
Fast On-line Statistical Learning on a GPGPU

FangZhou Xiao1 Eric McCreath1 Christfried Webers1,2

1 School of Computer Science, College of Engineering & Computer Science
The Australian National University,

Canberra, ACT 0200, Australia,
Email: Shaw.Xiao@anu.edu.au, Eric.McCreath@anu.edu.au

2 NICTA,
Canberra, ACT 0200, Australia

Email: christfried.webers@nicta.com.au

Abstract

On-line Machine Learning using Stochastic Gradi-
ent Descent is an inherently sequential computation.
This makes it difficult to improve performance by sim-
ply employing parallel architectures. Langford et al.
made a modification to the standard stochastic gradi-
ent descent approach which opens up the possibility of
parallel computation. They also proved that there is
no significant loss in accuracy in their approach. They
did empirically demonstrate the performance gain in
speed for the case of a pipelined architecture with a
few processing units. In this paper we report on ap-
plying the Langford et al. approach on a General Pur-
pose Graphics Processing Unit (GPGPU) with a large
number of processing units. We accelerate the learn-
ing speed by approximately 4.5 times compared to a
standard single threaded approach with comparable
accuracy. We also evaluate the GPU performance for
the sequential variant of the algorithm, which has not
previously been reported. Finally, we investigate how
changes in the number of threads, number of blocks,
and amount of delay, effects the overall performance
and accuracy.

Keywords: GPGPU, Asynchronous Optimisation,
Statistical Machine Learning, On-line Learning

1 Introduction

Parallel architectures, such as the GPU or multi-core
systems, are set to take over traditional serialised ar-
chitectures given they facilitate a path to continued
performance improvement. Given the GPU’s out-
standing floating point performance, it is a low cost
solution for high-performance computing. Further-
more given the widespread deployment of graphics
cards capable of CUDA or OpenCL, writing HPC ap-
plications on a GPU has become a very attractive
option.

This work was supported in part by the Australian Research
Council grant DP0987773.
NICTA is funded by the Australian Government as represented
by the Department of Broadband, Communications and the
Digital Economy and the Australian Research Council through
the ICT Centre of Excellence program.
We would also like to thank Alistair Rendell and Alexander J.
Smola for their guidance and encouragement with this project.
Copyright 2011, Australian Computer Society, Inc. This pa-
per appeared at the 9th Australasian Symposium on Paral-
lel and Distributed Computing (AusPDC 2011), Perth, Aus-
tralia. Conferences in Research and Practice in Information
Technology (CRPIT), Vol. 118. J. Chen and R. Ranjan, Eds.
Reproduction for academic, not-for profit purposes permitted
provided this text is included.

GPUs have shown to be outstanding for some sci-
entific modelling applications (Stone et al. 2007, Col-
lange et al. 2007) by achieving surprising acceleration.
Steinkraus et al. (2005) claimed that GPUs are pleas-
ant substitutions to dedicated machine learning hard-
ware, such as analog chips and coarse-grained parallel
computers. Compared with CPUs or even multi-core
CPUs, GPUs still exhibit advantages in many appli-
cations (Raina et al. 2009). Previous work on machine
learning using GPUs mainly obtained acceleration
through intrinsic parallel structures in applications.
For example Raina et al. (2009) experimented with
large-scale deep unsupervised learning on GPUs and
Steinkraus et al. (2005) applied GPUs to a two-layer
fully connected neural network. Generally, GPUs (or
even other parallelised architectures) support appli-
cations which consist of highly symmetric and loosely
coupled calculations. These applications are natu-
rally parallelisable. Unfortunately, many applications
also involve critical sequential blocks, which can not
easily be parallelised. Such difficulty limits the per-
formance of modern parallelised architectures. This
paper tentatively applies the GPU’s computational
capability to one such sequential algorithm: on-line
statistical machine learning using gradient descent.
Although GPUs might not be the most suitable plat-
form available to address sequential issues, other par-
allelised architectures more or less face similar issues
of efficiency when utilising parallel computation ca-
pabilities.

Machine learning is concerned with the design and
development of models and algorithms that allow
computers to improve their performance over time
based on data. Depending on whether or not all train-
ing data are used at each iteration step of the algo-
rithm, one can distinguish between batch and on-line
learning.

Batch machine learning approaches evaluate can-
didate hypotheses against the entire set of training in-
stances. This can be very slow when the training set is
very large. Furthermore, as all the data must fit into
the memory, batch learning utilising large datasets is
not well suited for GPUs which have a small local
memory.

