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Abstract

Debugging garbage collectors for performance and correct-
ness is notoriously di�cult. Among the arsenal of tools avail-
able to systems engineers, support for one of the most pow-
erful, tracing, is lacking in most garbage collectors. Instead,
engineers must rely on counting, sampling, and logging.
Counting and sampling are limited to statistical analyses
while logging is limited to hard-wired metrics. This results
in cognitive friction, curtailing innovation and optimization.
We demonstrate that tracing is well suited to GC perfor-

mance debugging. We leverage the modular design of MMTk
to deliver a powerful VM and collector-neutral tool. We �nd
that tracing allows: i) cheap insertion of tracepoints—just 14
lines of code and no measurable run-time overhead, ii) de-
coupling of the declaration of tracepoints from tracing logic,
iii) high �delity measurement able to detect subtle perfor-
mance regressions, while also allowing iv) interrogation of a
running binary. Our tools crisply highlight several classes of
performance bug, such as poor scalability in multi-threaded
GCs, and lock contention in the allocation sequence. These
observations uncover optimization opportunities in collec-
tors, and even reveal bugs in application programs.

We showcase tracing as a powerful tool for GC designers
and practitioners. Tracing can uncover missed opportunities
and lead to novel algorithms and new engineering practices.

CCSConcepts: • Software and its engineering→Garbage

collection; Software performance.
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1 Introduction

Dan Luu [27] and Dick Sites [37–39] eloquently explain why
low-overhead tracing has become one of the most impor-
tant performance debugging tools for systems engineering.
Tracing complements and improves over widely-used sam-
pling and logging. Unlike sampling, which does not preserve
order and thus is inherently correlative, tracing creates an
execution trace by recording information every time certain
program points are executed, preserving order and exposing
causation. Unlike logging, tracing o�ers observability in the
sense that one can “ask arbitrary questions about [the GC]
without—and this is the key part—having to know ahead
of time what [one] wanted to ask” [22]. Yet, although high-
performance garbage collection (GC) is critical to managed
languages, and is heavily tuned in production virtual ma-
chines, modern production collectors do not support tracing.
This lack of causality and observability among standard

tools hinders our ability to inquire about the inner workings
of these intricate collectors and thus our ability to generate
new insights which might advance new designs and engi-
neering practices. We show howmodern tracing frameworks
make GC more observable, especially when combined with
modular collector design, doing so cheaply, �exibly, and with
high �delity.

An extensive body of literature compares the performance
of di�erent GCs [6, 8, 11, 50], analyzing the cost of various GC
components [9, 21, 46, 48, 49], and, more recently, estimating
the overall cost of GCs [12]. However, these methodologies
and techniques do not address GC observability. Current GC
implementations su�er from three related problems: i) met-
rics that operate at the temporal granularity of GC phases
lack �delity, ii) implementors must guess at the needs of un-
seen problems in order to predict a set of useful but low-over-
head metrics to build in, and iii) altering the set of built-in
metrics requires non-trivial e�ort. Widely-used sampling
pro�lers such as VTune [13] side-step these problems, but
run into others: i) their temporal resolution is intrinsically
coarse due to their reliance on interrupts [27, 47], and ii) they
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report correlation not causation. We now delve deeper into
each of these problems, and outline our contributions.

Low-�delity metrics. In the production GCs we survey,
most metrics logged are timing data organized around the
phases of GC (such as root scanning). However, GC-phase
metrics are insu�cient for performance debugging. For ex-
ample, a slow transitive closure could be an artifact of the
shape of the application’s object graph [5], or due to frequent
synchronization among threads for work stealing, poor load
balancing, etc. Moreover, coarse-grained metrics mask subtle
performance regressions, inviting an accumulation of perfor-
mance debt. Likewise, mutator behaviors like allocation and
barriers are critical to understanding overall performance,
yet are often not reported by GCs.

Crystal ball required. One cause of poor �delity in these
metrics is the cost of logging. Logging everything is imprac-
tical, so GC developers have to predict the set of metrics
to include for each logging scope and verbosity level. Some
logging statements are even guarded by macros, as run-time
checks in performance hot-paths are too costly.1 Lack of
�delity is especially problematic when troubleshooting tran-
sient performance bugs on a live system, where reported
metrics are insu�cient and adding more metrics requires
modifying and rebuilding the virtual machine.

Non-trivial engineering and recompilation. To add new
instrumentation, programmers need intimate knowledge of
the codebase: where to add instrumentation; and the correct
data structure that is thread-safe and low-overhead. Worse,
when metrics are emitted as unstructured text, each addi-
tional metric requires changes to analysis tools’ parsers. As
a result, several parsers are built for the same VM [3, 30, 43].

Sampling is Not Enough. Dan Luu notes: “Sampling pro-
�lers are great. They tend to be easy-to-use and low-overhead
compared to most alternatives. However, there are large classes
of performance problems sampling pro�lers can’t debug e�ec-
tively, and those problems are becoming more important.” [27].
A sampler only reports how many times it witnessed partic-
ular functions being executed. It cannot observe how long
a particular function invocation took, what occurred imme-
diately before it, or the distribution of invocation times for
that function over the course of an execution. Sample rates
are uniform, so such tools must sample the entire applica-
tion with su�cient frequency to expose the rarest events
they wish to reveal. Worse, sampling’s temporal resolution
is limited by its dependence on interrupt handling [47].

To address these problems, we combine two simple ideas:
low-overhead tracepoints and modular collector design. Low

1As an example, OpenJDK provides log_develop_* variants of logging

that are not compiled for production builds, and OpenJDK GCs use these

logging variants in performance hot paths like work-stealing.

overhead tracepoints can be compiled into a production bi-
nary and attached to on demand, including on a running
binary. A highly modular collector design means that just
a few tracepoints (totalling just 14 lines of code) provide a
very rich perspective on collector behavior. We illustrate this
using MMTk, which is runtime-agnostic, and uses a modular
collector-neutral work packet system [45].

This paper makes the following key contributions:

• We demonstrate that inserting tracepoints in the code-
base is inexpensive both in software engineering terms
(14 lines of code, no parser required), and performance
terms (no statistically signi�cant performance over-
head).

• We demonstrate the �exibility of writing di�erent trac-
ing tools against the same set of events in a running
binary. In our case study of the transitive closure phase
of the GC, we are able to interrogate a live system and
measure the scalability of multithreaded GCs, monitor
the properties of work packets [45] in-�ight in a sched-
uling system, and examine how di�erent workloads
a�ect these run-time behaviors. The entire investiga-
tion is performed on the same binary.

• We show that these events are high �delity, amplifying
subtle performance regressions.

Because we combine tracepoints with a modular code base,
these advantages readily translate to each language imple-
mentation and collector that MMTk supports. Still, we expect
that any collector implementation will bene�t from tracing.
Our case studies yield insights which will guide future

research and GC performance tuning in production settings.
The techniques we demonstrate are VM- and collector-agnos-
tic, creating a solid foundation on which a set of interopera-
ble tools can be built. Our experiences should motivate the
community to build new GCs and improve existing GCs with
observability in mind, bene�ting GC designers and practi-
tioners. Our implementation is available as part of MMTk.

