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Abstract. Deduplicating one data set or linking several data sets are
increasingly important tasks in the data preparation steps of many data
mining projects. The aim is to match all records relating to the same
entity. Research interest in this area has increased in recent years, with
techniques originating from statistics, machine learning, information re-
trieval, and database research being combined and applied to improve the
linkage quality, as well as to increase performance and efficiency when
linking or deduplicating very large data sets. Different measures have
been used to characterise the quality and complexity of data linkage al-
gorithms, and several new metrics have been proposed. An overview of
the issues involved in measuring data linkage and deduplication quality
and complexity is presented in this chapter. It is shown that measures
in the space of record pair comparisons can produce deceptive accuracy
results. Various measures are discussed and recommendations are given
on how to assess data linkage and deduplication quality and complexity.

Keywords: data or record linkage, data integration and matching, dedu-
plication, data mining pre-processing, quality measures, complexity mea-
sures.

1 Introduction

With many businesses, government organisations and research projects collect-
ing massive amounts of data, the techniques collectively known as data mining
have in recent years attracted interest both from academia and industry. While
there is much ongoing research in data mining algorithms and techniques, it is
well known that a large proportion of the time and effort in real-world data
mining projects is spent understanding the data to be analysed, as well as in
the data preparation and preprocessing steps (which may dominate the actual
data mining activity) [34]. It is generally accepted [14] that about 20% to 30%
of the time and effort in a data mining project is used for data understanding,
and about 50% to 70% for data preparation.
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An increasingly important task in the data preprocessing step of many data
mining projects is detecting and removing duplicate records that relate to the
same entity within one data set. Similarly, linking or matching records relating
to the same entity from several data sets is often required as information from
multiple sources needs to be integrated, combined or linked in order to allow
more detailed data analysis or mining. The aim of such linkages is to match all
records related to the same entity, such as a patient, a customer, a business, a
consumer product, or a genome sequence.

Data linkage and deduplication can be used to improve data quality and
integrity, to allow re-use of existing data sources for new studies, and to reduce
costs and efforts in data acquisition. In the health sector, for example, linked
data might contain information that is needed to improve health policies, and
which traditionally has been collected with time consuming and expensive survey
methods. Data linkage can also help to enrich data that is used for pattern
detection in data mining systems. Businesses routinely deduplicate and link their
data sets to compile mailing lists, while within taxation offices and departments
of social security, data linkage and deduplication can be used to identify people
who register for benefits multiple times or who work and collect unemployment
money. Another application of current interest is the use of data linkage in crime
and terror detection. Security agencies and crime investigators increasingly rely
on the ability to quickly access files for a particular individual, which may help
to prevent crimes by early intervention.

The problem of finding similar entities does not only apply to records which
refer to persons. In bioinformatics, data linkage can help to find genome se-
quences in a large data collection that are similar to a new, unknown sequence
at hand. Increasingly important is the removal of duplicates in the results re-
turned by Web search engines and automatic text indexing systems, where copies
of documents – for example bibliographic citations – have to be identified and
filtered out before being presented to the user. Finding and comparing consumer
products from different online stores is another application of growing interest.
As product descriptions are often slightly different, comparing them becomes
difficult.

If unique entity identifiers (or keys) are available in all the data sets to be
linked, then the problem of linking at the entity level becomes trivial: a simple
join operation in SQL or its equivalent in other data management systems is all
that is required. However, in most cases no unique keys are shared by all of the
data sets, and more sophisticated linkage techniques need to be applied. These
different techniques can be broadly classified into deterministic or rules-based
approaches, and probabilistic approaches, as discussed in Section 2. The nota-
tion and problem analysis are then presented in Section 3, before an overview
of the various quality measures used to assess data linkage techniques is given
in Section 4. When linking large data sets, it is normally not feasible to com-
pare all possible record pairs due to the resulting computational complexity, and
special blocking, sorting or indexing techniques have to be applied. Several re-
cently proposed complexity measures, and the influence of blocking techniques



upon quality measures, are discussed in Section 5. A real-world example is used
in Section 6 to illustrate the effects of using different quality and complexity
measures. Finally, the issues involved in quality measures in data linkage and
deduplication are discussed, and a series of recommendations is given in Section 7
on how to assess the quality and complexity of data linkage and deduplication al-
gorithms and techniques, before this chapter is concluded with a short summary
in Section 8.

2 Data Linkage Techniques

Data linkage and deduplication techniques have traditionally been used in the
health sector for cleaning and compiling data sets for longitudinal or other epi-
demiological studies [25], and in statistics for linking census and related data [19,
41]. Computer-assisted data linkage goes back as far as the 1950s. At that time,
most linkage projects were based on ad hoc heuristic methods. The basic ideas
of probabilistic data linkage were introduced by Newcombe and Kennedy [31]
in 1962, and the theoretical statistical foundation was provided by Fellegi and
Sunter [17] in 1969.

Similar techniques have independently been developed by computer scien-
tists in the area of document indexing and retrieval [13]. However, until recently
few cross-references could be found between the statistical and the computer
science community. While statisticians and epidemiologists speak of record or
data linkage [17], the computer science and database communities often refer to
the same process as data or field matching, data scrubbing, data cleaning [18, 35],
data cleansing [28], preprocessing, duplicate detection [5], entity uncertainty or
as the object identity problem. In commercial processing of customer databases
or business mailing lists, data linkage is sometimes called merge/purge process-
ing [23], data integration [11], list washing or ETL (extraction, transformation
and loading).

2.1 Data Linkage Process

A general schematic outline of the data linkage process is given in Figure 1.
As most real-world data collections contain noisy, incomplete and incorrectly
formatted information, data cleaning and standardisation are important prepro-
cessing steps for successful data linkage, and before data can be loaded into data
warehouses or used for further analysis [35]. Data may be recorded or captured
in various, possibly obsolete, formats and data items may be missing, out of date,
or contain errors. The cleaning and standardisation of names and addresses is
especially important, to make sure that no misleading or redundant informa-
tion is introduced (e.g. duplicate records). Names are often reported differently
by the same person depending upon the organisation they are in contact with,
resulting in missing middle names, initials-only, or even swapped name parts.
Additionally, while for many regular words there is only one correct spelling,
there are often different written forms of proper names, for example ‘Gail’ and
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Fig. 1. General linkage process. The output of the blocking step are record pairs, and
the output of the comparison step are numerical vectors with matching weights

‘Gayle’. The main task of data cleaning and standardisation is the conversion
of the raw input data into well defined, consistent forms and the resolution of
inconsistencies in the way information is represented or encoded [9, 10].