On-line learning takes one instance of data at a
time, and improves its performance solely based on
this data item. This process iterates through all the
data (possibly a number of times) until either some
convergence criteria are achieved or the model pre-
dicts unseen test data sufficiently accurately. As only
the model parameter and one data item at a time
have to be kept in memory, on-line learning better
suits the architecture of GPUs. This is a great ad-
vantage especially when the training set is very large.

The serial nature of on-line approaches means that

they are difficult to parallelise. This is because the
calculation of hypothesis xi+1 requires both the input
of instance zi, training label yi as well as the previ-
ous hypothesis xi. This entire process is depicted in
Figure 1.

Gradient

CalculateCalculate

Gradient

Hypothesis
Update

Hypothesis
Update

y
i+1

y
i

g
i

x i+1x i

g
i+1

Time

x i+2

i+1
z i z

Figure 1: Data flow for the stochastic gradient de-
scent algorithm. In order to calculate the hypothesis
xi+1, one data item zi, training label yi, as well as the
previous hypothesis xi are required. A stage can only
start its calculations if the previous stage has finished
all computations.

Langford’s (Langford et al. 2009) paper “Slow
Learners Are Fast” modifies the standard gradient
descent algorithm permitting the calculation of the
gradient to use a delayed version of the hypothesis.
This opens up the possibility of concurrently execut-
ing the calculation of the gradient. This is depicted
in Figure 2 which shows the dependencies when the
gradient calculation uses a delay of 1.

x i−1
Hypothesis

Update

x i

Update

HypothesisHypothesis

Update

x i+1

Calculate

Gradient

Calculate

Gradient

Calculate

Gradient

y
i

y
i+2

g
i+2

g
i

g
i+1

x i+2

y
i+1

Time

zi+1

z
i z

i+2

Figure 2: Data flow for delayed stochastic gradient
descent algorithm. With a delay of 1, two threads
can run concurrently. Thread A (the lower one) starts
to calculate gradient gi immediately after hypothesis
xi−1 is available. Before it updates the hypothesis xi
with gi, thread B (the upper one) uses the hypothesis
xi to calculate the gradient gi+1. As can be seen from
the data flow, gradient calculation in the threads and
updating hypothesis can be run in parallel.

Clearly a new gradient calculation can be started
after each hypothesis update. That means if the delay
τ is larger than one, potentially τ threads can be run
in parallel. On the other hand, if the delay is too
large, the gradient updates become outdated because
they are based on too old hypotheses. This limits the

number of the delay τ from above.
Langford et al. provide the theoretical foundation

for our series of experiments. They prove convergence
properties of the convex minimisation problem. Yet
they do not experimentally show the performance im-
provement on an actual parallel architecture. Our ex-
periments implement the delayed mechanism on the
TREC dataset (Cormack 2007), and verify the utility
of this approach.

The stochastic gradient approach assumes that the
training instances are independent and identical dis-
tributed (iid) data, this will generally require the
training set to be randomly shuffled before being pro-
vided to the learner. This opens up the possibility of
allowing the reordering of examples when they are
used within the learner, which in turn enables us
to arbitrarily allocate instances to threads without
tightly enforcing an ordering via synchronisation.

The delayed approach trades accuracy with paral-
lelism. Using this parallelism should make the pro-
gram run faster, however, if you need to run more
steps to gain the same accuracy then the speed gained
via parallelism needs to outweigh the accuracy losses.
Otherwise it is better to just run the standard serial
code. We have explored and reported the effect on
accuracy in this paper.

There are a number of challenges in implement-
ing the delayed stochastic gradient descent algorithm
using a GPU. They include:

1. synchronisation is difficult to implement across
all the blocks,

2. synchronisation has the potential to be costly in
terms of performance,

3. the GPUs memory size is relatively small, and

4. it is slow to transfer data between the host and
the device memory.

2 Delayed Stochastic Gradient Descent

This problem is one of binary classification prob-
lems. Email t is denoted ztztzt ∈ Z and given the label
yt ∈ {±1}, so if yt = −1 then the message ztztzt is la-
belled as spam, whereas, if yt = 1 then the message
ztztzt is labelled as not spam. Z belongs to an n dimen-
sional space and has a corresponding n dimensional
feature space X ⊆ Rn. This feature space contains
the hypotheses we intend learning. To determine the
classification of a new message zzz we simply take the
inner product between the message and that of our
current hypothesis 〈zzz,xxx〉 if this is negative then the
message is predicted to be spam and if the inner prod-
uct is positive then the message is predicted to be not
spam.