2 Background and Related Work

Systems engineers rely on an arsenal of performance analy-
sis tools. We can group these tools into three approaches [38]:
i) counting, ii) sampling, iii) and tracing. These are complem-
entary—all are important to the performance analysis toolkit.
We describe each in more detail and show how they apply
to garbage collectors. We then survey popular tracing frame-
works, and describe their use in managed language runtimes.
We show that �exible, low-overhead tracing is absent in most
garbage collectors, a gap which we will address in this paper.
Finally, we give a brief overview of the memory management
framework we use, MMTk, and its work packet system to
which we apply performance tracing.
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2.1 A Taxonomy of Performance Analysis Tools

2.1.1 Counting. Counting tools count the occurrence of
discrete events (such as the number of GCs), and the sum
of quantities (such as the total pages collected). Counters
generally have low overheads, and run continuously. They
can be read on demand, or printed out by the logging system.
Counters are useful for understanding the gross behavior
of GC, such as whether an excessive number of GCs are
triggered, or what fraction of the heap is alive after collection.
However, counters are aggregate measures and lack detail
needed for deeper performance analysis.

2.1.2 Sampling. Sampling tools quasi-periodically 2 col-
lect measurements to create a statistical pro�le of the pro-
gram. Timer interrupts are used to power widely sampling
pro�lers, such as Intel VTune [13], and OPro�le [33]. When
an interrupt �res, these pro�lers observe program state such
as call stacks. When the program ends, the stack samples
are used to identify “hot” methods and their calling context,
which can provide clues to programmers as to where to fo-
cus optimization e�ort. Though a very useful performance
debugging tool, sampling is often inadequate when perfor-
mance debugging GCs due to: i) lack of context, ii) sampling
bias, iii) and not able to establish causal relationships.

Lack of Context. Stack sampling is the most often used
sampling method. While such samples provide calling con-
text, it does not reveal the execution context, or program
semantics. For example, the Linux perf tool applied to Open-
JDK’s Parallel collector in OpenJDK reveals object marking,
copying, and work queue management as the top functions.
This will not surprise any GC engineers, and does not o�er
actionable information for performance engineers.

Calls to the same function can exhibit very di�erent behav-
iors depending on the input. For example, when analyzing a
function that scans an array of references, the length of the
array is a key piece of the puzzle. If we know the inputs to
this function and their distribution, we can determine the
throughput of this function, and subsequently identify out-
liers for investigation. Sampling loses the context of function
invocations, and therefore cannot do any such analysis.

Finally, function symbols may not be the level of abstrac-
tion we want to analyze: a logical event might start in one
function call and �nish in another function call, or multiple
logical events might �nish in the same function call.

Sampling Bias. It is well understood [4, 32, 47] that sam-
pling pro�lers are prone to sampling bias. In particular, they
are not well suited to analyze rare events—these events can
be unpredictable but greatly a�ect the tail performance of
workloads. Examples of rare events in GC are large object
allocations and long GC pauses due to class unloading.

2Sampling frequencies often vary slightly over time so that they are not in

lockstep with the signals to be observed.

If sampling tools were to observe relatively rare events,
they would need to sample the whole program at the level of
�delity they need for the rare event, which incurs very high
overheads. The sampling frequency is also upper-bounded by
the frequency of kernel non-maskable interrupts: any faster
sampling frequency can prevent the entire OS from making
progress. As a result, most sampling-driven pro�lers (e.g.,
Intel VTune) operate between 1–1000Hz for user-space sam-
pling, and up to 100 000Hz for hardware event-based sam-
pling, which is inadequate for analyzing rare events [14].

Sampling tools are oblivious to non-CPU waiting time (i.e.,
a thread is sleeping instead of spinning), and certain ker-
nel time (such as the timer interrupt routine itself, or non-
interruptible kernel code), distorting user-space time [38].

Correlation but not causation. Sampling generates a
statistical pro�le of the program execution. Though the pro-
�le can provide hints when investigating performance prob-
lems, it is impossible to establish causal relationships be-
tween events. This is particularly a problem in GC, where
GC work is often dynamically generated while recursively
traversing the object graph from the root set, and the work
is freely distributed among worker threads to achieve better
load balancing. GC work can also be triggered by application
activities (allocators, barriers). Tracing a pathological event
back to its root cause is something sampling cannot do.

2.1.3 Tracing. Tracing creates a dynamic trace of a pro-
gram’s execution by recording a small trace entry each time
an active tracepoint is encountered. A tracepoint may be:
i) any non-inlined function call/return speci�ed at run time
by the user, or ii) a user statically-de�ned tracepoint (USDT)
added to the source code. When disabled, tracepoints have
very little overhead, a result of very careful engineering.
When enabled, each tracepoint may be used to capture infor-
mation such as the name of a function being entered / exited
and a timestamp. Trace entries are written to a ring bu�er
and are comprehensively processed in temporal order. Tra-
cepoints can be enabled at run time, allowing a developer to
attach to a running process exhibiting anomalous behavior
and immediately start performing high �delity performance
analysis.

Tracing addresses shortcomings of counting and sampling,
making it a vital part of the performance analysis toolkit.
First, tracing instrumentation allows programmers to debug
events at the desired level of abstraction, and attach context
to the events. Second, tracing allows capturing rare events
with very low cost, since the tracing overhead is proportional
to the frequency of the events traced. Finally, tracing allows
capturing of all events in a time series, and associating them
with unique IDs, allowing programmers to establish causal
relationships between events.
Sampling-based pro�lers sometimes adopt elements of

tracing. For example, the Concurrency Visualizer in Visual
Studio [15] normally samples the program stack, but traces
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every context switch. This is so that the control �ow leading
to blocking IO or synchronization can be comprehensively
captured, rather than be subject to vagaries of sampling.

2.2 Tracing Technologies

Though powerful, tracing tools are still subject to the trade-
o� between precision3 and the impact on the system un-
der test. Our goal is to develop low-overhead, high-�delity
performance tracing for GC. We survey potential tracing
technologies in this section. In this paper, we use eBPF.

eBPF. eBPF (extended Berkeley Packet Filter) provides a safe
and �exible way for developers to extend the capability of the
operating system kernel to facilitate low overhead tracing.
The key component is a sandboxed in-kernel BPF virtual
machine (VM) with a veri�er. Users can write BPF programs
targeting the BPF VM to respond to kernel and userspace
events [18, 20]. An example of a kernel event is a context
switch, while a user event might be the execution of a user-
de�ned tracepoint. eBPF has a wide range of applications,
including troubleshooting slow disk IO requests, etc., as well
as its namesake application, �ltering network packets.
eBPF has two main tracing frontends: BCC [23] and bpf-

trace [24]. BCC provides a more customizable, C-like pro-
gramming interface, while bpftrace provides a convenient
scripting language inspired by DTrace [42] and System-
Tap [35]. Both compile tracing programs (probes) into BPF
VM bytecode. In this paper, we focus on using bpftrace to
trace userspace events in a memory management framework.

We consider usdt probes and uprobe/uretprobe pairs. usdt
probes attach to User Statically-De�ned Tracepoints (US-
DTs), while uprobes and uretprobes are tracing programs
attached to userspace function entries and exits respectively.
While uprobes can in principle be used with any application,
their utility is limited to non-inlined functions with exposed
symbols and their pre-existing function arguments.
Developers can use USDTs to mark interesting points in

the code base (Figure 1). Each USDT has several parts: the
provider (namespace), name, and zero or more arguments4

to provide the context of execution. USDTs are implemented
by inserting nop instructions into the application binary at
compile time. The locations (instruction pointers) of each
USDT are added to the notes section of the ELF �le. A probe
attaches to a USDT by patching the nop into a breakpoint,
and the kernel executes the corresponding tracing programs
when handling the breakpoint.