If two data sets are to be linked, the number of possible comparisons equals
the product of the number of records in the two data sets. The performance
bottleneck in a data linkage system is usually the expensive evaluation of the
similarity measures between pairs of records [2]. It is therefore computation-
ally not feasible to consider all pairs when the data sets are large. For exam-
ple, linking two data sets with 100, 000 records each would result in ten billion
possible record pair comparisons. On the other hand, the maximum number
of true matched record pairs that are possible corresponds to the number of
records in the smaller data set (assuming a record can only be linked to one
other record). Thus, the space of potential matches becomes sparser when link-
ing larger data sets, while the computational efforts increase exponentially. To
reduce the large amount of possible record pair comparisons, traditional data
linkage techniques [17, 41] work in a blocking fashion, i.e. they use one or a
combination of record attributes to split the data sets into blocks. Only records
having the same value in such a blocking variable are then compared (as they will
be in the same block). This technique becomes problematic if a value in a block-
ing variable is recorded wrongly, as the corresponding record is then inserted
into a different block. To overcome this problem, several passes (iterations) with
different blocking variables are normally performed.

While the aim of blocking is to reduce the number of comparisons made as
much as possible (by eliminating comparisons between records that obviously
are not matches), it is important that no potential match is overlooked because
of the blocking process. There is a trade-off between the reduction in number
of record pair comparisons and the number of missed true matches [2]. An al-
ternative to standard blocking is the sorted neighbourhood [24] approach, where



records are sorted according to the values of the blocking variable, then a sliding
window is moved over the sorted records, and comparisons are performed be-
tween the records within the window. Newer experimental approaches based on
approximate q-gram indices [2, 7] or high-dimensional clustering [29] are current
research topics. The effects of blocking upon the quality and complexity of the
data linkage process are discussed in more details in Section 5.

Each record pair produced in the blocking process is compared using a vari-
ety of field comparison functions, each applied to one or a combination of record
attributes. These functions can be as simple as a numerical or an exact string
comparison, can take into account typographical errors, or be as complex as
a distance comparison based on look-up tables of geographic locations (longi-
tude and latitude). Each function returns a numerical weight, often a positive
weight for agreeing values and a negative weight for disagreeing values. For each
record pair a weight vector is formed containing all the weights calculated by the
different field comparison functions. These weight vectors are then used to clas-
sify record pairs into matches, non-matches, and possible matches (depending
upon the decision model used). In the following sections the various techniques
employed for data linkage are discussed in more detail.

2.2 Deterministic Linkage

Deterministic linkage techniques can be applied if unique entity identifiers are
available in all the data sets to be linked. Alternatively, a combination of at-
tributes can be used to create a linkage key which is then used to match records
that have the same linkage key value. Such linkage systems can be developed
using standard SQL queries. However, they only achieve good linkage results if
the entity identifiers or linkage keys are of high quality. This means they have
to be precise, robust (for example include a check digit for detecting invalid or
corrupted values), stable over time, and highly available.

Alternatively, a set of (often very complex) rules can be used to classify
pairs of records as matches or as non-matches. Such rules can be more flexible
than using a linkage key, but their development is labour intensive and highly
dependent on the data sets to be linked. The person or team developing such
rules not only needs to be proficient with the rule system, but also with the data
set(s) to be linked or deduplicated. In practise, therefore, deterministic rule
based systems are limited to ad-hoc linkages of smaller data sets. In a recent
study [20] an iterative deterministic linkage system has been compared with the
commercial probabilistic system AutoMatch [27]. Empirical results showed that
the probabilistic approach resulted in better linkage quality.

2.3 Probabilistic Linkage

As common unique entity identifiers (or keys) are rarely available in all data sets
to be linked, the linkage process must be based on existing common attributes,
for example person identifiers (like names and dates of birth), demographic infor-
mation (like addresses) and other data specific information (like medical details,



or customer information). These attributes can contain typographical errors,
they can be coded differently, parts can be out-of-date or even be missing.

In the traditional probabilistic linkage approach [17, 41], pairs of records are
classified as matches if their common attributes predominantly agree, or as non-
matches if they predominantly disagree. If two data sets (or files) A and B are
to be linked, the set of record pairs

A ×B = {(a, b); a ε A, b ε B}

is the union of the two disjoint sets

M = {(a, b); a = b, a ε A, b ε B} (1)

of true matches, and

U = {(a, b); a 6= b, a ε A, b ε B} (2)

of true non-matches. Fellegi and Sunter [17] considered ratios of probabilities of
the form

R =
P (γ ε Γ |M)

P (γ ε Γ |U)
(3)

where γ is an arbitrary agreement pattern in a comparison space Γ . For example,
Γ might consist of six patterns representing simple agreement or disagreement
on given name, surname, date of birth, street address, suburb and postcode.
Alternatively, some of the γ might additionally consider typographical errors, or
account for the relative frequency with which specific values occur. For example,
a surname value ‘Miller’ is much more common in many western countries than
a value ‘Dijkstra’, resulting in a smaller agreement value. The ratio R, or any
monotonically increasing function of it (such as its logarithm) is referred to as
a matching weight. A decision rule is then given by

if R > tupper , then designate a record pair as match
if tlower ≤ R ≤ tupper , then designate a record pair as possible match
if R < tlower, then designate a record pair as non-match

The thresholds tlower and tupper are determined by a-priori error bounds on false
matches and false non-matches. If γ ε Γ for a certain record pair mainly consists
of agreements then the ratio R would be large and thus the pair would more
likely be designated as a match. On the other hand for a γ ε Γ that primarily
consists of disagreements the ratio R would be small.

The class of possible matches are those record pairs for which human over-
sight, also known as clerical review, is needed to decide their final linkage status.
In theory, the person undertaking this clerical review has access to additional
data (or may be able to seek it out) which enables them to resolve the linkage
status. In practice, often no additional data is available and the clerical review
process becomes one of applying experience, common sense or human intuition
to the decision based on available data. As shown in an early study [39] compar-
ing a computer based probabilistic linkage system with a fully manual linkage of



health records, the computer based approach resulted in more reliable, consistent
and more cost effective linkage results.