The loss associated with email t using hypothesis
xxx is l(yt〈ztztzt,xxx〉). The smoothed quadratic soft-margin
loss function is used:

l(χ) =

1
2 − χ if χ < 0
1
2 (χ− 1)2 if χ ∈ [0, 1]
0 otherwise

The aim is to find a hypothesis xxx that minimises the
sum of the loses over all the training instances. The
basic idea of gradient descent, also known as steepest
descent, is using a single example move the hypoth-
esis xxx in the direction of the negative gradient. This
is repeated over all the instance of the training set
over a number of repetitions. An annealing schedule

η controls the convergence speed. The amount of de-
lay used is denoted τ ∈ N . Langford et al. (Langford
et al. 2009) proved that if the delay is within a toler-
able range, delayed stochastic gradient descent would
converge to an acceptable value. The convex function
used for calculating the gradient is:

ft(xtxtxt) = l(yt〈ztztzt,xtxtxt〉)

The algorithm for stochastic gradient descent with
the delayed mechanism is given in the following steps:

1. Initialise weight vectors x1x1x1, ...,xτxτxτ = 000

2. Compute the gradient:

gtgtgt = 5ft(xtxtxt)
= ztztzt

∂ l(yt〈ztztzt,xtxtxt〉)
∂ 〈ztztzt,xtxtxt〉

=

−ytzt
ztzt, if 〈ztztzt,xtxtxt〉 ≤ 0

yt(〈ztztzt,xtxtxt〉 − 1)ztztzt, if 〈ztztzt,xtxtxt〉 ∈ [0, 1]
000, otherwise.

3. Update xt+1xt+1xt+1 = xtxtxt − ηtgt−τgt−τgt−τ .

4. Repeat Steps 2 and 3.

Step 3 in the above algorithm is based on the as-
sumption that the weight vector has not been changed
greatly after τ delays, so we can update the weight
vector by using the delayed gradient. As the number
of instances processed increases the annealing sched-
ule, which is ηt = 1

t−τ , becomes small. This provides
a guarantee that the weight vector will only change
slowly.

Regarding to simplicity of implementation and
consistency with Langford’s experimental settings, we
used dot product in Euclidean spaces to calculate in-
ner product mentioned.

3 Implementation Issues

This section generally covers concerns or possible is-
sues if researchers try to replicate our experiments.
Regarding to GPU hardware restrictions, we have
to make changes to the codes running on the GPU.
Where possible we kept similar experimental settings
to that of Langford et al. (2009), if any other issues
haven’t been mentioned in the paper.

3.1 Machine Learning Issues

Our training set, the TREC dataset (Cormack 2007),
consists of 75419 labeled e-mail messages. This
dataset has three subsets, “full”, “partial” and “de-
lay”. The “delay” part was used because it was large
enough to properly evaluate the implementation, yet,
small enough to still be able to run tests in a rea-
sonable amount of time. In order to transform raw
messages into manipulable data, we conducted a sep-
arate program from training codes to extract rele-
vant information, called pre-processing. Note that
this part of program had not been evaluated, only
the performance of training codes was concerned. In-
formation was extracted from the email header fields
‘From:’,‘To:’,‘Subject:’, and ‘Time:’, and also from
the body of the email. Symbols other than alphabetic
letters and numbers, such as ASCII code less than 48,
were removed from the text. Then rest text was con-
sisted of words that were separated by space. All the
word were capitalised and recorded into a word dic-
tionary. Langford’s experiment used both the bag of

words and the bag of words pairs representation. For
simplicity reason we only adopted the bag of words
representation. The sparse format of the message rep-
resentation was transformed to a condensed format
which listed just the features appearing within the
email.

However techniques in text classification like ex-
cluding most frequently occurring words, such as “a”,
“the” or words that only appear once from the word
dictionary, had not been applied. Therefore less pre-
knowledge or less artificial intervention was involved
into the experiment. Without specific settings for text
classification, our results might be meaningful for gen-
eral machine learning problems. Furthermore our ex-
periment results shown that weights of these features
had very limited influence on classification results.
Alternatives of these settings may affect accuracy.
However, as our focus is on comparing the GPU im-
plementation with that of a standard CPU approach,
comparing both speed and accuracy. The relative per-
formance, rather than absolute performance, of the
two approaches is more informative.

To fulfil the assumption that input data are iid
data, when messages were loaded, we randomised the
data by repeatedly swapping randomly selected mes-
sages. This provided us with some confidence that
the data provided to the learner was not correlated.
For evaluation, we used the standard ten-fold cross
validation to calculate average learning results.