The main overheads of tracing a userspace program come
from a privilege mode switch (user space into kernel space),

3A precise measurement distorted by observer e�ects is not accurate.
4Each USDT can optionally have a semaphore. The semaphore provides

a tradeo� between an extra check before a USDT can �re and potentially

expensive computation of USDT arguments.

1 fn process_edges(&mut self) {

2 + probe!(mmtk, process_edges, self.edges.len(),

3 + self.is_roots());

4 for i in 0..self.edges.len() {

5 self.process_edge(self.edges[i])

6 }

7 }

Figure 1. Inserting a USDT tracepoint into Rust code, which
expands into a nop. The �rst argument to probe! is the
provider/namespace, and the second is the name of the trace-
point, followed by zero or more arguments. In this case, the
tracepoint has two arguments, one for the number of edges,
and another for whether the edges are root edges.

collecting the userspace thread context (registers), and exe-
cuting the speci�c tracing logic de�ned by the user in the
in-kernel VM.
Our target, MMTk, is written in Rust. We use the Rust

probe crate [41] to add USDT tracepoints to our source code,
such as to trace the number of object graph edges a function
iterates over and whether the edges are root edges (Figure 1).
Then, we can attach a probe (Figure 2) to this tracepoint to
understand the distribution of the number of edges in all
ProcessEdges packets, and root ProcessEdges packets. (The
signi�cance of ProcessEdges is expanded upon later.)

1 usdt:libmmtk_openjdk.so:mmtk:process_edges {

2 @dist_edges = hist(arg0);

3 if (arg1) {

4 @dist_root_edges = hist(arg0);

5 }

6 }

Figure 2. A probe written in the bpftrace language. It at-
taches to the process_edges tracepoint in Figure 1. It records
the number of edges (arg0) into histogram data structures
to estimate the distribution of the number of edges in each
function invocation, separately counting root edges (when
arg1 is true).

The scripting language of bpftrace provides standard data
structures, such as associative arrays. The language also pro-
vides several ergonomic data structures like histograms and
statistical aggregates (count, minimum, maximum, average)
so that tracing observations can be aggregated on the �y.
Operations on these data structures are done in the kernel
space by BPF programs compiled from bpftrace scripts. Some
bpftrace functions (printing, symbolizing addresses, etc.)
are asynchronous: they are queued into a kernel/userspace
bu�er, and processed in user space. Invoking these functions
too frequently can overrun the bu�er and drop events.
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LTTng and Perfetto. Unlike eBPF, which is implemented
completely inside the operating system kernel, LTTng [17]
and Perfetto [2] can trace userspace programs from user
space. They achieve this through shared memory ring bu�ers
between the program under trace and the tracing daemon
process.5 The bu�er is periodically �ushed to disk through
serialization. Since no kernel/userspace transition is required
when tracing userspace programs, LTTng and Perfetto can
have lower tracing overhead, but can incur substantial disk
usage and post-processing cost, which may be prohibitive
when tracing high frequency events. Both LTTng and Per-
fetto can trace kernel events, through a kernel module, and
the Linux ftrace interface respectively.
Perfetto comes with a web UI that can visualize several

trace formats. We use its UI frontend to visualize garbage
collection work. We do not use Perfetto to perform tracing.

2.3 Tracing in Managed Language Virtual Machines

Understanding the performance of the GC is crucial for GC
developers. It is also critical for engineers responsible for
deploying virtual machines (VMs) in performance-critical
settings. While tracing technologies have been used in VMs,
as we survey in this section, they do not provide insights
into the inner workings of garbage collectors, and thus are
complementary to this work.

Python, Ruby, and Julia. Python [28], Ruby [36], and Ju-
lia [25] all provide GC tracepoints. Any tracer that under-
stands the USDT format, including bpftrace and DTrace, can
attach to these tracepoints. For these runtimes, the trace-
points implemented within their native collectors only tell
us when a GC phase begins or ends, and when allocations
occur. These tracepoints do not provide su�cient detail to
properly understand collector behavior. We claim that with
a su�ciently modular collector design, just a few USDT tra-
cepoints can provide rich insights into collector behavior.

V8 and Android Runtime. V8 [44] uses the Chromium
tracing framework. It reports the time spent in most GC
phases and the sizes of spaces. It also collects the mem-
ory footprint of di�erent types of objects. Android Run-
time (ART) [1] uses the Perfetto tracing framework. ART
records di�erent phases of GC, and how heap sizes change
with each GC epoch. Both V8 and ART use Perfetto as the
UI frontend for visualizing traces. Neither provide the level
of detail and generality that we demonstrate here.

.NET and OpenJDK. Compared with the other language
runtimes listed above, .NET [29] and OpenJDK allow more
events to be observed. They report more statistics after each
GC, such as the size of each generation, and allow pro�ling
of allocations and heap composition. Their tracing interfaces

5Perfetto has an in-process tracing mode which does not require a daemon

process but it can only trace the residing program.

can be enabled during run time, supporting tools like GCRe-
alTimeMon [40] and JDK Mission Control [34] respectively.
A key distinction with the work we describe here is due to
MMTk’s modular design and use of work packets, which
we describe below. These features allow us to reveal rich in-
sights into the collectors’ behavior in ways that are general,
collector-neutral, and very low overhead. Without modular-
ity and generality, speci�city is necessary and the developer
can only guess at which elements of the collector are going
to be most useful to the end user.

2.4 MMTk and its Work Packets

MMTk is a garbage collection framework that provides a
robust, e�cient, portable, and �exible platform for develop-
ers to build collectors [7, 31]. Almost all collection work is
done by stateless GC workers executing work packets [45].
Work items of the same type (such as objects to be scanned)
are placed into work packets (such as object scanning work
packets), whose sizes are the numbers of items within. Each
work packet contains a function pointer instructing the GC
worker on how to process these work items, and precondi-
tions dictating when it may be executed.

Work packets that have the same preconditions are put in
the same work buckets. A work bucket only opens when all of
its preconditions are met, and then worker threads can fetch
packets from that bucket. For example, the packets for the
transitive closure might be put in a bucket that only opens
once all root scanning packets have completed.
The distribution of work packets among worker threads

is key to scalability. Worker threads acquire work packets
from an initial global pool and then consume and produce
work packets into thread-local pools. Once the global pool is
empty and a thread’s local pool is exhausted, it steals work
from local work packet pools of other threads. Both work
stealing and acquisition of global work packets requires syn-
chronization of threads to avoid race conditions. Thus, the
choice of packet size involves a trade-o� between increased
parallelization and increased synchronization.
Smaller packets allow for greater parallelization as the

work can be spread more evenly amongst the threads. How-
ever, if packets are too small, then �xed per-packet overheads
can dominate. Analyzing the distribution of work packet
sizes is important as it can give insight into why particular
benchmarks scale better and help us identify possible areas
where scalability can be improved.

