....

.
.....

.
....

.
....

.
....

.
.....

.
....

.
.....

.
....

.
....

.

Abstract Data Types (ADTs)

An abstract data type describes data from the point of view of a user, in terms of its behaviour.

A container is a very general ADT, serving as a holder of objects. A list is an example of a
specific container ADT.

An ADT can be described in terms of the semantics of the operations that may be performed
over it.

A data structure is a concrete implementation of an ADT.

Alexei B Khorev and Josh Milthorpe (RSCS, ANU) COMP6700/2140 Abstract Data Types: Lists and Iteration 19 April 2017 2 / 14



.....
.
....

.
....

.
.....

.
....

.
....

.
....

.
.....

.
....

.
....

.
....

.
.....

.
....

.
....

.
....

.
.....

.
....

.
.....

.
....

.
....

.

The List ADT

The list ADT is a container known mathematically as a finite sequence of elements. A list has
these fundamental properties:

duplicates are allowed
order is preserved

A list may support operations such as:

create: construct an empty list
add: add an element to the list
is empty: test whether the list is empty
get element: get an element at a chosen position in the list

Alexei B Khorev and Josh Milthorpe (RSCS, ANU) COMP6700/2140 Abstract Data Types: Lists and Iteration 19 April 2017 3 / 14



.....
.
....

.
....

.
.....

.
....

.
....

.
....

.
.....

.
....

.
....

.
....

.
.....

.
....

.
....

.
....

.
.....

.
....

.
.....

.
....

.
....

.

List Implementations
The List interface represents an ordered collection which allows a user to access and insert
elements at any point in the sequence. Implementations include:

ArrayList: a familiar class with fast access and slow modification:
get(i), set(i, elem), — O(1) (constant)
add(i, elem), remove(i) — O(N − i) (requires recopying of a part of the list)

LinkedList: a doubly linked list which can be traversed both forward and backward — each
node has two references, to the preceding node and the following node. Slow access and fast
modification:

get(i), set(i, elem), — O(i) (needs i steps to get there)
add(i, elem), remove(i) — O(1) (no recopying necessary)

ArrayList is almost always preferable to LinkedList since its operations have better or same
performance. One exception — when the number of elements stored inside the list changes
frequently at runtime.

Alexei B Khorev and Josh Milthorpe (RSCS, ANU) COMP6700/2140 Abstract Data Types: Lists and Iteration 19 April 2017 4 / 14



.....
.
....

.
....

.
.....

.
....

.
....

.
....

.
.....

.
....

.
....

.
....

.
.....

.
....

.
....

.
....

.
.....

.
....

.
.....

.
....

.
....

.

Let’s Make a Library!

First, we need a book:

public class Book implements Comparable<Book> {
private String title;
private boolean fiction;
public Book(String title, boolean fiction) {

this.title = title;
this.fiction = fiction;

}
public String toString() {

return title;
}
public boolean isFiction() {

return fiction;
}
/** implements compareTo(Book) of Comparable
* so the list of books can be sorted
* @return int result of comparing +1,0,-1 */

public int compareTo(Book b) {
return this.title.compareTo(b.toString());

}
}

Alexei B Khorev and Josh Milthorpe (RSCS, ANU) COMP6700/2140 Abstract Data Types: Lists and Iteration 19 April 2017 5 / 14



.....
.
....

.
....

.
.....

.
....

.
....

.
....

.
.....

.
....

.
....

.
....

.
.....

.
....

.
....

.
....

.
.....

.
....

.
.....

.
....

.
....

.

Book List

… actually, we need more than one book - we need a whole list:

public interface BookList {
public void addFirst(Book newBook);
public boolean add(Book newBook);
public boolean remove(Book book);
public void insert(Book newBook, int position);
public Book get(int position);
public boolean isEmpty();
public boolean contains(Book book);
public int size();
public String toString();
public Iterator<Book> iterator();

}

The methods in BookList.java match methods of theCollection<E> interface. The BookList
interface is therefore a simplified example of Collection<Book>.

Alexei B Khorev and Josh Milthorpe (RSCS, ANU) COMP6700/2140 Abstract Data Types: Lists and Iteration 19 April 2017 6 / 14

http://cs.anu.edu.au/courses/comp6700/examples/collections/books/BookList.java


.....
.
....

.
....

.
.....

.
....

.
....

.
....

.
.....

.
....

.
....

.
....

.
.....

.
....

.
....

.
....

.
.....

.
....

.
.....

.
....

.
....

.

