
.....
.
....

.
....

.
.....

.
....

.
....

.
....

.
.....

.
....

.
....

.
....

.
.....

.
....

.
....

.
....

.
.....

.
....

.
.....

.
....

.
....

.

.

......
COMP6700/2140 Abstract Data Types: Queue, Set, Map

Alexei B Khorev and Josh Milthorpe

Research School of Computer Science, ANU

19 April 2017

Alexei B Khorev and Josh Milthorpe (RSCS, ANU) COMP6700/2140 Abstract Data Types: Queue, Set, Map 19 April 2017 1 / 10

http://cs.anu.edu.au/courses/comp6700/lectures.html#A2

.....
.
....

.
....

.
.....

.
....

.
....

.
....

.
.....

.
....

.
....

.
....

.
.....

.
....

.
....

.
....

.
.....

.
....

.
.....

.
....

.
....

.

Java Collection Interfaces

The Java Collections Framework (JCF) includes interfaces (ADTs), implementations (data
structures), and algorithms. The main interfaces are:

Iterable — most basic interface to use a data type for iteration and nothing else
Collection (proper) — allows adding, removing and testing for elements
List — collection whose elements are ordered and accessible by their location in the collection
Set — a collection with no duplicates
SortedSet — an ordered collection which contains no duplicates
Queue — a collection where elements are removed according to some order (typically first-in,
first-out (FIFO))
Deque — a double-ended queue
Map — a collection where elements are stored and retrieved not by an index, but via a key

Alexei B Khorev and Josh Milthorpe (RSCS, ANU) COMP6700/2140 Abstract Data Types: Queue, Set, Map 19 April 2017 2 / 10

.....
.
....

.
....

.
.....

.
....

.
....

.
....

.
.....

.
....

.
....

.
....

.
.....

.
....

.
....

.
....

.
.....

.
....

.
.....

.
....

.
....

.

Collections: Class Diagram

Key interfaces of the Java Collections Framework and some implementations:

Alexei B Khorev and Josh Milthorpe (RSCS, ANU) COMP6700/2140 Abstract Data Types: Queue, Set, Map 19 April 2017 3 / 10

.....
.
....

.
....

.
.....

.
....

.
....

.
....

.
.....

.
....

.
....

.
....

.
.....

.
....

.
....

.
....

.
.....

.
....

.
.....

.
....

.
....

.

Queues

A Queue is a “first-in, first-out” (FIFO) type which can be implemented by adding objects to the
head of a list and removing them from its tail. The interface:

The JCF Queue interface has slightly different names for the above operations, as well as allowing
different orderings (defined by the constructor with Comparator parameter), for instance, in the
PriorityQueue class.

Alexei B Khorev and Josh Milthorpe (RSCS, ANU) COMP6700/2140 Abstract Data Types: Queue, Set, Map 19 April 2017 4 / 10

.....
.
....

.
....

.
.....

.
....

.
....

.
....

.
.....

.
....

.
....

.
....

.
.....

.
....

.
....

.
....

.
.....

.
....

.
.....

.
....

.
....

.

Stacks

Queues and stacks are widely used in systems level programming (for managing memory and
processes) and other applications.

A Stack is a “last-in, first-out” (LIFO) collection type which can be implemented by adding to
and removing from the head of a list. The interface:

There is a legacy Stack class in JCF, however, the recommended implementation is the Deque
class. Deque implements addFirst, removeFirst and peekFirst methods.

Alexei B Khorev and Josh Milthorpe (RSCS, ANU) COMP6700/2140 Abstract Data Types: Queue, Set, Map 19 April 2017 5 / 10

.....
.
....

.
....

.
.....

.
....

.
....

.
....

.
.....

.
....

.
....

.
....

.
.....

.
....

.
....

.
....

.
.....

.
....

.
.....

.
....

.
....

.

Set and SortedSet

The extensions of Collection type which disallow duplicates (identical elements): a repeated
invocation of add(elem) with the same element elem (or such elem1, that elem.equals(elem1)
returns true) returns false, and the collection remains unchanged. Set types, therefore, are sets
in the mathematical sense (some computer scientists call them “bags”). The elements of a set
are unordered. The subtype SortedSet (extension of the Set interface) represents a collection,
whose elements can be compared — they implement Comparable interface. The ordering allows
to introduce additional methods:

Set is implemented by the HashSet class with a hash table as the DS. Content modification (add,
set) and testing (contains) are O(1) operations. SortedSet is implemented by the TreeSet class
with a binary tree as the DS. If the implementation can maintain the balanced tree, the search
and modify operations are O(log2 N). Example — SetTest.java.