3 Implementing Tracing in MMTk

We added to MMTk just 14 lines of substantive Rust code,
comprising USDT tracepoints that provide observability to
�ve major behaviors: i) the start and end of each collection
(2 LOC), ii) the start and end of processing each work packet
(5 LOC), iii) the start and end of each execution of the alloca-
tor slow path (2 LOC), iv) the opening of each work bucket
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(2 LOC), and v) the process_edgesmethod (3 LOC). There are
an additional ten lines of code to make the above compile
conditionally, and nine more lines of import statements and
trailing braces. We will argue (Section 5) that these trace-
points impose an overhead so low that there is no need to
conditionally compile them.

While logging dumps textual summaries of what a collec-
tor has done (requiring foreknowledge of what the consumer
may �nd useful), the tracepoints we add provide �ne-grained
semantically rich building blocks from which the user can
perform powerful analysis (Section 6). The power of this
approach is greatly assisted by a highly modular design of
MMTk. It is not our goal to be exhaustive in the tracepoints
we add. Rather, we demonstrate that a few tracepoints add
tremendous observability to the garbage collector, and yet,
they come with negligible overhead.6 We now describe each
of the �ve behaviors observed by the tracepoints we added.

Collection Start and End. When attached, these trace-
points �re once at the start and at the end of each collection,
allowing the time spent in the stop-the-world portion of
each collection to be observed. Like most collectors, MMTk
already has explicit instrumentation to measure the time
spent in stop-the-world collection, but for completeness, we
added them as tracepoints.

WorkPacket Start andEnd. This pair of tracepoints allows
the time spent processing each work packet to be observed.
The tracepoints also capture the type of the packet (passed as
a string re�ecting the Rust type). Together, this information
provides users with insight into the details of how work is
being performed within a garbage collection, how well it is
being parallelized, and which packets and packet types are
responsible for performance anomalies. These work packet
events can be readily organized into the format of various
tracing visualization tools, such as the JSON format of Per-
fetto [19]. Combined with the bucket opening tracepoint (be-
low), we can further visualize these events by the stages of
GC they appear in. These events give us an intuitive yet rich
understanding of the dynamics of collection work, which we
later illustrate (Figure 5). When attached, they �re roughly
once every microsecond during GC.

Allocator Slow Path. Most allocators are designed around
a very e�cient common-case fast path, which is usually
thread-local and unsynchronized, and an infrequently-taken
slow path, which is used only when the fast path exhausts its
cache of available memory. This pair of tracepoints allows
the time spent in allocation slow path code to be observed.
When attached, they �re approximately once for every 64 KiB
of allocation, which can be up to once every 10 µs.

Bucket Opening. This tracepoint allows us to observe the
opening of each work bucket. Since buckets are opened at

6i.e. with no statistically signi�cant overhead.

di�erent points during the GC only when certain precondi-
tions are satis�ed (Section 2.4), the timing of bucket openings
provides insight into how long various stages of the garbage
collection take. When attached, this tracepoint �res in the
order of once a millisecond during GC.

The process_edges Function. Each of the above tracepoints
is very generic. In contrast, this tracepoint provides observ-
ability into ProcessEdgeswork packets. These packets collec-
tively perform the transitive closure over the object graph, a
task which dominates most tracing-based collection work,
so we add this tracepoint as an important special case.
We add the tracepoint to the body of ProcessEdges work

packets—the process_edges() function—to report the num-
ber of edges the function visits and record whether these
edges are roots of the transitive closure.

Measuring the ProcessEdgeswork packets’ sizes allows us
to gain more insight into problems regarding the scalability
and e�ciency of tracing. As discussed in Section 2.4, this
is because larger packets better amortize the �xed cost of
fetching a packet, while smaller packets are more evenly
distributed among worker threads. When attached, they �re
approximately as frequently as the work packet start and
end tracepoint; up to once every microsecond during GC.

We will outline our methodology and evaluate the overheads
associated with these tracepoints before stepping through
case studies that illustrate the utility of the tracepoints.

4 Methodology

We now present the baseline methodology used throughout
the remainder of this paper. In the overhead analysis and case
studies that follow, we describe the relevant methodology in
terms of variations on this baseline methodology.

Hardware and Software Platform. Our work is available
as part of the new Rust-based implementation of MMTk [6,
7, 31]. We use the 0.19.0 release of MMTk and its OpenJDK
binding (based on OpenJDK 11.0.19+1) in our evaluation.
MMTk is built using version 1.71.1 of the Rust compiler,
utilizing pro�le guided optimization. We use version 0.5
of the Rust probe crate to add USDT tracepoints to MMTk.
Both machines we use have Ubuntu 22.04.3 installed with the
5.15.0-79-generic kernel. We use the o�cial binary release
of version 0.18 of bpftrace.
We use two hardware platforms described in Table 1,

which we refer to as Zen3 and Co�eeLake respectively.

JVM parameters. We set the heap size relative to a modest
three times the minimum heap size required by each bench-
mark using the Immix collector.We also use -XX:-TieredComp-
ilation -Xcomp �ags to speed up the warmup of the JVM,
except for tradebeans and tradesoap because they cannot

104



Improving Garbage Collection Observability with Performance Tracing MPLR ’23, October 22, 2023, Cascais, Portugal

Table 1. Speci�cations for the hardware used in the study.

Co�ee Lake Zen 3

Model Core i9-9900K Ryzen 9 5950X

Year 2018 2020

Technology 14 nm 7 nm

Clock 3.6GHz 3.4GHz

SMT × Cores 2 × 8 2 × 16

L1 Data Cache 32 KB × 8 32 KB × 16

L2 Cache 256 KB × 8 512 KB × 16

LLC 16MB 64MB

Memory Size 128GB 64GB

Memory Type DDR4-3200 DDR4-3200

run when forcing C2 compilation.7 We disable compressed
pointers, weak references, and class unloading because the
MMTk/OpenJDK binding does not support these features
as of writing. The tracepoints we add are entirely collector-
agnostic. The methodology, including the speci�c scripts
we use, is applicable to other collectors in MMTk. We focus
on the Immix collector [10] due to space constraints. This
full heap, stop-the-world collector is performant and easier
to understand than concurrent or generational collectors,
which aids exposition.

Benchmarks. We use 21 diverse up-to-date benchmarks
from the Chopin development branch of the DaCapo bench-
mark suite [8, 16].8 We exclude batik because it does not
perform GC with the heap size we use. We �x a bug in luse-

arch during our case studies (Section 6.2), and we include its
original buggy version (lusearch_bug)9 in our evaluation.

Execution Methodology. For each case study, we invoke
each benchmark 30 times. We interleave invocations of dif-
ferent case studies to minimize bias due to systematic inter-
ference. In each invocation, the benchmark warms up using
four iterations, and we report the results from the �fth iter-
ation. For each case study, we report the aggregated result
from the 30 invocations for each con�guration using the
mean and the 95 % con�dence interval where appropriate.

5 Tracing Overheads

We evaluate the overheads associated with tracing consid-
ering three scenarios: i) the overhead of adding tracepoints
(nops) to MMTk (but without attaching probes to any of them
at run time), ii) the overhead of attaching a probe to the
bucket open tracepoint to observe GC phases, iii) the over-
head of attaching a probe to the process_edges tracepoint
to observe packet sizes, and iv) the overhead of attaching
probes to the allocator slow path start and end tracepoints

7h�ps://github.com/dacapobench/dacapobench/issues/198
8Commit 6ea164a5, 2023/09/10
9Commit 0d047f55, 2023/02/02.

to observe the slow path durations. For each of the three ob-
servation applications, we attach probes to the GC start/end
tracepoints to count the number of GC epochs. We use both
the Zen3 and Co�eeLake platforms to assess the architectural
sensitivity of the results, presented in Table 2 and Table 3
respectively.

