Picture Creation And Synthesis Using Bacterial Evolution Algorithm

Content of This Presentation:

- Brief Introduction to BEA
- Making Pictures using BEA

Client: Tom Gedeon
Supervisor: Alistair Rendell
Student: Jian Yin Shen
What is it?

An algorithm that searches suitable solution for a given problem.

What is it good for?

Solving NP-hard problems, finding a better answer in the solution space. (Although not optimal)

What kind of algorithm is this?

An algorithm of Genetic Algorithm class.

So What is Genetic Algorithm? (Next page explains...)
A Concept Borrowed From Darwin

Evolutionism: how could species perfect themselves?

An Iterative Procedure:

- Multiplication, Crossover (Chromosome Interchange)
- Random Mutation
- Natural Selection

Result:

Individuals that carries better DNA (or RNA) have a better chance to survive, and descent their characteristics to their successors
The deeper the color, the better the individual
“X” indicates that the individual is washed out thus has no successor.
How Genetic Algorithm solve NP-Hard problems?

- Randomly select solutions from solution space
- Put these solutions as the first generation of a simulated evolution:
 1. Crossover (Combine 2 or more solutions into new solutions)
 2. Mutation (Randomly change a small amount of expressions of the solution)
 3. Selection (by using a fitness function)
 4. Repeat from 1 until requirement is satisfied

Result:

Solution(s) strong enough to survive many generations could be a good answer to the NP-Hard problem (not optimal)
How does bacteria multiply?

- Autogeny (duplicate itself)
- DNA absorb
Target:
Making NICE pictures Using BEA

(How?)
Sample: a picture generated by computer using BEA

Picture from:
“Evolutionary Image Synthesis Using a Model of Aesthetics”
Brian J. Ross, William Ralph, and Hai Zong
Problem Analysis

Requirement

Make a nice picture.

Definition of “Picture”

A 2D Matrix of pixels whose values are expressed by RGB.

Solution Space

All possible pictures.

A picture using 8bit RGB of 1024 x 768 resolution, number of all possible pictures would be:

\[(256^3)^{(1024 \times 768)} = 16777126^{786432} \text{ (pictures)}\]

Target

Find a nice one from these possibilities.

NP-Hard.
- Randomly generate pictures (which are probably not nice) as first generation

- Multiplication
 (a picture absorbs pixels from other pictures, like bacteria does in its multiplication)

- New generation is evaluated by a fitness function
1. Generating pictures which fit human taste.
 Principles of aesthetics maybe implemented to generate sketch.

2. Way to evaluate pictures – how nice they are?
 (implementation of the fitness function) possible impl: color analysis using statistics.

3. A Proper Bacterial DNA Absorb Behavior
 Implementation of synthesis between pictures in same generation
Could be one from:

Java
Strong Typing. Perfect library support
Not agile enough. Fussy.

Python
Dynamic. Good library support
Agile. Function Programming supported.

Ruby
Extremely dynamic and agile. FP supported.
Unknown library support.
Need to learn.