BookList using Linked List

BookList may be implemented as a linked list: three of its methods are illustrated:

boolean addFirst(Book b) boolean remove(Book b) void insert(Book b, int p)

The iterator() method returns an implementation of Iterator interface given by the class
BookListIterator.java.

Alexei B Khorev and Josh Milthorpe (RSCS, ANU) COMP6700/2140 Abstract Data Types: Lists and Iteration 19 April 2017 7 / 14

http://cs.anu.edu.au/courses/comp6700/examples/collections/books/BookListIterator.java


.....
.
....

.
....

.
.....

.
....

.
....

.
....

.
.....

.
....

.
....

.
....

.
.....

.
....

.
....

.
....

.
.....

.
....

.
.....

.
....

.
....

.

Iterator

An iterator traverses every element of a collection in some order.

A container object (of type T) may provide an access to its internals by EITHER

implementing the method iterator() (which is included explicitly, or inherited) — when
called, it returns an Iterator object, which is your guide to the container internals; the object
has a contract to implement iterator() if its class implements java.lang.Iterable<T>
interface. OR
implementing the following three methods:

boolean hasNext(), returns true if there are more elements left;
T next(), returns the next element;
void remove(), removes the last element returned by the iterator, (subtle operation: requires safe
removal, optional);

the object has a contract to implement these three methods if its class implements
java.util.Iterator<T> interface

Details of implementations are intimately related to the implementation of the container class
(our examples of BookList implementation include different implementations of the iterator:
BookListWithArray.java and BookListWithLL.java).

Alexei B Khorev and Josh Milthorpe (RSCS, ANU) COMP6700/2140 Abstract Data Types: Lists and Iteration 19 April 2017 8 / 14

http://cs.anu.edu.au/courses/comp6700/examples/collections/books/BookListWithArray.java
http://cs.anu.edu.au/courses/comp6700/examples/collections/books/BookListWithLL.java


.....
.
....

.
....

.
.....

.
....

.
....

.
....

.
.....

.
....

.
....

.
....

.
.....

.
....

.
....

.
....

.
.....

.
....

.
.....

.
....

.
....

.

Iterators: Traversal

The access to container’s elements is performed via a traversal: sequential passage from one
element to the next starting with the first one, which is the entry point to the container:

⋄ The implementation of Iterable allows traversal with a for-each loop. However, this approach
(see next slide) is not very safe, when one has to filter (remove by a certain criterion) the
collection elements, or to traverse multiple collections simultaneously.

⋄ The alternative way to traverse a collection involves an explicit Iterator, which is the only safe
way to modify the collection along the way. (The Iterator-based “plain” for-loop is also the right
way to traverse more than one collections simultaneously).

The iterator() method returns an implementation of Iterable<T> interface; it guarantees that
when the collection is modified during a traversal, the iterator will properly move through the
subsequent elements of the collection.

The slides below “Traversing a Collection with Iterator” demonstrates the two traversals — one
not suitable for removal, and second which is removing elements correctly.

Alexei B Khorev and Josh Milthorpe (RSCS, ANU) COMP6700/2140 Abstract Data Types: Lists and Iteration 19 April 2017 9 / 14



.....
.
....

.
....

.
.....

.
....

.
....

.
....

.
.....

.
....

.
....

.
....

.
.....

.
....

.
....

.
....

.
.....

.
....

.
.....

.
....

.
....

.

Traversal with for-each loop
To traverse collections (and arrays) with less verbose coding, Java 1.5 introduced the “foreach”
loop, a version of for-loop (borrowed from Perl where foreach is the keyword, but not in Java!):

for( type var : collection ) statement block

Two examples:

for( String arg : args ) { // args is an String[] type
System.out.println(arg);

}
for (Book book : books) { // BookListIsAL: implementation

System.out.println(book); // of BookList with ArrayList
}

A “for-each” loop can be used to iterate through most of the Java collection classes (arrays,
ArrayLists, HashSets, etc) — anything that implements Iterable interface. The example is in the
Library.java, the client program of the BookList.java types.

Once again, remember: The collection type which you define yourself must implement Iterable
interface to be amenable for for-each traversal.

The for-each loop can also be used on arrays, but it is not suitable if there is need to use index
during traversal, or traversal is done in the opposite direction.

Alexei B Khorev and Josh Milthorpe (RSCS, ANU) COMP6700/2140 Abstract Data Types: Lists and Iteration 19 April 2017 10 / 14

http://cs.anu.edu.au/courses/comp6700/examples/collections/books/Library.java
http://cs.anu.edu.au/courses/comp6700/examples/collections/books/BookList.java


.....
.
....

.
....

.
.....

.
....

.
....

.
....

.
.....

.
....

.
....

.
....

.
.....