We do notmeasure the overhead of observing the start/end
timestamps of each packet (used by Perfetto visualization) be-
cause we cannot directly compare across benchmarks since
the sample rate for each is hand tuned. This is necessary
because work packet execution frequency can be as high
as once a microsecond. Observations can sometimes be lost
because printing in eBPF is done asynchronously through a
�xed-size kernel/userspace bu�er.
In analyzing Table 2, we �rst consider the overhead of

adding tracepoints (�rst column, tp). The average impact on
total execution time is within the noise of our measurement:
a nominal 0.4 % slowdown on the Zen3, and a 0.3 % speedup
on Co�eeLake. Looking at the per-benchmark results on
Zen3, we see that the overhead is within measurement noise
for every benchmark. With respect to collector time, we see
slowdowns of 0.8 % and 0.3 % on the Zen3 and Co�eeLake re-
spectively. These results show that the impact of adding the
tracepoints to the codebase is negligible. This low overhead
paves the way for compiling in and deploying tracepoints in
production settings. This will allow high �delity measure-
ments of the system at any time without recompiling or
redeploying.
Now we consider the cost of attaching a probe to the

bucket open tracepoint (second column, ob). We see no over-
head in total time (0.0 %) on the Zen3, while on the Co�ee-
Lake we see a nominal speedup of 0.2 %. With respect to
collector time, we see slowdowns of 1.0 % on the Zen3 and
0.7 % on the Co�eeLake. These overheads are low enough
that the bucket open tracepoints could be left attached in
most cases.

Next, we look at the case where process_edges is observed,
allowing us to measure the size of each ProcessEdges work
packet (third column, pe). This is executed many orders of
magnitude more frequently than the bucket open tracepoint.
Total time overheads are now measurable, 1.7 % and 1.3 %
respectively on the Zen3 and Co�eeLake. The collector sees
slowdowns of 7.3 % and 12.6 % on the Zen3 and Co�eeLake re-
spectively. While measurable slowdowns, they remain small
enough that the tracepoints could also be continuously at-
tached in some contexts.

The above two studies concern the collector. Now we mea-
sure the overhead of measuring the allocation slow path
(fourth column, as). Although a copying collector also allo-
cates during GC, allocation is predominately performed by
mutators. The total time overheads are similar to the above
study, 1.0 % and 2.2 % respectively on the Zen3 and Co�ee-
Lake. The mutator sees slowdowns of 1.1 % and 2.4 % on the
Zen3 and Co�eeLake respectively. Again, the overhead is
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Table 2. Tracing overheads on Zen3 for total time, stop-the-world collector time, and mutator time, for each benchmark
normalized to the base case of an unmodi�ed MMTk. In each group of four columns, the �rst measures tracepoints compiled in
but not attached at run time (tp). The second uses the open bucket tracepoint (ob), the third uses the process_edges tracepoint
(pe), and the last one uses the allocation slow path tracepoints (as). In each case, we show the mean and the 95 % con�dence
interval (gray) of the time normalized to the base case, aggregating across 30 invocations.

Total STW Collector Mu.

Benchmark tp ob pe as tp ob pe as

avrora 0.995 1.000 0.999 1.003 1.004 1.022 1.048 1.002
−1.3 % +1.4 % −1.3 % +1.3 % −1.5 % +1.5 % −1.4 % +1.5 % −2.5 % +2.6 % −2.2 % +2.3 % −2.2 % +2.2 % −1.4 % +1.5 %

biojava 1.003 1.003 1.000 1.021 1.015 1.014 1.018 1.022
−0.5 % +0.5 % −0.5 % +0.5 % −0.5 % +0.5 % −0.4 % +0.4 % −1.1 % +1.1 % −1.1 % +1.1 % −1.0 % +1.0 % −0.4 % +0.4 %

cassandra 1.000 0.999 0.998 1.000 0.995 1.001 1.016 1.000
−0.5 % +0.5 % −0.5 % +0.5 % −0.5 % +0.5 % −0.5 % +0.5 % −2.2 % +2.2 % −2.6 % +2.6 % −2.3 % +2.4 % −0.5 % +0.5 %

eclipse 1.009 0.956 1.007 0.984 1.002 1.008 1.020 0.983
−11.6 % +12.4 % −5.8 % +6.5 % −11.4 % +12.1 % −6.0 % +6.7 % −0.9 % +0.9 % −0.9 % +0.9 % −0.9 % +0.9 % −6.0 % +6.8 %

fop 0.995 0.996 0.996 1.033 0.989 0.972 0.997 1.034
−0.5 % +0.5 % −0.6 % +0.6 % −0.5 % +0.5 % −0.5 % +0.5 % −4.5 % +4.7 % −4.1 % +4.3 % −4.2 % +4.4 % −0.5 % +0.5 %

graphchi 1.000 0.999 1.002 1.009 1.015 1.021 1.025 1.009
−0.1 % +0.1 % −0.5 % +0.5 % −0.1 % +0.1 % −0.3 % +0.3 % −1.0 % +1.0 % −0.9 % +0.9 % −0.9 % +0.9 % −0.3 % +0.3 %

h2 1.008 1.005 1.011 1.018 1.022 1.010 1.018 1.016
−1.0 % +1.0 % −1.0 % +1.0 % −1.0 % +1.0 % −1.0 % +1.0 % −1.3 % +1.3 % −1.2 % +1.2 % −1.1 % +1.1 % −1.1 % +1.1 %

h2o 1.002 1.005 1.002 1.058 1.003 1.014 1.025 1.062
−0.9 % +0.9 % −0.9 % +0.9 % −0.9 % +0.9 % −0.9 % +0.9 % −1.6 % +1.7 % −1.6 % +1.6 % −1.8 % +1.8 % −0.9 % +0.9 %

jme 1.000 1.000 1.000 1.001 1.023 0.999 1.312 1.001
−0.0 % +0.0 % −0.0 % +0.0 % −0.0 % +0.0 % −0.0 % +0.0 % −3.4 % +3.5 % −4.1 % +4.2 % −3.6 % +3.7 % −0.0 % +0.0 %

jython 1.005 1.002 1.004 1.036 1.015 1.005 1.017 1.038
−0.3 % +0.3 % −0.3 % +0.3 % −0.3 % +0.3 % −0.2 % +0.2 % −1.6 % +1.6 % −1.2 % +1.2 % −1.2 % +1.3 % −0.3 % +0.3 %

kafka 0.992 0.997 0.980 0.979 1.047 1.045 1.053 0.978
−4.8 % +5.1 % −5.1 % +5.4 % −3.8 % +4.1 % −3.8 % +4.1 % −6.5 % +7.5 % −6.5 % +7.5 % −6.5 % +7.5 % −3.9 % +4.2 %

luindex 1.006 1.006 1.011 1.021 0.998 1.013 1.041 1.022
−0.5 % +0.5 % −0.5 % +0.5 % −0.5 % +0.5 % −0.6 % +0.6 % −2.4 % +2.4 % −2.1 % +2.1 % −2.2 % +2.3 % −0.6 % +0.6 %