While in the past (when smaller data sets were linked, for example for epi-
demiological survey studies) clerical review was practically manageable in a rea-
sonable amount of time, linking today’s large administrative data collections
(with millions of records) make this process impossible, as tens or even hun-
dreds of thousands of record pairs will be put aside for review. Clearly, what
is needed are more accurate and automated decision models that will reduce –
or even eliminate – the amount of clerical review needed, while keeping a high
linkage quality. Such approaches are presented in the following section.

2.4 Modern Approaches

Improvements [42] upon the classical probabilistic linkage [17] approach include
the application of the expectation-maximisation (EM) algorithm for improved
parameter estimation [43], the use of approximate string comparisons [33] to
calculate partial agreement weights when attribute values have typographical
errors, and the application of Bayesian networks [44]. A system that is capable
of linking very large data sets with hundreds of millions of records is presented
in [45]. It is based on special sorting, preprocessing and indexing techniques and
assumes that the smaller of two data sets fits into the main memory of a large
compute server.

In recent years, researchers have started to explore the use of techniques
originating in machine learning, data mining, information retrieval and database
research to improve the linkage process. Most of these approaches are based on
supervised learning techniques and assume that training data (i.e. record pairs
with known linkage or deduplication status) is available.

One approach based on ideas from information retrieval is to represent records
as document vectors and compute the cosine distance [11] between such vectors.
Another possibility is to use an SQL like language [18] that allows approxi-
mate joins and cluster building of similar records, as well as decision functions
that decide if two records represent the same entity. A generic knowledge-based
framework based on rules and an expert system is presented in [26]. The authors
also describe the precision-recall trade-off (see Section 4 below), where choosing
a higher recall results in lower precision (more non-duplicates being classified as
duplicates), or vice versa.

A hybrid system is described in [15] which utilises both supervised and unsu-
pervised machine learning techniques in the data linkage process, and introduces
metrics for determining the quality of these techniques. The authors find that
machine learning techniques outperform probabilistic techniques, and provide a
lower proportion of possible matching pairs. In order to overcome the problem
of the lack of availability of training data in real-world data sets, they propose
a hybrid technique where class assignments are made to a sample of the data
through unsupervised clustering, and the resulting data is then used as a training
set for a supervised classifier (specifically, a decision tree or an instance-based
classifier).



The authors of [38] apply active learning to the problem of lack of training
instances in real-world data. Put simply, by repeatedly providing an example
which is representative of part of the unclassified data set for clerical review, then
using that manually classified result to add to the training set of a committee of
classifiers, they found that review of less than 100 training examples provided
better results than from 7,000 randomly selected reviews. A similar approach is
presented in [40], where a committee of decision trees is used to learn mapping
rules (i.e. rules describing linkages).

High-dimensional overlapping clustering (as alternative to traditional block-
ing) is used by [29] in order to reduce the number of record pair comparisons to
be made, while [21] explore the use of simple k-means clustering together with a
user tunable fuzzy region for the class of possible matches, allowing user control
over the trade-off between accuracy and the amount of clerical review needed.
Methods based on nearest neighbours are explored by [8], with the idea to cap-
ture local structural properties instead of a single global distance approach.

Graphical models [36] is an approach which aims to use the structural infor-
mation available in the data to build hierarchical probabilistic graphical models,
an unsupervised technique not requiring any training data. The authors present
results which are better than results achieved by supervised techniques.

Another approach is to train distance measures used for approximate string
comparisons. The authors of [4] present a framework for improving duplicate
detection using trainable measures of textual similarity. They argue that both
at the character and word level there are differences in importance of certain
character or word modifications (like inserts, deletes and transpositions), and
accurate similarity computations require adapting string similarity metrics for
all attributes in a data set with respect to the particular data domain. They
present two learnable string similarity measures, the first based on edit distance
(and better suitable for shorter strings) and the second based on a support vec-
tor machine (more appropriate for attributes that contain longer strings). Their
results on various data sets show that learned edit distance resulted in improved
precision and recall results. Very similar approaches are presented in [7, 30, 46,
47], with [30] using support vector machines for the binary classification task
of record pairs. As shown in [12], combining different learned string compari-
son methods can result in improved linkage classification. An overview of other
methods – including statistical outlier identification, pattern matching, and as-
sociation rules based approaches – is given in [28].

Different measures for the quality of the achieved linkages and the complexity
of the presented algorithms have been used in these recent publications. An
overview of these measures is given in Sections 4 and 5. In the following section
the notation and problem analysis is presented first, and a simple illustrative
example is given.
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3 Notation and Problem Analysis

In this section the standard notation as given in the traditional data linkage
literature [17, 41, 42] is followed. The number of elements in a set X will be
denoted by |X|. A general linkage situation, where the aim is to link two sets of
entities, is assumed. For example, the first set could be patients of a hospital, and
the second set people who had a car accident. Some of the car accidents resulted
in people being admitted into the hospital. Therefore, people may appear in
both sets. The two sets of entities are denoted as Ae and Be. Me = Ae ∩ Be

is the intersection set of matched entities that appear in both Ae and Be, and
Ue = (Ae ∪ Be) \ Me is the set of non-matched entities that appear in either
Ae or Be, but not in both. This space of entities is illustrated in Figure 2, and
called the entity space.

The maximum number of matched entities corresponds to the size of the
smaller set of Ae or Be. This is the situation when the smaller set is a proper sub-
set of the larger one, which also results in the minimum number of non-matched
entities possible. The minimum number of matched entities is zero, which is the
situation when no entities appear in both sets. The maximum number of non-
matched entities in this situation corresponds to the sum of the entities in both
sets. The following equations show this in a more formal way:

0 ≤ |Me| ≤ min(|Ae|, |Be|) (4)

abs(|Ae| − |Be|) ≤ |Ue| ≤ |Ae| + |Be| (5)

In a simple example, assume the set Ae contains 5 million entities (hospital
patients), and set Be contains 1 million entities (people involved in car acci-
dents), with 700,000 entities present in both sets (i.e. |Me| = 700, 000). The
number of non-matched entities in this situation is |Ue| = 4, 600, 000, which
is the sum of the entities in both sets (6 millions) minus twice the number of
matched entities (as they appear in both sets Ae and Be). This simple example
will be used as a running example in the discussion below.
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The entities in Ae and Be are now stored in two data sets (or databases or
files), denoted by A and B, such that there is exactly one record in A for each
entity in Ae (i.e. the data set contains no duplicate records), and each record in
A corresponds to an entity in Ae. The same holds for Be and B. The aim of a
data linkage process is to classify pairs of records as matches or non-matches in
the product space A × B = M ∪ U of true matches M and true non-matches
U [17, 41].