3.2 Data Structure on the GPU

In order to fit the experimental data into the GPU
memory, we re-arranged some data structures. The
message matrix that records feature indices was trans-
formed into a long vector, called “datalist”. The start
positions of each message was recorded in another
vector called “positionlist”, with which we can easily
extract the message from the long vector “datalist”.
Target values of messages were put into a third vec-
tor called “targetlist”. The GPU has fast but small
constant memory. We stored “positionlist” and “tar-
getlist” into the constant memory. Because the infor-
mation of “positionlist” and “targetlist” is frequently
required, by storing it in the constant memory will
significantly increase efficiency. The vector of feature
weights was stored in global memory. Although this
memory is very slow, global memory was the only
space where all threads can read and update data in
our current understanding. Furthermore for the same
reason two vectors of “gradient” and “messageid” in
global memory were used to store implicit gradient
information. The size of “gradient” depended on the
delay parameter.

Since the GPU used a different memory system
with that of the host CPU system, thus we needed
to copy data from the host memory to the device
memory and copy results from the device memory
back to the host memory after computing. We had
to minimise this cost by avoiding frequently transfer-
ring data between the host and the device.

3.3 Coding

In order to get benchmark results for evaluating the
GPU’s performance, we wrote equivalent programs
for both the CPU and the GPU. Both codes are writ-
ten in C, and the CUDA API was used for calling
the kernel executed on the GPU. We used an asyn-
chronous approach to parallelise most parts of the
program.

In our program, we can change the parameters of
iteration number, delay amount, grid size and block

size (the total number of threads running is the prod-
uct of the grid size and the block size) to measure the
training time and the error rate. Repetitive learn-
ing was run over many iterations on the same dataset
as indicated. Because every thread does the similar
tasks, we could explain one thread as representative.

The thread loaded features of one message and the
corresponding weights from the global memory. After
calculating the gradient, this thread wrote the gradi-
ent and the message ID into “gradient” and “mes-
sageid” vectors. The index of the vectors was de-
cided by the thread’s unique id. Then the thread up-
dated the delayed gradient stored in “gradient” and
“messageid” vectors (delay τ times ago) to the global
weight vector and cleared the outdated data.

Assuming every thread handles one parallel com-
putation, then the thread size as Langford suggested
is delay τ plus 1. For example if the delay is zero, then
at least one thread should be running and thus the
delay mechanism is disabled. Note that total thread
size did not necessarily equal to delay τ plus 1. To-
tal thread size is a number within the range of one
and instances size. Delay size is between zero and the
total thread size.

3.4 Scheduling

The delayed update mechanism required a well or-
ganised read and write schedule. However it was dif-
ficult for the GPU to keep such an organised sched-
ule, because direct communications between threads
is not easily available (although global memory could
be used, it would be very slow). One thread that
starts processing messages earlier cannot promise to
finish earlier. The thread does not care about other
threads’ status (especially threads in different blocks).
In most cases, such a schedule was chaos and uncon-
trollable, especially when the disabled delay mecha-
nism was used. Variances in the delay built up when
the program had been run for some time. The delay
mechanism would help to keep the schedule organ-
ised, because the more delay we assign, less threads
would try to access the same shared data. Also each
thread cleared its own “gradient” and “messageid”
spaces after updates. For every thread, it required the
results from t−τ thread but it will not wait on previ-
ous threads. By clearing “gradient” and “messageid”
spaces after every update, we can at least make sure
that if a thread updated results earlier than previous
threads finishing computing, it would at least make
no changes to the final result.

4 Results and Evaluation

This section illustrates our experimental results re-
garding to the CPU and the GPU respectively. We
evaluate the performance of the algorithm running on
the CPU as benchmarks and investigate how changes
in the number of threads, number of blocks, and
amount of delay, effects the overall performance and
accuracy. We also discuss the limitations of our im-
plementation on the GPU.

The graphics card used is the NVIDIA Geforce
GTX 295 and it consists of two identical GeForce
GTX 200 GPUs. Each of these GPUs has 30 Stream-
ing Multiprocessors and each of the Streaming Mul-
tiprocessors has 8 cores. We introduce SM as an ab-
breviation for Streaming Multiprocessors. Each of the
GPUs has 895M global memory and 64K bytes con-
stant memory. Execution blocks have 16K of shared
memory and 16K of registers. The GPU runs at 1.24
GHz and has a CUDA capability of v1.3. The host

machine uses a AMD PhenomTM II X4 945 processor
with 4GB of main memory. For simplicity we describe
the NVIDIA GPU card as the ’GPU’ and the AMD
host as the ’CPU’.