.
....

.
....

.
....

.
.....

.
....

.
.....

.
....

.
....

.

Traversal with Iterator
When we need to modify a collection (e.g. filter out its elements based on some criterion), the
safest way is to implement Iterable interface and use the standard for-loop. This can be subtle.
The standard Collection classes (ArrayList, LinkedList) include a proper implementation of
Iterator which guarantees a safe co-modification during a traversal:

BookListIsAL books = new BookListIsAL();
books.add(new Book("Java Software Solutions", false));
... ...
for (Iterator iter = books.iterator(); iter.hasNext(); ) {

Book nextBook = iter.next();
if (!nextBook.isFiction())

iter.remove();// call "remove" only through Iterator reference!
}

The remove() method may be called only once per call to next() and throws an exception if this
rule is violated. An attempt to achieve the same effect with the would be identical for-each loop
— and direct call to remove() — will result in a run-time exception:

for (Book book: books) { // for-each hides the iterator,
if (book.isFiction()) // and one cannot call remove()

books.remove(book);
}
Exception in thread "main" java.util.ConcurrentModificationException

Alexei B Khorev and Josh Milthorpe (RSCS, ANU) COMP6700/2140 Abstract Data Types: Lists and Iteration 19 April 2017 11 / 14



.....
.
....

.
....

.
.....

.
....

.
....

.
....

.
.....

.
....

.
....

.
....

.
.....

.
....

.
....

.
....

.
.....

.
....

.
.....

.
....

.
....

.

Nested Iterators
(From Java SE 8 Technotes) When [one tries] to do nested iteration over two collections, a
typical mistake is to call outer-iterator’s next() too many times and exhausting it (not to
mention making logical errors along the way) before its due time:

List suits = ...; List ranks = ...;
List sortedDeck = new ArrayList();
// BROKEN - throws NoSuchElementException!
for (Iterator i = suits.iterator(); i.hasNext(); )

for (Iterator j = ranks.iterator(); j.hasNext(); )
sortedDeck.add(new Card(i.next(), j.next()));

There is an ugly solution and a fair one: (with iterator) add a variable in the scope of the outer
loop to hold the suit, or use the foreach-loop:

for (Iterator i = suits.iterator();
i.hasNext(); ) {
Suit suit = (Suit) i.next();
for (Iterator j = ranks.iterator();

j.hasNext(); )
sortedDeck

.add(new Card(suit, j.next()));

}

for (Suit suit : suits)
for (Rank rank : ranks)

sortedDeck
.add(new Card(suit,

rank));

Alexei B Khorev and Josh Milthorpe (RSCS, ANU) COMP6700/2140 Abstract Data Types: Lists and Iteration 19 April 2017 12 / 14



.....
.
....

.
....

.
.....

.
....

.
....

.
....

.
.....

.
....

.
....

.
....

.
.....

.
....

.
....

.
....

.
.....

.
....

.
.....

.
....

.
....

.

Removal without Traversal and Iterable String

The default methods “revolution” has brought fruit to the “old” API: java.util.Collection
interface (stream() methods notwithstanding) and java.lang.CharSequence:

boolean removeIf(Predicate<? super E> filter) which can remove in-place all
“undesirable” elements without the client having to iterate:
public class RemovingByIf {

public static void main(String[] args) {
Random rand = new Random();
List<Integer> numbers =
Stream.generate(() -> rand.nextInt(200) - 100) // you can ignore this

.limit(20) // if it looks weird:

.collect(Collectors.toList()); // we're just creating
System.out.println(numbers); // random ints array
numbers.removeIf(x -> x < 0);
System.out.println(numbers);

}
}

java.util.stream.IntStream chars() of the inteface CharSequence almost makes strings
iterable (String implements CharSequence)
int total = "The Ministry of Silly Walks".chars().reduce(0, (x,y) -> x+y);

Alexei B Khorev and Josh Milthorpe (RSCS, ANU) COMP6700/2140 Abstract Data Types: Lists and Iteration 19 April 2017 13 / 14



.....
.
....

.
....

.
.....

.
....

.
....

.
....

.
.....

.
....

.
....

.
....

.
.....

.
....

.
....

.
....

.
.....

.
....

.
.....

.
....

.
....

.

Further Reading

Hortsmann Core Java for the Impatient, Ch. 7.1–7.2
Oracle The Java Tutorials: The List Interface

Alexei B Khorev and Josh Milthorpe (RSCS, ANU) COMP6700/2140 Abstract Data Types: Lists and Iteration 19 April 2017 14 / 14

http://docs.oracle.com/javase/tutorial/collections/interfaces/list.html