It is assumed that no blocking or indexing (as discussed in Section 2.1) is
being applied, and that all possible pairs of records are being compared. The
total number of comparisons equals |A| × |B|, which is much larger than the
number of entities available in Ae and Be together. In case of deduplication of a
single data set A the number of record pair comparisons equals |A| × (|A| − 1),
as each record in the data set will be compared to all others, but not to itself.
The space of record pair comparisons is illustrated in Figure 3 and called the
comparison space.

For the simple example given earlier, the comparison space consists of |A| ×
|B| = 5, 000, 000× 1, 000, 000 = 5 × 1012 record pairs, with |M | = 700, 000 and
|U | = 5 × 1012 − 700, 000 = 4.9999993× 1012 record pairs.

A linkage algorithm compares pairs of records and classifies them into M̃

(record pairs considered to be a match by the algorithm) and Ũ (record pairs
considered to be a non-match). It is assumed here that the linkage algorithm
does not classify record pairs as possible matches (as discussed in Section 2.3).



Table 1. Confusion matrix of record pair classification

Actual Classification

Match (M̃) Non-match (Ũ)

Match (M) True match False non-match
True positive (TP) False negative (FN)

Non-match (U) False match True non-match
False positive (FP) True negative (TN)

Both records of a true matched pair correspond to the same entity in Me. Un-
matched record pairs, on the other hand, correspond to different entities in Ae

and Be, with the possibility of both records of a pair corresponding to different
entities in Me. As each record corresponds to exactly one entity, a record in A

can only be matched to a maximum of one record in B, and vice versa.

For each record pair, the binary classification into M̃ and Ũ results in one of
four different outcomes [16] as illustrated in the confusion matrix in Table 1. True
matched record pairs from M that are classified as matches (into M̃) are called
true positives (TP). True non-matched record pairs from U that are classified as
non-matches (into Ũ) are called true negatives (TN). True matched record pairs
from M that are classified as non-matches (into Ũ) are called false negatives
(FN), and true non-matched record pairs from U that are classified as matches
(into M̃) are called false positives (FP). As illustrated, M = TP + FN , U =
TN + FP , M̃ = TP + FP , and Ũ = TN + FN .

When assessing the quality of a linkage algorithm, the general interest is in
how many true matched entities and how many true non-matched entities have
been classified correctly as matches and non-matches, respectively. However, the
outcome of the classification is measured in the comparison space (as number
of classified record pairs). While the number of true matched record pairs is
the same as the number of true matched entities, |M | = |Me| (as each true
matched record pair corresponds to one entity), there is however no correspon-
dence between the number of TN record pairs and non-matched entities. Each
non-matched record pair contains two records that correspond to two different
entities, so it not possible to easily calculate a number of non-matched entities.

The maximum number of true matched entities is given by Equation 4. From
this follows the maximum number of record pairs a linkage algorithm should
classify as matches is |M̃ | ≤ |Me| ≤ min(|Ae|, |Be|). As the number of classified
matches M̃ = TP +FP , it follows that (TP +FP ) ≤ |Me|. And with M = TP +
FN , it also follows that both the numbers of FP and FN will be small compared
to the number of TN, and they will not be influenced by the multiplicative
increase between the entity and the comparison space. The number of TN will
dominate, however, as, in the comparison space, the following equation holds:

TN = |A| × |B| − TP − FN − FP.



This is also illustrated in Figure 3. Therefore, any quality measure used in data
linkage or deduplication that uses the number of TN will result in deceptive
results, as will be shown in Sections 4 and 6.

The analysis so far was done under the assumption of no duplicate records
in the data sets A and B, which resulted in a record in one data set being
matched to a maximum of one record in another data set (often called one-to-one
assignment restriction [3]). In practise, however, one-to-many and many-to-many
linkages or deduplications are common. Examples include longitudinal studies of
administrative health data, where several records might correspond to a certain
patient over time (this happens when data sets have not been deduplicated
properly), or business mailing lists where several records might relate to the
same customer. While the above analysis would become more complicated, the
issue of having a very large number of TN will still hold in one-to-many and
many-to-many linkage situations, as the number of matches for a single record
will be small compared to the full number of record pair comparisons (in practise
often only a small number of best matches for each record are of interest).

In the following section the different quality measures that have been used
for assessing data linkage algorithms [4, 8, 15, 29, 38, 40, 47] are presented. Various
publications have used measures that include the number of TN, which can lead
to deceptive results.

4 Quality Measures

Given that data linkage is a classification problem, various quality measures
are available to the data linkage researcher and practitioner [16]. With many
recent approaches being based on supervised learning, no clerical review process
(i.e. no possible matches) is assumed and the classification problem becomes a
binary classification, with record pairs being classified as either matches or non-
matches. One issue with many algorithms is the setting of a threshold which
influences the classifier performance. In order to determine which ones to select
for a particular problem, comparative evaluations must be sourced or conducted.
An obvious, much used, and strongly underpinned methodology for doing this
involves the use of statistical techniques. Salzberg [37] describes this issue in
terms of data mining and the use of machine learning algorithms, and points
out several pitfalls which can lead to misleading results, but offers a solution to
overcome them. This issue of classifier comparison is discussed in more details,
before the different quality measures are presented in Section 4.2

4.1 On Comparing Classifiers

When different classifiers are compared on the same problem class, care has to
be taken to make sure that the achieved quality results are statistically valid
and not just an artifact of the comparison procedure. One pitfall in particu-
lar, the multiplicity effect [37], means that, when comparing algorithms on the



same data, because of the lack of independence of the data, the chances of erro-
neously achieving significance on a single test increases, so the level below which
significance of the statistical p-value is accepted must be adjusted down (a con-
servative adjustment used in the statistics community is known as Bonferroni
correction). In an example [37], if 154 variations (i.e. combinations of parameter
settings) of a test algorithm are used, there is a 99.96% chance that one of the
variations will be incorrectly significant at the 0.05 level. Multiple independent
researchers using the same data sets (e.g. community repositories like the UCI
machine learning repository [6]) can suffer from this problem as well. Tuning –
the process of adjusting an algorithm’s parameters in an attempt to increase the
quality of the classification – is subject to the same issue if the data for tuning
and testing are the same.