4.1 Experiments on the CPU

Figure 3 shows the results of Langford’s experiment
based on ”full” dataset. Our results based on both
“full” and “delay” dataset were shown in Figures 4
and 5. In order to show curves clearly, we used dif-
ferent scales of x-axis from Langford’s figure.

Figure 3: Results of Langford’s experiment on the full
dataset. The curves of relatively small delay (com-
pared with intance size and iteration times) are close
to the curve of zero delay. The error rate increases
when delay size increases.

-7

-6

-5

-4

-3

-2

 0 200 400 600 800 1000

L
o

g
2
 E

rr
o

r

Iterations

Performance on Full Dataset

no delay
delay of 10

delay of 100
delay of 1000

delay of 10000

Figure 4: Performance of our experiment on the full
dataset. Our results exhibit similar trends as Lang-
ford’s results. For a relatively large delay, the accu-
racy will be significantly affected.

In order to test that the learner was working prop-
erly, we created an artificial dataset. This artificial
dataset includes some known positive and negative
keywords. Through learning, the induced weight vec-
tor showed that these keywords had a much larger
value than that of other less important words. Fur-

-7

-6.5

-6

-5.5

-5

-4.5

-4

-3.5

-3

 0 2 4 6 8 10 12 14

L
o

g
2
 E

rr
o

r

Log2 Iterations

Performance on Delay Dataset

no delay
delay of 10

delay of 100
delay of 1000

Figure 5: Performance of our experiment on delay
dataset. This a similar experiment on a smaller
dataset.

thermore, positive and negative keywords had oppo-
site signs. Frequently occurring features ended up
with small weights, which barely contributed to clas-
sification results.

Then we changed some target values of messages
(adding some outliers) or exchanged position of mes-
sages pairs, the results showed that accuracy was af-
fected in the first few iterations, but gradually con-
verged to a similar accuracy level. Therefore we are
confident that our algorithm, was not only able to
distinguish important features from trivial ones, but
also ignored outliers to some extend. Also we found
that if the input data was large, the effect of delay
could be minimised if we ran many repetitions in the
learning.

Nevertheless our results did not exactly follow that
of Langford’s results, since there were a few differ-
ent settings used. Langford used the bag of word
pairs as well as the bag of words to represent fea-
tures, whereas, we only used bag of words for sim-
plicity reason. We believe that if we adopted alterna-
tive settings, the error rate of classification could be
much lower and more steady. Nevertheless all these
results show the same trends: if the number of iter-
ations increases, the error rate presents more steady
and lower; if the delay amount increases, the less ac-
curacy of converged results would achieve. Under our
assumption that this experiment was a relative com-
parison, if we used our results of the same settings on
the CPU as a benchmark, we could still explore the
character of the GPU.

We tested both results that were calculated by
single precision and double precision under our set-
tings. The results showed that there were no obvious
changes over the classification results within one hun-
dred thousand iterations. The weight of each feature
could be affected on the 10−5 scale, but overall clas-
sification results remained the same. In this case, if
the data clusters were distinctive, then such accuracy
loss was tolerable. However in other applications, the
precision of parameters may be more significant.

Figure 6 shows relationship between accuracy and
minimum training time required. As we see, to gain
higher accuracy will incur much more computations.
It is beneficiary if GPUs can accelerate this procedure
while they still be able to keep comparable accuracy.

We ran codes both on the CPU and the GPU using

-2

 0

 2

 4

 6

 8

 10

 12

-7.2-7-6.8-6.6-6.4-6.2-6-5.8-5.6

L
o

g
2
 T

im
e

Log2 Error

Accuracy versus Minimum Training Time

Figure 6: Example of minimum CPU sequential ex-
ecution training time required to achieve different
accuracy levels based on delay dataset. To achieve
higher accuracy will require much more computa-
tions.

one thread on the “delay” subset without setting de-
lay. The results showed that the CPU’s efficiency was
roughly 35 times higher than that of the GPU (with-
out considering a constant memory transfer time).
Regardless of other facets, in order to gain acceler-
ation from current settings, we ought to parallelise
more than 35 threads (actually much more) on the
GPU. If the CPU running time is less than the mem-
ory transfer time, then there is no point in using the
GPU for acceleration. Only if the CPU’s running is
much greater than the memory transfer time, could
we possibly gain acceleration. Longer CPU running
time is related to more repetitive learning or a larger
dataset.

4.2 Experiments on the GPU

We outlined the performance of the GPU through
changing parameters of delay, iteration, grid size and
block size. Based on the knowledge of these param-
eters, we drew cures of acceleration that we could
achieve in our understanding. More elaborate opti-
misation is still achievable.