Alexei B Khorev and Josh Milthorpe (RSCS, ANU) COMP6700/2140 Abstract Data Types: Queue, Set, Map 19 April 2017 6 / 10

http://cs.anu.edu.au/courses/comp6700/examples/collections/SetTest.java

.....
.
....

.
....

.
.....

.
....

.
....

.
....

.
.....

.
....

.
....

.
....

.
.....

.
....

.
....

.
....

.
.....

.
....

.
.....

.
....

.
....

.

Map and SortedMap
Unlike all previous types from JCF, the Map family of types does not extends the Collection
interface: their contract is different — to represent not a collection of elements, but a
correspondence between two collections. So, a map contains key/value pairs, with no duplicate
keys (the keys form a set) and at most one value for each key. Map is a model of a mathematical
abstraction called function. The interface Map<K,V> operations are:

The SortedMap extension requires the set of keys be sorted. Methods like firstKey() and
lastKey() are added. The Map interface has two major implementation classes (similar to Set)
— HashMap which uses a hash table DS for the implementation (with similar O(1) performance
for put/get operations), and TreeMap which implements SortedMap in the similar to TreeSet
way (with O(log2 N) efficiency). Example — MapTest.java.

Alexei B Khorev and Josh Milthorpe (RSCS, ANU) COMP6700/2140 Abstract Data Types: Queue, Set, Map 19 April 2017 7 / 10

http://cs.anu.edu.au/courses/comp6700/examples/collections/MapTest.java

.....
.
....

.
....

.
.....

.
....

.
....

.
....

.
.....

.
....

.
....

.
....

.
.....

.
....

.
....

.
....

.
.....

.
....

.
.....

.
....

.
....

.

Bulk operations of Collection interface

The basic Collection operations were listed above (slide Collection Interface). They allow to
examine and manipulate the collection element by element. The bulk operations allow to
manipulate the whole part of the collection in one go:

boolean containsAll(Collection<?> c);
boolean addAll(Collection<? extends E> c); — adds all elements from c to this
boolean retainAll(Collection<?> c); — retains only those elements that are found in c
boolean removeAll(Collection<?> c); — opposite to retainAll()
List<E> subList(int, int) — like a String.substring(int,int), figure out the rest…
void clear(); — removes all elements (“clean start”)

Another category of operations are array operations:

Object[] toArray(); — returns an array of all the elements in this list in the correct order
<T> T[] toArray(T[] dest); — the list elements are placed in the array dest, which is
returned (if dest isn’t big enough to accommodate all elements of the collection, a new,
properly sized array is created and returned)

Alexei B Khorev and Josh Milthorpe (RSCS, ANU) COMP6700/2140 Abstract Data Types: Queue, Set, Map 19 April 2017 8 / 10

.....
.
....

.
....

.
.....

.
....

.
....

.
....

.
.....

.
....

.
....

.
....

.
.....

.
....

.
....

.
....

.
.....

.
....

.
.....

.
....

.
....

.

How to copy arrays properly
Arrays are objects, therefore when one array is assigned to another, the two identifiers point to
the same memory location. How to copy elements of an array into a different array?

To achieve element-by-element copying, one has to use the System.arraycopy()method: To
copy count elements from source array starting with index from to target array beginning with
index to, make the following call: System.arraycopy(source,from,target,to,count);

int[] smallPrimes = {2,3,5,7,11,13};
int[] luckyNumbers = {1001,1002,1003,1004,1005,1006,1007};
System.arraycopy(smallPrimes,2,luckyNumbers,3,4);
for (int i=0; i<luckyNumbers.length; i++)

System.out.println(i + ":" + luckyNumbers[i]);

Alexei B Khorev and Josh Milthorpe (RSCS, ANU) COMP6700/2140 Abstract Data Types: Queue, Set, Map 19 April 2017 9 / 10

.....
.
....

.
....

.
.....

.
....

.
....

.
....

.
.....

.
....

.
....

.
....

.
.....

.
....

.
....

.
....

.
.....

.
....

.
.....

.
....

.
....

.

Further Reading

Hortsmann Core Java for the Impatient, Ch. 7.3–7.5
Oracle The Java Tutorials: Collections (Sections 1-3)

Alexei B Khorev and Josh Milthorpe (RSCS, ANU) COMP6700/2140 Abstract Data Types: Queue, Set, Map 19 April 2017 10 / 10

https://docs.oracle.com/javase/tutorial/collections/