Salzberg’s [37] recommended solution for the above is to use k-fold cross
validation (k-times hold out one k’th of the data for testing), and to also hold
out a portion of the training data for tuning. Also, since the lack of independence
rules out the use of the t-test, he suggests the use of the binomial test or an
analysis of variance (ANOVA) of distinct random samples.

While the aim of this chapter is not to compare the performance of classifiers
for data linkage, it is nevertheless important for both researchers and practition-
ers working in this area to be aware of the issues discussed in this section.

4.2 Quality Measures used for Data Linkage

In this section, different measures [16] that have been used for assessing the
quality of data linkage algorithms [5] are presented, and using the simple example
from Section 3, it is shown how the results can be deceptive. The assumption is
that a supervised data linkage algorithm is being used to classify record pairs
as matches and non-matches, resulting in a confusion matrix of classified record
pairs as shown in Table 1. As discussed in Section 2.3, the linkage algorithm
is assumed to have a single threshold parameter t which determines the cut-off
between classifying record pairs as matches (with matching weight R ≥ t) or as
non-matches (R < t). Increasing the value of t results in an increased number
of TN and FP and in a reduction in the number of TP and FN, while lowering
the threshold reduces the number of TN and FP and increases the number of
TP and FN. Most of the quality measures presented here can be calculated for
different values of such a threshold (often only the quality measure values for an
optimal threshold are being reported in empirical studies). Alternatively, quality
measures can be visualised in a graph over a range of threshold values, with the
threshold normally being plotted along the horizontal axis, as illustrated by the
examples in Section 6. The following list presents the commonly used quality
measures.

– Accuracy is measured as acc = TP+TN
TP+FP+TN+FN

. It is a widely used measure
and mainly suitable for balanced classification problems. As this measure
includes the number of TN, it is affected by their large number (i.e. the
number of TN will dominate the formula). The calculated accuracy values



will be too high (for example, simply classifying all compared record pairs as
non-matches will result in a very high accuracy value). Accuracy is therefore
not a good quality measure for data linkage and should not be used.

– Precision is measured as prec = TP
TP+FP

and is also called positive predictor
value. It is the proportion of classified matches that are true matches, and
is widely used in the information retrieval field [1] in combination with the
recall measure for visualisation in precision-recall graphs.

– Recall is measured as rec = TP
TP+FN

(true positive rate). Also known as
sensitivity, it is the proportion of actual matches that have been classified
correctly. Sensitivity is a common measure in epidemiological studies [48].

– Precision-recall graph is created by plotting precision values on the ver-
tical axis and recall values on the horizontal axis. In information retrieval [1],
the graph is normally plotted for 11 standardised recall values at 0.0, 0.1, . . . , 1.0,
and is interpolated if a certain recall value is not available. In data linkage,
a varying threshold can be used. There is a trade-off between precision and
recall, in that high precision can normally only be achieved at the cost of
low recall values, and vice-versa.

– Precision-recall break-even point is the value where precision becomes
equal to recall, i.e. TP

TP+FP
= TP

TP+FN
. At this point, positive and negative

classifications are made at the same rate. This measure is a single number.
– F-measure (or F-score) is the harmonic mean of precision and recall and

is calculated as f−meas = 2( prec×rec

prec+rec
). It will have a high value only when

both precision and recall have high values, and can be seen as a way to find
the best compromise between precision and recall [1].

– Maximum F-measure (which is also called F1 score) is the maximum
value of the F-measure over a varying threshold.

– Specificity (which is the true negative rate) is calculated as spec = TN
TN+FP

.
This measure is used frequently in epidemiological studies [48]. As it includes
the number of TN, it suffers from the same problem as accuracy, and should
not be used for measuring the quality of data linkage algorithms.

– False positive rate is measured as fpr = FP
TN+FP

. Note that fpr = (1 −
spec). As the number of TN is included in this measure, it suffers from the
same problem as accuracy and specificity, and should not be used.

– ROC curve (Receiver operating characteristic curve) [16] is plotted as
the true positive rate (which is the recall) on the vertical axis against the
false positive rate on the horizontal axis for a varying threshold. While
ROC curves are being promoted to be robust against skewed class distri-
butions [16], the problem when using them in data linkage is the number of
TN, which only appears in the false positive rate. This rate will be calculated
too low, resulting in too optimistic ROC curves, as shown in the examples
in Section 6.

Taking the example from Section 3, assume that for a given threshold a
linkage algorithm has classified |M̃ | = 900, 000 record pairs as matches and the
rest (|Ũ | = 5 × 1012 − 900, 000) as non-matches. Of these 900, 000 classified
matches 650, 000 were true matches (TP), and 250, 000 were false matches (FP).



Table 2. Quality results for the given example

Measure Entity space Comparison space

Accuracy 94.340% 99.999994%
Precision 72.222% 72.222%
Recall 92.857% 92.857%
F-measure 81.250% 81.250%
Specificity 94.565% 99.999995%
False positive rate 5.435% 0.000005%

The number of false non-matched record pairs (FN) was 50, 000, and the number
of true non-matched record pairs (TN) was 5×1012−950, 000. When looking at
the entity space, the number of non-matched entities is 4, 600, 000− 250, 000 =
4, 350, 000. Table 2 shows the resulting quality measures for this example in
both the comparison and the entity spaces. As discussed, any measure that
includes the number of TN depends upon weather entities or record pairs are
counted. As can be seen, the results for accuracy, specificity and the false positive
rate all show misleading results when based on record pairs (i.e. measured in
the comparison space). This issue will be illustrated and discussed further in
Sections 6 and 7.

The authors of a recent publication [5] discuss the issue of evaluating data
linkage and deduplication systems. They advocate the use of precision-recall
graphs over the use of single number measures like accuracy or maximum F-
measure, on the grounds that such single number measures assume that an
optimal threshold value has been found. A single number can also hide the fact
that one classifier might perform better for lower threshold values, while another
has improved performance for higher thresholds.

While all quality measures presented so far assume a binary classification
without clerical review, a new measure has been proposed recently [22] that
aims to quantify the proportion of possible matches within a traditional proba-
bilistic linkage system (which classifies record pairs into matches, non-matches
and possible matches, as discussed in Section 2.3). The authors propose the

measure pp =
NP,M +NP,U

TP+FP+TN+FN
, where NP,M is the number of true matches that

have been classified as possible matches, and NP,U is the number of true non-
matches that have been classified as possible matches. This measure quantifies
the percentage of record pairs that are being classified as possible matches, and
therefore needing manual clerical review. Low pp values are desirable, as they
correspond to less manual clerical review.