4.2.1 Delay

According to Figure 4 and Figure 5, with iteration
of eight hundred times, all curves of delay have con-
verged to steady states. Therefore most of our exper-
iments are tested under 800 iterations. Here we test
results according to changing delay given total run-
ning threads as shown in Figure 7 and Figure 8. We
set the grid size to 30 (equals to number of Stream-
ing Multiprocessors, thus each SM execute one block)
and the block size to 320 (10-fold of warp size). Note
that memory transfer time is not considered. Figure 7
shows that accuracy increases when the delay goes up
to 32. After that accuracy drops gradually when de-
lay keeps increasing. Because when delay is smaller
than 32, one warp of execution will definitely have
two or more threads trying to access the same de-
lay space. We cannot assure that former threads will
finish computing and write back before later threads
started to read. Yet if the delay is over the warp size,
during one warp execution, in most cases, one thread

accessed one delay space and all threads will finish
computing before next warp execution. However in
terms of Langford’s delay hypothesis, the proper de-
lay should be much higher than 32 in this case. Using
delay of 32 actually updated results earlier than ex-
pected. Figure 8 shows how execution time is affected
by changing the delay. If the delay is smaller, then
less processing time would be consumed. A big delay
space will result in more cache misses, whereas small
delay seemed to be more efficient. This indicates that
with a delay of 32 we will help to achieve the fastest
processing speed without affecting accuracy, yet this
does not strictly follows Langford delay hypothesis.

-11
-10

-9
-8
-7

-6
-5
-4

-3
-2

 0 2 4 6 8 10 12 14

L
o

g
2
 E

rr
o

r

Log2 Delay

Accuracy versus Delay

Figure 7: Example of accuracy versus delay curve
tested given thread size and iterations. Accuracy in-
creases when the delay goes up to 32. After that ac-
curacy drops gradually when delay keeps increasing.

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 0 2 4 6 8 10 12 14

T
im

e

Log2 Delay

Time versus Delay

Figure 8: Example of time versus delay curve tested
given thread size and iterations. Training time in-
creases if the delay increases.

4.2.2 Iteration

We tested the relationship between changing repeti-
tive learning iterations and performance as shown in
Figures 9 and 10. In these experiments: the grid size
is 30; the block size is 320; and the delay is 32. Note

that memory transfer time is not considered. In Fig-
ure 10 we find that the processing time scales very
well based on the number of iterations, which means
computation and memory costs have a steady pro-
portion. According to the results in Figure 9, it fol-
lowed our simulation expectation that the error rate
drops when the number of iteration increases. Even
if we change the delay, it still shows a similar pat-
tern. Surprisingly our classification results seems to
be even better than the simulation code. A possi-
bly reason might be that using the delay mechanism
could initiate a better starting point for the gradient
descent problem or it could avoid a local minimum
trap. We would like to further experiment with this
to understand what is happening.

-11
-10

-9
-8
-7

-6
-5
-4

-3
-2

 0 2 4 6 8 10

L
o

g
2
 E

rr
o

r

Log2 Iterations

Accuracy versus Iterations

Figure 9: Example of accuracy versus iteration curve
tested given threads and delay. The figure shows that
error rate drops when iterations increase.

-8

-6

-4

-2

 0

 2

 0 2 4 6 8 10

L
o

g
2
 T

im
e

Log2 Iterations

Time versus Iterations

Figure 10: Example of time versus iteration curve
tested given threads and delay. Training time is pro-
portional to number of iterations.

4.2.3 Grid size versus Block size

We tested codes with zero delay to find out how
changes in grid size and block size will affect pro-
cessing speed. In ideal case, if we double the number

of threads, the training time will be half the original.
There are three ways to increase the total number
of threads running on a GPU: increase block number
per grid, increase thread number per block, and com-
bined. The results through changing grid size and
block size under 64 iterations is shown as Figure 11.
If we only scale the grid size, we could see a repeti-
tive pattern of 210 thread size (7-fold of SM number).
SM can fit several blocks if the resources are available
(Hong and Kim 2009). So in this case seven blocks
could be executed at one time, therefore we have this
repetitive cure. Therefore it was ideal to have the
block size equal to SM’s fold to achieve better accel-
eration. Note that we cannot fit as many as seven
blocks into one SM as thread number increases. If
we only increase the block size (biggest number of
threads was 512 for our GPU), processing time drops
steadily, although, it is not as steep as the ideal curve.
Therefore we conclude that to efficiently use the GPU
resources, it is advisable to have more threads run-
ning in the blocks. While at the same time we keep
all SMs working. So the grid size of 30 seems to be
the optimum setting.