lusearch 1.008 1.036 1.015 1.021 1.027 1.030 1.046 1.019
−0.8 % +0.8 % −4.8 % +4.8 % −0.7 % +0.7 % −0.7 % +0.8 % −2.4 % +2.4 % −2.5 % +2.5 % −2.2 % +2.3 % −0.3 % +0.3 %

lusearch_bug 1.070 1.026 1.333 1.004 1.005 1.006 1.829 1.001
−8.8 % +8.8 % −4.7 % +4.7 % −0.6 % +0.6 % −0.6 % +0.6 % −1.9 % +1.9 % −2.0 % +2.0 % −1.5 % +1.6 % −0.6 % +0.6 %

pmd 0.997 0.998 0.998 1.007 0.982 0.986 1.003 1.012
−0.7 % +0.7 % −0.7 % +0.7 % −0.7 % +0.7 % −0.7 % +0.7 % −3.2 % +3.3 % −3.4 % +3.5 % −3.3 % +3.4 % −0.3 % +0.3 %

spring 0.998 0.995 1.034 1.008 1.016 1.009 1.237 1.006
−0.7 % +0.7 % −0.7 % +0.7 % −0.8 % +0.8 % −0.7 % +0.8 % −1.5 % +1.5 % −1.5 % +1.5 % −1.3 % +1.3 % −0.8 % +0.8 %

sunflow 1.017 1.002 1.028 1.007 1.017 1.003 1.020 1.006
−1.9 % +1.9 % −1.9 % +2.0 % −2.5 % +2.5 % −1.9 % +1.9 % −1.5 % +1.5 % −1.3 % +1.3 % −1.3 % +1.3 % −2.2 % +2.3 %

tomcat 0.998 0.999 1.003 1.007 1.003 1.009 1.013 1.007
−0.3 % +0.3 % −0.3 % +0.3 % −0.3 % +0.3 % −0.3 % +0.3 % −1.8 % +1.9 % −1.9 % +2.0 % −1.7 % +1.7 % −0.3 % +0.3 %

tradebeans 0.999 0.999 1.003 1.017 1.002 1.005 1.025 1.019
−0.9 % +0.9 % −1.0 % +1.0 % −0.9 % +0.9 % −0.9 % +0.9 % −1.6 % +1.6 % −1.7 % +1.8 % −1.7 % +1.7 % −0.9 % +0.9 %

tradesoap 0.997 1.001 1.002 1.012 1.005 1.003 1.024 1.013
−0.6 % +0.6 % −0.6 % +0.6 % −0.6 % +0.6 % −0.6 % +0.7 % −1.6 % +1.6 % −1.5 % +1.5 % −1.5 % +1.5 % −0.6 % +0.6 %

xalan 0.986 0.997 1.001 0.990 0.971 0.990 1.005 0.993
−0.8 % +0.8 % −0.9 % +0.9 % −0.9 % +0.9 % −0.8 % +0.8 % −1.8 % +1.8 % −2.0 % +2.0 % −2.0 % +2.0 % −1.0 % +1.0 %

zxing 0.993 0.992 0.993 0.997 1.026 1.056 1.052 0.996
−1.3 % +1.3 % −1.2 % +1.2 % −1.2 % +1.2 % −1.2 % +1.2 % −4.6 % +4.8 % −4.8 % +5.0 % −4.6 % +4.8 % −1.2 % +1.2 %

min 0.986 0.956 0.980 0.979 0.971 0.972 0.997 0.978

max 1.070 1.036 1.333 1.058 1.047 1.056 1.829 1.062

geomean 1.004 1.000 1.017 1.010 1.008 1.010 1.073 1.011

low enough that the allocation tracepoint could be routinely
left attached, allowing us to correlate the memory manager
behaviors with the benchmark events.

Together these results illustrate that the overheads of tracing
via eBPF are very modest. Compiling the tracepoints into the
binary incurs negligible overhead, enabling their use even in
production settings. Furthermore, we show that interesting
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Table 3. Summary of overheads for Co�eeLake. This table omits per-benchmark results for concision. The data here corresponds
to the last three rows of Table 2, which reports overheads for Zen3.

Total Collector Mu.

tp ob pe as tp ob pe as

min 0.972 0.976 0.991 0.985 0.973 0.971 0.984 0.985

max 1.005 1.004 1.239 1.115 1.034 1.067 2.164 1.121

geomean 0.997 0.998 1.013 1.022 1.003 1.007 1.126 1.024

tracing applications have such low overhead that in many
cases they could be performed in production too.

6 Case Studies

In the following sections, we use two case studies to explore
examples of how observability with performance tracing
o�ers insights into collector and mutator performance. Each
of the studies requires negligible storage, since the data is
aggregated on the �y, except for the detailed per-work packet
trace (Figure 5), which uses about 20 kB per GC epoch using
a naïve JSON format after gzip compression.

6.1 Tracing Scalability: The ProcessEdges Work

Packet

The performance of tracing collectors is typically dominated
by how e�ciently they perform a transitive closure over all
live objects within the scope of the collection. The scope
may be one or more regions, the nursery, or the whole heap.
Most modern collectors utilize hardware parallelism to trace
the heap. The performance of such a trace is in�uenced by
three factors: i) the e�ciency with which each object in the
graph is processed, ii) the e�ciency with which work is
distributed among available workers, and iii) the amenability
of the shape of the object graph to parallelization [5].
In this case study, we investigate the scalability of the

transitive closure phase of MMTk’s Immix collector. MMTk
uses the ProcessEdges work packet to perform the transitive
closure. The closure is bootstrapped by ProcessEdges work
packets consisting of roots of the object graph. Examples of
roots are stack references and global references. Each item
in a ProcessEdges work packet is a single edge, the address
of a reference to be traced. The work packet processes each
edge by dereferencing the edge, and if the referent object
has not already been marked, it is marked. In the case of a
copying collector, an unmarked referent is also moved. These
referents (objects) are then scanned in batches to discover
the outgoing edges of each node. The discovered edges are
put in a new ProcessEdges work packet. This lifecycle of
ProcessEdges packets repeats until the object graph is fully
traversed. For a copying collector, if the referent object was
already moved earlier in the collection or is moved by this
packet, then during the processing of the edge, the edge is
updated to point to the forwarded object.

Methodology. We �rst attach a probe to the bucket open
tracepoint to measure the length of the closure phase of
the collection. We then attach a probe to the process_edges

tracepoint to measure ProcessEdges packet sizes. Finally, we
attach probes to the work packet start/end tracepoints to
save raw timestamped data for Perfetto visualization.

Results and Discussion. We measure four di�erent at-
tributes of the ProcessEdgeswork: i) the overall scalability of
the closure phase, in which it dominates, ii) the distribution
of packet sizes, iii) the distribution of root packet sizes, and
iv) the distribution of packets among threads over time.