5 Blocking and Complexity Measures

The assumption in the analysis and discussion of quality measures given so far
was that all possible record pairs are being compared. The number of com-
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parisons in this situation equals the product of the number of records in the
two data sets, |A| × |B|. As discussed earlier, this is computationally feasible
only for small data sets. In practise, blocking, filtering, indexing, searching, or
sorting algorithms [2, 9, 15, 21, 23] are used to reduce the number of record pair
comparisons as discussed in Section 2.1. The aim of such algorithms is to cheaply
remove as many record pairs from the set of non-matches U that are obvious non-
matches, without removing any record pairs from the set of matches M . Two
complexity measures that quantify the efficiency and quality of such blocking
methods have recently been proposed [15]:

– Reduction ratio is measured as rr = 1 − Nb

|A|×|B| , with Nb ≤ |A| × |B|

being the number of record pairs produced by a blocking algorithm (i.e.
the number of record pairs not removed by blocking). The reduction ratio
measures the relative reduction of the comparison space, but without taking
into account the quality of the reduction, i.e. how many record pairs from U

and how many from M are removed by the blocking process.
– Pairs completeness is measured as pc = Nm

|M | with Nm being the number

of correctly classified true matched record pairs in the blocked comparison
space, and |M | the total number of true matches as defined in Section 3.
Pairs completeness can be seen as being analogous to recall.

There is a trade-off between the reduction ratio and pairs completeness (sim-
ilar to the precision-recall trade-off). As no blocking algorithm is perfect and
will thus remove record pairs from M , the blocking process will affect both true
matches and true non-matches. All quality measures presented in Section 4 will
therefore be influenced by blocking.
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6 Experimental Examples

In this section the previously discussed issues on quality and complexity measures
are illustrated using a real-world administrative health data set, the New South
Wales Midwives Data Collection (MDC) [32]. 175, 211 records from the years
1999 and 2000 were extracted, containing names, addresses and dates of birth
of mothers giving birth in these two years. This data set has previously been
deduplicated using the commercial probabilistic linkage system AutoMatch [27].
According to this deduplication, the data contains 166, 555 unique mothers, with
158, 081 having one, 8, 295 having two, 176 having three, and 3 having four
records in this data set. Of these last three mothers, two gave birth to twins twice
in the two years 1999 and 2000, while one mother had a triplet and a single birth.
The AutoMatch deduplication decision (which included clerical review) was used
as the true match (or deduplication) status.

A deduplication was then performed using the Febrl (Freely extensible biomed-
ical record linkage) [9] data linkage system. Fourteen attributes in the MDC
were compared using various comparison functions (like exact and approximate
string, and date of birth comparisons), and the resulting fourteen numerical
weights were summed into a matching weight R as discussed in Section 2.3. The
resulting density plot is shown in Figure 5. As can be seen, true matches (record
pairs classified as true duplicates) have positive matching weights, while the ma-
jority of non-matches have negative weights. There are, however, non-matches
with rather large positive matching weights, which is due to the differences in
calculating the weights between AutoMatch and Febrl.



The full comparison space for the two years data set with 175, 211 records
would result in 175, 211 × 175, 210 = 30, 698, 719, 310 record pairs, which is
infeasible to process even with today’s powerful computers. Standard blocking
as implemented in Febrl was used to reduce the number of comparisons, resulting
in 759, 773 record pair comparisons. The reduction ratio in this case was therefore

rr = 1.0−
759, 773

30, 698, 719, 310
= 1.0 − 2.4749× 10−5 = 0.999975.

This corresponds to only around 0.0025% of all record pairs in the full com-
parison space not being removed by the blocking process. The total number
of true classified matches (duplicates) was 8, 841 (for all the duplicates as de-
scribed above), with 8, 808 of the 759, 773 record pairs in the blocked comparison
space corresponding to true duplicates. The resulting pairs completeness value
therefore was

pc =
8, 808

8, 841
= 0.99626,

which corresponds to more than 99.6% of all the true duplicates being included
in the blocked comparison space and classified the same by both AutoMatch and
Febrl.

The quality measures discussed in Section 4 applied to this real-world dedu-
plication procedure are shown in Figure 6 for a varying threshold −43 ≤ t ≤ 115.
The aim of this figure is to illustrate how the different measures look for a dedu-
plication example taken from the real world. The measurements were done in the
blocked comparisons space as described above. The full comparison space was
simulated by assuming that the record pairs removed by blocking were normally
distributed with matching weights between -43 and -10. The number of TN was
therefore different between the blocked and the full comparison spaces. As can
be seen, the precision-recall graph is not affected by the blocking process, and
the F-measure is only differs slightly. All other measures, however, resulted in
graphs of different shape. The large number of TN compared to the number of
TP resulted in the specificity measure being very similar to the accuracy mea-
sure. Interestingly, the ROC curve, being promoted as robust with regard to
skewed classification problems, resulted in the least illustrative graph, especially
for the full comparison space, making it not very useful for data linkage and
deduplication.

7 Discussion and Recommendations

Primarily, the measurement of quality in data linkage and deduplication involves
either absolute or relative results (for example, either technique X had an ac-
curacy of 93% or technique X performed better than technique Y on all data
examined). In order for the practitioner or researcher to make informed choices,
the results of experiments must be comparable, or the techniques must be re-
peatable so comparisons between techniques can be made.
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Fig. 6. Quality measurements of a real-world administrative health data set. The full
comparison space (30, 698, 719, 310 record pairs) was simulated by assuming that the
record pairs removed by blocking were normally distributed with matching weights
between -43 and -10. Note that the precision-recall graph does not change at all, and
the F-measure graphs does change only slight. Accuracy and specificity are almost the
same as both are dominated by the large number of true negatives. The ROC curve is
the least illustrative graphs, which is again due to the large number of true negatives

It is known, however, that the quality of techniques vary depending on the
nature of the data sets the techniques are applied to [4, 37]. Whether producing
absolute or comparable results, it is thus necessary for the experiments to be
conducted using the same data. Therefore, results should be produced from data
sets which are available to researchers and practitioners in the field. However, this
does not preclude research on private data sets. The applicability of a technique



to a type of data set may be of interest, but the results produced are not beneficial
for evaluating relative quality of techniques.

Of course, for researchers to compare techniques against earlier ones, either
absolute results must be available, or the earlier techniques must be repeatable
for comparison to occur. Ultimately, and ideally, a suite of data sets should be
collected and made publicly available for this process, and they should encapsu-
late as much variation in types of data as feasible.