-6

-5

-4

-3

-2

-1

 0

 1

 2

 0 100 200 300 400 500

L
o

g
2
 T

im
e

Threads

Time versus Threads

block

grid

ideal

Figure 11: Example of time versus threads curve. The
grid curve follows the ideal curve in the begining. The
block curve drops steadily.

4.2.4 Acceleration

Figure 12 illustrates the acceleration achieved by
comparing processing time between CPU and GPU
through both running 800 iterations. There are three
curves shown in the figure: “extreme”, “standard”
and “tuned”. In order to increase total thread num-
ber, we first increased the grid size until it reached
30 (the number of SMs) and then increased the block
size. “Extreme” speed-up was the ratio of CPU pro-
cessing time to memory transfer time by assuming
GPU processing time was zero. “Standard” curve was
plotted that thread number equalled to delay plus one
and “tuned” curve was tested under a fixed delay of
thirty-two. Note that all curves take memory transfer
time into account.

4.3 Discussion

One big problem we found in the parallelism of asyn-
chronous optimisation is that a direct and fast com-
munication between threads is not available. Similar
findings revealed by Xiao and Feng (2009) claimed

 0

 200

 400

 600

 800

 1000

 1200

 0 2 4 6 8 10 12 14

S
p

e
e

d
-u

p
 p

e
rc

e
n

ta
g

e
 (

%
)

Log2 Threads

Acceleration

standard
tuned

extreme

Figure 12: Acceleration curve that we could possibly
achieve.

that inter-block GPU communication is a main con-
tributor to total processing time. Furthermore, our
control over thread scheduling is limited. There are a
few possible approaches we could try to address these
synchronisation issues:

1. Stop parallelism after some time, synchronise re-
sults and restart the parallelism. This approach
would help to ensure correctness stage by stage.
However this would introduce more overhead and
also the efficiency of parallelism would be under-
mined.

2. Apply parallelism of pipelined optimisation to
decompose loss function as Langford suggested
(Langford et al. 2009). Assuming fi(xxx) =
g(〈φ(zizizi),xxx〉) The issue is to find out appropriate
φ(zizizi) and feed data zizizi to partial functions. The
advantage of this approach is that it dramati-
cally reduces synchronisation costs and updates
partial values locally. Nevertheless when com-
bining partial values we still need to make sure
all threads are working on the same data.

Theoretical bandwidth of the NVIDIA GeForce
GTX 295 is

1.24× 109 × (512/8)× 2 = 158.7 GB/sec

We used cudaprof as profiler to test performance by
setting the grid size to 30, the block size to 320 with
delay 32. Overall global memory throughput was
29.9972 GB/sec. Occupancy for major function was
0.625. Only about 20% the GPU’s theoretical ca-
pability had been achieved. This results were fore-
seeable if we implemented a sequential logical pro-
gram onto parallel architectures. Bridges et al. (2007)
experimented sequential codes of C benchmarks in
SPEC CINT2000 on multi-core achieving speedup of
454% using 32 threads. Also some applications can
hardly gain speedup. The bottleneck of the program
was excessive access to global memory during syn-
chronisation. The latency drag down the utilisation
of computations. Xiao and Feng (2009) claimed that
inter-block synchronisation is the main contributor
to total processing time when computation is highly
parallelised.

5 Conclusions and Future Work

Nowadays increasing parallel cores have become the
stimulus for fast continuing growth in transistor
count. However sequential applications have not
taken the advantages of increasing computability.
Therefore it is worthwhile to explore how to make
use of tomorrow’s processors. In this paper, we im-
plemented Delayed Stochastic Gradient Descent Al-
gorithm on a GPU platform. With the delay mech-
anism, we could parallelise an essentially sequential
problem that has hardly been handled by general par-
allel architectures. Based on our experiment, we show
that this alternative delay algorithm could achieve
comparable accuracy to that of a sequential algorithm
through parallel computations.

We also estimated GPU’s performance on a strong
dependency case, which had not previously been re-
vealed. Our results showed that the GPU’s high
computability was not fully exerted compared to
other GPU implementations. Because the applica-
tion excessively attempted to access global memory,
when parallelism became high, computation time con-
tributed much less than memory access time. How-
ever global memory is the only all threads accessi-
ble memory, thus it was difficult to avoid such costs.
Note that acceleration could still be increased if the
dataset size or iterations increased, but synchronisa-
tion would still be the bottleneck. GPUs have very
light weight threads which are not specially designed
for complex operations. Because of its low scheduling
design, GPUs gain benefits of fast growing computa-
tions but lose complex logic control over parallelism.