Figure 4 shows the scalability of the closure phase of col-
lections on each of our hardware platforms. On the Zen3 it
ranges from pmd, which scales with 81.5 % e�ciency at 8
threads (6.52/8), to fop, which is just 50.7 % e�cient (3.96/8).
xalan exhibits super-linear speedup on the Zen3. We ascribe
this to an as-yet uncon�rmed architecture-speci�c perfor-
mance problem when running with a single thread. On the
Co�eeLake scalability ranges from spring, which scales with
79.5 % e�ciency (6.36/8) at 8 threads, down to fop, which is
52.6 % e�cient (4.21/8). We now explore possible reasons for
the lack of scalability seen by some of these workloads.
The most likely sources of a scalability problem in the

closure phase are poor load balancing and some form of con-
tention. We start by observing that the scalability is very
workload-sensitive, and that for some workloads, the scala-
bility is quite good. On this basis we investigate the distri-
bution of work packet sizes. Small work packets indicate a
performance problem since there is a �xed cost associated
with acquiring a new packet. On the other hand, very large
packets may inhibit load balancing, since MMTk workers
can steal packets, but cannot steal work from within another
packet. We also evaluate root packet sizes, since root packets
prime the transitive closure and if they were large and un-
evenly distributed among workers, they could lead to load
imbalance and starvation.
Figure 3(a) shows the distribution of packet sizes for all

benchmarks on Zen3 as a cumulative distribution function.
The distribution is similar on Co�eeLake. The outliers at the
small end are jme and the buggy version of lusearch, for
which about 86 % and 80 % of all packets are less than size 32.
The bug �x for lusearch (Figure 5(c) and Figure 5(e)) signi�-
cantly reduces the number of small work packets (down to
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(a) All packets, by packet (16).
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(b) All packets, by item (1024).

8 128 2048 32768

Root Packet Size

0.0

0.2

0.4

0.6

0.8

1.0

C
u

m
u

la
ti

ve
 d

en
si

ty
 o

f 
p

a
ck

et
s

Benchmark

kafka 0.87

jython 0.39

pmd 0.26

(c) Root packets, by packet (16).
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(d) Root packets, by item (8192).

Figure 3. Distribution of packet sizes for each benchmark. Key results are shown in color, with the remainder in grey. Packet
sizes are rounded down to powers of two and are presented on a logarithmic scale (x-axis). Graphs (a) and (b) measure all
ProcessEdgeswork packets, while (c) and (d) measure only root packets. Graphs (a) and (c) show the cumulative density function
(CDF) of packet sizes as a proportion of all packets, while (b) and (d) show packet sizes as a proportion of work items, so larger
packets have proportionately heavier weight. All benchmarks are shown (gray) and we highlight three or four notable results
in color in each case. The labels indicate the proportion (y-axis) at the packet size (x-axis) indicated in parentheses in the
caption. For example, in (a), for biojava and h2, packets of size less than 16 account for just 3 % of all packets.
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(a) Zen3 (16 cores).

2 4 8 16

GC Threads

2

4

8

16

C
lo

su
re

 s
p

ee
d

u
p

Benchmark

spring 6.36

biojava 6.33

h2 6.14

lusearch 5.79

jme 5.27

lusearch_bug 4.29

fop 4.21

(b) Co�eeLake (8 cores).

Figure 4. The scalability of MMTk’s closure phase for each
of the DaCapo benchmarks, showing speedup relative to
using one worker thread (y-axis, log) as a function of the
number of worker threads (x-axis, log). The dashed red line
indicates perfect scaling. Selected benchmarks are labelled,
the remainder shown in grey to indicate the distribution of
results. Labels indicate speedup at 8 cores.

43 %). At the large end, the outliers are biojava, where about
90 % of packets are of size 1024 or more, and h2 where about
85 % of packets are at least 512 in size. Interestingly, these
observations are not well correlated with scalability. In fact
the four outliers from Figure 3(a) are clustered together in
the middle of the Zen3 scalability curve (Figure 4(a))—despite
their extremes in packet size distribution they all have un-
remarkable scalability. In Figure 3(b), we weight the curves
by the size of the packets so that rather than re�ecting the
fraction of all packets, they re�ect the fraction of all items.
This di�erent weighting is interesting. However, it comes no
closer to explaining the lack of scalability.

Another factor that may a�ect load balancing is the size
of root packets—the work packets that prime the transitive
closure. If the priming work is not well distributed among
the threads, it might lead to poor load balancing and poor
scalability. Fortunately, this is easy to investigate with the
existing tracepoints. Figure 3(c) illustrates the distribution of
root packet sizes and Figure 3(d) shows the same, weighted
by packet size. Unfortunately, neither of these show any
correlation with the scalability results in Figure 4. However,
they reveal that some of the root work packets are very large,
and Figure 3(d) indicates that most root edges come from
packets of size 4096 or larger. This suggests an opportunity
to improve root processing in MMTk’s OpenJDK binding.
Finally, we use the tracepoints at the start and end of

each work packet to visualize the execution of work pack-
ets as a function of time and thread a�nity. Figures 5(a) –
5(c) show three collections, two from poorly scaling work-
loads (fop and lusearch_bug), and one from a well scaling
workload (tomcat). In each case, time runs from left to right,
and threads are presented as rows. There are eight worker
threads and one coordinator thread (which is almost always
idle). It is immediately obvious that the ProcessEdges work
packets (orange) are poorly load balanced in the fop and
lusearch_bug collections. Closer inspection reveals that the
causes are di�erent.

In the case of fop, the collector starts performing �naliza-
tion work at about halfway through. The change in collection
phase is denoted by a small green arrow on the bottom-most
thread, which indicates the opening of the work bucket re-
sponsible for �nalization. Although it is not immediately
obvious why the �nalization work is not shared across the
other threads, the source of fop’s poor scalability is very
clear, and it is due to the serial execution of �nalization.
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(a) A collection from tomcat, showing good load balancing.

(b) A poorly load-balanced collection from fop.

(c) A poorly load-balanced collection from lusearch_bug. The period within the thin red box on the right is shown in detail in Figure 5(d).

(d) Zooming in on a very thin slice near the end of Figure 5(c). Thread 3832036 is executing a series of short ProcessEdges packets.

(e) A collection from lusearch after �xing the bug in lusearch that led to poor load-balancing. Compare to Figure 5(c).

Figure 5. Per-work packet tracepoints allow scalability problems to be quickly diagnosed using a visualization tool such as
Perfetto, depicted in the screenshots above. The problems with fop (5(b)) and lusearch_bug (5(c)) are immediately clear: poor
load balancing. Perfetto renders di�erent work packet types in di�erent colors and labels them with their type. In each case,
the collection is dominated by the ProcessEdges work packet, which is rendered in orange. Bucket opening events are marked
with green arrows. The �rst three and the last screenshots were taken at a �xed resolution to show the entire collections.
Perfetto also allows the user to easily zoom in and out (5(d)), inspecting the trace at di�erent levels of detail.
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In the case of lusearch_bug, the problem is very di�erent.
Zooming in with Perfetto to reveal more detail (Figure 5(d)),
we �nd that the three threads that continue working for a
long time (thread IDs 3832035, 3832036, and 3832040) are
each busy processing a long series of very short packets.
Furthermore, by using the process_edges tracepoint, we can
annotate each of these short packets with the number edges,
which is 25 in this case. Finally, we see that this same pattern
occurs at nearly every garbage collection. We hypothesized
that this is due to the collector traversing long linked list
data structures, which are inherently non-parallelizable [5].
Having used the GC tracing framework to narrow the