Recommendations for the various steps of a data linkage process are given
in the following sections. Their aim is to provide both the researcher and prac-
titioner with guidelines on how to perform empirical studies on different linkage
algorithms or production linkage projects, as well as on how to properly assess
and describe the outcome of such linkages or deduplications.

7.1 Record Pair Classification

Due to the problem of the number of true negatives in any comparison, quality
measures which use that number (for example accuracy, specificity, false positive
rates, and thus ROC curves) should not be used.

The variation in the quality of a technique against particular types of data
means that results should be reported for particular data sets. Also, given that
the nature of some data sets may not be known in advance, the average quality
across all data sets used in a certain study should also be reported.

When comparing techniques, precision-versus-recall or F-measure graphs pro-
vide an additional dimension to the results. For example, if a small number of
highly accurate links is required, the technique with higher precision for low
recall would be chosen [5].

7.2 Blocking

As described above, the aim of blocking is to cheaply remove obvious non-
matches before the more detailed, expensive record pair comparisons are made.
Working perfectly, blocking will only remove record pairs that are true non-
matches, thus affecting the number of true negatives, and possibly the number
of false positives. To the extent that it removes record pairs from the set of true
matches (that is, resulting in a pairs completeness pc < 1.0), it will also affect
the number of true positives and false negatives. Blocking can thus be seen to be
a confounding factor in quality measurement – the types of blocking procedures
and the parameters chosen will potentially affect the results obtained for a given
linkage procedure.

If computationally feasible, for example in an empirical study using small
data sets, it is strongly recommended that all quality measurement results be
obtained without the use of blocking. It is recognised that it may not be possible
to do this with larger data sets. A compromise, then, would be to publish the
blocking measures, reduction ratio and pairs completeness, and to make the
blocked data set available for analysis and comparison by other researchers. At



the very least, the blocking procedure and parameters should be specified in a
form that can enable other researchers to repeat it.

7.3 Complexity

The overall complexity of a linkage technique is fundamentally important due
to the potential size of the data sets it could be applied to: when sizes are in the
millions or even billions, techniques which are O(n2) become problematic and
those of higher complexity cannot even be contemplated. While blocking can
provide improvements, complexity is still important. For example, if linkage is
attempted on a real-time data stream, a complex algorithm may require faster
hardware, more optimisation, or replacement.

As data linkage, being an important step in the data mining process, is a
field rooted in practice, the practicality of a technique’s implementation and use
on very large data sets should be indicated. Thus, at least, the reporting of the
complexity of a technique in O() terms should always be made. The reporting
of other usage, such as disk space and memory size, could also be beneficial.

8 Conclusions

Data linkage and deduplication are important steps in the pre-processing phase
of many data mining projects, and also important for improving data quality
before data is loaded into data warehouses. Different data linkage techniques
have been presented and the issues involved in measuring both the quality and
complexity of linkage algorithms have been discussed. It is recommended that
the quality be measured using the precision-recall or F-measure graphs rather
than single numerical values, and that quality measures that include the number
of true negative matches should not be used due to their large number in the
space of record pair comparisons. When publishing empirical studies researchers
should aim to use non-blocked data sets if possible, or otherwise at least report
measures that quantify the effects of the blocking process,

Acknowledgements

This work is supported by an Australian Research Council (ARC) Linkage Grant
LP0453463 and partially funded by the NSW Department of Health. The authors
would like to thank Markus Hegland for insightful discussions.

References

1. Baeza-Yates, R.A. and , Ribeiro-Neto, B.: Modern Information Retrieval. Addison-
Wesley Longman Publishing Co., Boston, 1999.

2. Baxter, R., Christen, P. and Churches, T.: A Comparison of Fast Blocking Meth-
ods for Record Linkage. ACM SIGKDD ’03 Workshop on Data Cleaning, Record
Linkage, and Object Consolidation, August 27, 2003, Washington, DC, pp. 25-27.



3. D.P. Bertsekas, Auction Algorithms for Network Flow Problems: A Tutorial Intro-

duction, Computational Optimization and Applications, Vol. 1, pp. 7–66, 1992.
4. Bilenko, M. and Mooney, R.J.: Adaptive duplicate detection using learnable string

similarity measures. Proceedings of the 9th ACM SIGKDD conference, Washington
DC, August 2003.

5. Bilenko, M. and Mooney, R.J.: On evaluation and training-set construction for
duplicate detection. Proceedings of the KDD-2003 workshop on data cleaning,
record linkage, and object consolidation, Washington DC, August 2003.

6. Blake, C.L. and Merz, C.J.: UCI Repository of machine learning databases.
University of California, Irvine, Dept. of Information and Computer Sciences,
http://www.ics.uci.edu/∼mlearn/MLRepository.html

7. Chaudhuri, S., Ganjam, K., Ganti, V. and Motwani, R.: Robust and efficient fuzzy
match for online data cleaning. Proceedings of the 2003 ACM SIGMOD Interna-
tional Conference on on Management of Data, San Diego, USA, 2003, pp. 313-324.

8. Chaudhuri, S., Ganti, V. and Motwani, R.: Robust identification of fuzzy dupli-
cates. Proceedings of the 21st international conference on data engineering, Tokyo,
April 2005.

9. Christen, P., Churches, T. and Hegland, M.: Febrl – A parallel open source data
linkage system. Proceedings of the 8th PAKDD, Sydney, Springer LNAI 3056, May
2004.

10. Churches, T., Christen, P., Lim, K. and Zhu, J.X.: Preparation of name and
address data for record linkage using hidden Markov models. BioMed Cen-
tral Medical Informatics and Decision Making, Dec. 2002. Available online at:
http://www.biomedcentral.com/1472-6947/2/9/

11. Cohen, W.W.: Integration of heterogeneous databases without common domains
using queries based on textual similarity. Proceedings of SIGMOD, Seattle, 1998.

12. Cohen, W.W., Ravikumar, P. and Fienberg, S.E.: A comparison of string distance
metrics for name-matching tasks. Proceedings of IJCAI-03 workshop on informa-
tion integration on the Web (IIWeb-03), pp. 73–78, Acapulco, August 2003.

13. Cooper, W.S. and Maron, M.E.: Foundations of Probabilistic and Utility-Theoretic
Indexing. Journal of the ACM , vol. 25, no. 1, pp. 67–80, January 1978.