In order to solve the sequential problem proposed,
there are two possible solutions: to find or to design
an architecture that supports fast and complex logic
over parallelism, or to revise current algorithms that
minimise synchronisation cost however achieving ap-
plicable accuracy.

Experimenting on GPUs’ simple cores will reveal
its incapability of current design when solving some
general problems. However further study of combin-
ing algorithms with architecture would possibly in-
dicate what are the most important features to be
necessarily included in future designs. For example,
if synchronisation plays an important role in future
parallelism program model, it assures that Fermi ar-
chitecture (new generation of NVIDIA GPUs) with
fast global cache is a smart choice. Furthermore
it could be a good idea to have a central coordi-
nate processor in parallel architecture such as PS3,
which can sufficiently communicate with other par-
allel cores. This coordinator can gather information
from other threads, but at the same time manage the
scheduling and usage of memory. Besides we are also
interested to experiment on other existing architec-
tures. As Vuduc et al. (2010) suggested, a hybrid
CPU/GPU architecture may perform better overall.
This would also eliminate memory transfer time be-
tween the host system and the GPU’s memory, which
is currently one of limitations with current graphics
card configurations.

To minimise the synchronisation cost, we can ex-
periment with pipelined approaches of parallelism
that require less synchronisation. Furthermore we
could improve machine learning algorithms from fre-
quently synchronisation required to only occasional
synchronisation required. For example our applica-
tion requires synchronisation after processing each in-
stance. If an algorithm only requires synchronisation
after processing one hundred instances, this would
make a big difference.

In general our conclusions are limited in two main

ways. Firstly, our application was specifically on one
machine learning approach, thus, limiting the gener-
alisation of our claims. Secondly we have only tested
the approach on the NVIDIA GTX295 using CUDA
programming language. It would be interesting to ex-
plore the approach on other GPU models and other
programming APIs.

In the next stage in this research we will experi-
ment with other machine learning algorithms on var-
ious GPU models or other architectures. We would
like to explore optimisation techniques, e.g. pipelined
optimisation, orthogonal feature spaces. We could
experiment on other stochastic algorithm to evaluate
hypothesis of delayed update. Another direction is
to explore other algorithms which are more suited to
existing parallel architectures.

References

Bridges, M., Vachharajani, N., Zhang, Y., Jablin, T.
& August, D. (2007), Revisiting the Sequential Pro-
gramming Model for Multi-Core, in ’International
Symposium on Microarchitecture - MICRO 2007’.

Collange, S., Daumas, M. & Defour, D. (2007),
Graphic processors to speed-up simulations for
the design of high performance solar recep-
tors, in ’IEEE 18th International Conference on
Application-specific Systems’.

Cormack, G. (2007), TREC 2007 spam track
overview, in ‘proceeding of the Sixteenth Text RE-
trieval Conference (TREC 2007)’.

Hong, S. and Kim, H. (2009), An analytical model for
a GPU architecture with memory-level and thread-
level parallelism awareness, in ’Proceedings of the
36th annual international symposium on Computer
architecture’, Austin, TX, USA.

Langford, J., Smola, A. & Zinkevich, M. (2009), Slow
Learners are Fast, Journal of Machine Learning Re-
search, Vo1. 1, 1–23.

Raina, R., Madhavan, A. & Ng, A. (2009), Large-
scale Deep Unsupervised Learning using Graphics
Processors, in ’Proceedings of the 26th Annual In-
ternational Conference on Machine Learning’.

Steinkraus, D., Buck, J. & Simard, P. (2005), Using
GPUs for Machine Learning Algorithms, in ’Pro-
ceedings of the 2005 Eight International Confer-
ence on Document Analysis and Recognition (IC-
DAR’05)’.

Stone, J., Phillips, J., Freddolino, P., Hardy, D.,
Trabuco, L. & Schulten, K. (2007), Accelerat-
ing molecular modeling applications with graphics
processors, Journal of Computational Chemistry,
Vol. 28, 2618–2640.

Vuduc, R., Chandramowlishwaran, A., Choi, J.,
Guney, M. & Shringarpure, A. (2010), On the Lim-
its of GPU Acceleration, in ‘2nd USENIX Work-
shop on Hot Topics in Parallelism’.

Xiao, S., and Feng, W. (2009), Inter-block GPU com-
munication via fast barrier synchronization, Tech-
nical Report TR-09-19, Dept. of Computer Science,
Virginia Tech.