problem down to this point, we modi�ed the MMTk source
code to dump the types of the objects in each packet of size
25. This immediately revealed the problem. The Java class
jdk.internal.ref.PhantomCleanable uses a doubly linked
list and extends PhantomReference. This linked list is tra-
versed at every collection, and the traversing is inherently
unparallelizable [5]. Each node in the linked list carries the
same data structure, which happens to contain exactly 25
edges, which is why each packet was 25 items in size. The
remaining question was why this problem showed up in luse-
arch_bug only. The print out of the objects in each packet
answered this question too. Each PhantomCleanable corre-
sponded to one of lusearch_bug’s 2048 input query �les. We
discovered that the benchmark was not closing the query
�les after use, which meant they led to a very long list. We
veri�ed this by �xing the benchmark. After this �x, we dis-
covered another less dramatic instance of the same problem.
Benchmark checksum �les used by the suite before starting
any benchmark were not being closed. We �xed this too and
con�rmed that the collector scalability problem was solved.
The impact of the �x is clear in the Perfetto screenshot in Fig-
ure 5(e) and in Figure 4.
Programming errors like the above are simple yet subtle

and would have gone unnoticed without exhaustive per-
packet traces (c.f. sampling) and their visualization which
crisply revealed the problem. The timelines also reveal a
signi�cant amount of other information, such as the time
waiting for mutators to yield (the leftmost packet, labeled
StopMutators). It also reveals that root processing (blue and
magenta) generally scales well, with the exception of the
ScanCodeCache work packet (olive).

Together these various perspectives on collector behavior
provided by the tracepoints give the developer a wealth of
information, allowing them to conduct performance debug-
ging at a very low cost. Traditional performance debugging
tools and expert knowledge remain important, but the pro-
cess is dramatically faster. We will next consider a case study
that uses tracepoints to understand mutator behavior.

6.2 Allocator Scalability

The context for this case study is a scalability regression
in MMTk that was not immediately detected. It was only

evident with the lusearch workload when running on eight
or more cores [26]. The problem was debugged and �xed
before this work, so this case study is a retrospective analysis.
lusearch is interesting because it allocates at a very high

rate (about 16GiB/s) and the workload is embarrassingly
parallel—each thread performs a large number of indepen-
dent search queries against a shared index. It is therefore a
good test of allocator scalability. The progression of the bug
diagnosis was that the performance of lusearch regressed
after a change to MMTk. When the MMTk team looked more
closely, they identi�ed that the regression was not due to
an increase in collector time but a slowdown in the mutator.
Moreover, the slowdown was only evident on machines with
high core counts. The problem was evident even in a stop-
the-world, whole heap collector, where the only element of
the garbage collector directly impacting the mutator is the
allocator (no write barriers, no concurrent collection). Since
the allocator fast path is strictly thread-local, the fast path
was unlikely to be the source of a scalability regression. Thus
the focus of our study became the allocator slow path, which
is responsible for periodically acquiring new memory from
a global pool to replenish the thread-local allocator.

Methodology. We use the usdt tracepoint that we added to
MMTk’s allocator slow path (Section 3), allowing us to ob-
serve the time spent in every execution of the allocator slow
path. We also use eBPF’s uprobe capability, which allows us
to monitor the entries and exits of any function without any
source code modi�cation (Section 2.2). By attaching uprobes
to the Mutex::lock_contended function symbol exported by
the Rust standard library, we are able to precisely measure
the time spent in waiting for locks, amplifying any allocator
slow path regression caused by lock contention.

Results and Discussion. Figure 6(a) shows a cumulative
distribution function plotting the distribution of allocator
slow path execution times as a function of their duration for
the correct code (orange) and the regressed code (blue). The
regressed code is much less likely to have a short duration
(≤ 2 µs) slow path. This result quickly con�rms the initial
hypothesis that the allocator slow path may have been the
source of poor scalability. It is then a matter of identifying
changes that a�ected the allocator slow path within the win-
dow of when the regression was observed. In this case, the
problem was an unintended coarsening of the scope of a lock
used to acquire pages from a global resource. We attached
a uprobe/uretprobe pair to the Mutex::lock_contended func-
tion. Figure 6(b) shows that the bug �x made a dramatic
di�erence to the time spent on the lock slow path, with al-
most all cases taking less than 4 µs. Furthermore, the graph
shows that the slow path was taken one �fth as frequently,
indicating the lock was far less likely to be contended.
Tracepoints’ ability to allow rapid con�rmation of such

a hypothesis is valuable. Without precompiled tracepoints,
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Figure 6. A regression in allocator slow path performance
on lusearch visualized as a cumulative density function. The
top graph compares the allocator slow path time (x-axis, log)
of the correct code (orange) and that of the regressed code
(blue). We would expect two cases for the allocator slow
path time, the common case (2 µs) and the uncommon case
(upper right) due to garbage collection pauses, etc. In the
regressed case (blue), about 30 % of slow paths are taking
3–100 µs, which are suspicious. The bottom graph ampli�es
the problem by tracing the time spent in the contended state.

each such hypothesis might have required ad hoc modi�ca-
tions to the source code and a fresh build before anymeasure-
ment and analysis could be done. The work�ow available
via eBPF allows this kind of analysis to be conducted sys-
tematically and cheaply, even on a running binary.

7 Discussion

In this paper, we show the power of tracing and howmodular
software engineering ampli�es this power to deliver rich ob-
servability at low overhead.We use eBPF tools as an example,
but one can choose other tracing frameworks where more
appropriate. We also use MMTk, but the approach can be
applied to other garbage collectors or collector frameworks.
The principal advantage of MMTk here is that the software
engineering of the toolkit plays very well into our goal of
generality and observability. This allows a few well-placed
tracepoints to provide rich, collector-neutral observability.
One important practical consideration is the ecosystem

into which the tracing will be applied. For example, Android
and Chromium are extensively instrumented using their
respective tracing frameworks, and therefore, using the same
framework when adding tracing to the collector would lead
to easier integration with the existing work�ow and easier
correlation of events from di�erent subsystems.
Another important consideration is tracing across the

operating system stack. If one wants to correlate kernel
space events, such as physical memory allocation or context
switches, eBPF is likely a good choice since there’s no privi-
lege mode switch to handle kernel events since the tracing
logic is already running inside the kernel. However, if one
wants to purely trace userspace events, and preserve the raw

events for o�ine analysis, Perfetto or LTTng might be a bet-
ter choice. This is due to the shared memory bu�er between
userspace processes not requiring a privilege mode switch,
and their more e�cient on-disk representation of the data
than, say, the plain text used by bpftrace. These choices of
tracing technology are of practical importance but are largely
orthogonal to the key message of this paper, which is that
tracing combined with modular software design provides
low cost, highly general observability.

8 Conclusion

We have demonstrated that performance tracing using tools
like eBPF adds very low overhead observability to garbage
collectors, and moreover, when combined with a modular
collector implementation, can provide very rich observability
with the addition of just a few lines of code. We used two
case studies to show the power of this combination when
applied �rst to a collector performance bug and then to an
allocator performance bug. We demonstrated that a high
degree of observability can be provided with just 14 lines of
code added to the collector, and that the run time overhead
is negligible—lower than our measurement noise.
We make the case that this approach to performance de-

bugging of collectors is more powerful and more �exible
than the dominant state of the art: GC logging and tracing
implementations that are less general than what we present
here.
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