14. Shearer, C.: The CRISP-DM Model: The new blueprint for data mining. Journal
of Data Warehousing, vol. 5, no. 4, pp. 13–22, Fall 2000.

15. Elfeky, M.G., Verykios, V.S. and Elmagarmid, A.K.: TAILOR: A record linkage
toolbox. Proceedings of the ICDE’ 2002, San Jose, USA, March 2002.

16. Fawcett, T.: ROC Graphs: Notes and Practical Considerations for Researchers, HP
Labs Tech Report HPL-2003-4, HP Laboratories, Palo Alto, March 2004.

17. Fellegi, I. and Sunter, A.: A theory for record linkage. Journal of the American
Statistical Society, December 1969.

18. Galhardas, H., Florescu, D., Shasha, D. and Simon, E.: An Extensible Framework
for Data Cleaning. Proceedings of the Inter. Conference on Data Engineering, 2000.

19. Gill, L.: Methods for Automatic Record Matching and Linking and their use in
National Statistics. National Statistics Methodology Series No. 25, London, 2001.

20. Gomatam, S., Carter, R., Ariet, M. and Mitchell G.: An empirical comparison of
record linkage procedures. Statistics in Medicine, vol. 21, no. 10, pp. 1485–1496,
May 2002.

21. Gu, L. and Baxter, R.: Adaptive filtering for efficient record linkage. SIAM inter-
national conference on data mining, Orlando, Florida, April 2004.

22. Gu, L. and Baxter, R.: Decision models for record linkage. Proceedings of the 3rd
Australasian data mining conference, pp. 241–254, Cairns, December 2004.



23. Hernandez, M.A. and Stolfo, S.J.: The merge/purge problem for large databases.
Proceedings of the ACM SIGMOD conference, May 1995.

24. Hernandez, M.A. and Stolfo, S.J.: Real-world data is dirty: Data cleansing and
the merge/purge problem. In Data Mining and Knowledge Discovery 2, Kluwer
Academic Publishers, 1998.

25. Kelman, C.W., Bass, A.J. and Holman, C.D.: Research use of linked health data -
A best practice protocol. Aust NZ Journal of Public Health, 26:251-255, 2002.

26. Lee, M.L., Ling, T.W. and Low, W.L.: IntelliClean: a knowledge-based intelligent
data cleaner. Proceedings of the 6th ACM SIGKDD conference, Boston, 2000.

27. AutoStan and AutoMatch, User’s Manuals, MatchWare Technologies, Kennebunk,
Maine, 1998.

28. Maletic, J.I. and Marcus, A.: Data Cleansing: Beyond Integrity Analysis. Proceed-
ings of the Conference on Information Quality (IQ2000), Boston, October 2000.

29. McCallum, A., Nigam, K. and Ungar, L.H.: Efficient clustering of high-dimensional
data sets with application to reference matching. Proceedings of the 6th ACM
SIGKDD conference, pp. 169–178, Boston, August 2000.

30. Nahm, U.Y, Bilenko M. and Mooney, R.J.: Two approaches to handling noisy
variation in text mining. Proceedings of the ICML-2002 workshop on text learning
(TextML’2002), pp. 18–27, Sydney, Australia, July 2002.

31. Newcombe, H.B. and Kennedy, J.M.: Record Linkage: Making Maximum Use of
the Discriminating Power of Identifying Information. Communications of the ACM,
vol. 5, no. 11, 1962.

32. Centre for Epidemiology and Research, NSW Department of Health. New South
Wales Mothers and Babies 2001. NSW Public Health Bull 2002; 13(S-4).

33. Porter, E. and Winkler, W.E.: Approximate String Comparison and its Effect on
an Advanced Record Linkage System. RR 1997-02, US Bureau of the Census, 1997.

34. Pyle, D.: Data Preparation for Data Mining. Morgan Kaufmann Publishers, Inc.,
1999.

35. Rahm, E. and Do, H.H.: Data Cleaning: Problems and Current Approaches. IEEE
Data Engineering Bulletin, 2000.

36. Ravikumar, P. and Cohen, W.W.: A hierarchical graphical model for record linkage.
Proceedings of the 20th conference on uncertainty in artificial intelligence, Banff,
Canada, July 2004.

37. Salzberg, S.: On Comparing Classifiers: Pitfalls to Avoid and a Recommended
Approach. Data Mining and Knowledge Discovery, vol. 1, no. 3, pp. 317–328, 1997.

38. Sarawagi, S. and Bhamidipaty, A.: Interactive deduplication using active learning.
Proceedings of the 8th ACM SIGKDD conference, Edmonton, July 2002.

39. Smith, M.E. and Newcombe, H.B.: Accuracies of Computer versus Manual Linkages
of Routine Health Records. Methods of Information in Medicine, vol. 18, no. 2, pp.
89–97, April 1979.

40. Tejada, S., Knoblock, C.A. and Minton, S.: Learning domain-independent string
transformation weights for high accuracy object identification. Proceedings of the
8th ACM SIGKDD conference, Edmonton, July 2002.

41. W.E. Winkler and Y. Thibaudeau, An Application of the Fellegi-Sunter Model of

Record Linkage to the 1990 U.S. Decennial Census, Research Report RR91/09, US
Bureau of the Census, 1991.

42. Winkler, W.E.: The State of Record Linkage and Current Research Problems. RR
1999-04, US Bureau of the Census, 1999.

43. Winkler, W.E.: Using the EM algorithm for weight computation in the Fellegi-
Sunter model of record linkage. RR 2000-05, US Bureau of the Census, 2000.



44. Winkler, W.E.: Methods for Record Linkage and Bayesian Networks. RR 2002-05,
US Bureau of the Census, 2002.

45. Yancey, W.E.: BigMatch: A Program for Extracting Probable Matches from a
Large File for Record Linkage. RR 2002-01, US Bureau of the Census, March
2002.

46. Yancey, W.E.: An adaptive string comparator for record linkage RR 2004-02, US
Bureau of the Census, February 2004.

47. Zhu, J.J., and Ungar, L.H.: String edit analysis for merging databases. KDD-2000
workshop on text mining, held at the 6th ACM SIGKDD conference, Boston,
August 2000.

48. Zingmond, D.S., Ye, Z., Ettner, S.L. and Liu, H.: Linking hospital discharge and
death records – accuracy and sources of bias. Journal of Clinical Epidemiology,
vol. 57, pp. 21–29, 2004.


