
Java Finalize Method, Orthogonal Persistence and Transactions

John N. Zigman and Stephen M. Blackburn�

Department of Computer Science
Australian National University
Canberra ACT 0200 Australia

fJohn.Zigman,Steve.Blackburn g@cs.anu.edu.au

Abstract

Java is a popular, object oriented language that is runtime type safe. As such, it has been seen as an
attractive basis for the implementation of orthogonally persistent systems by several research groups.
Transactions are widely used as a means of enforcing consistency of the stable image in the face of
concurrency, and have been adopted by most groups developing persistent Java systems. However,
Java has a user definable finalize method which provides an asynchronous cleanup mechanism. The
strict temporal semantics of transactions and the asynchrony of the finalize method seem at odds. This
paper describes this conflict and provides a strategy for resolving the problem.

1 Introduction
The explicit management of memory becomes an increasingly difficult task as the size and complexity of
a program grows. To ease the programming burden and to allow the programmer to be more productive,
many automatic memory reclamation mechanisms have been developed. Garbage collection is the term
given to the mechanism for automatically reclaiming previously allocated memory that is no longer in
use. A previously allocated section of memory is considered to be unused when it is no longer reachable
(via any chain of references) from any potential computation.

The Java language and the Java Virtual Machine (JVM) incorporate an automatic memory reclama-
tion mechanism which frees the programmer from having to perform explicit memory management
[Gosling et al. 1996]. Java also provides a mechanism, know as finalization, which enables the program-
mer to associate a cleanup method with an object type. These methods are invoked automatically at
some time prior to the reclamation of an object’s space. When Java is used as the basis for a persistent
programming language (e.g. PJama [Atkinson et al. 1996]), the correctness implications of interactions
between store and JVM level garbage collection need to be considered. The system model consists of
one or more JVMs operating on a single persistent store image (see figure 1). Garbage collection is done
in each JVM and the persistent store separately.

Persistent Store

JVM JVM JVM

Figure 1: The JVM and Persistent Store System

Transactions are introduced to maintain coherent and consist manipulation of the persistent store in
the face of concurrency. When a transactional model is introduced into the system, the interaction of

�The authors wish to acknowledge that this work was carried out within the Cooperative Research Center for Advanced
Computational Systems established under the Australian Government’s Cooperative Research Centers Program.

1



the transaction model and the cleanup mechanisms must be understood. This is particularly important
given the serious issues of correctness that arise as a result of the mismatch between the arbitrariness
of finalize invocation semantics and strict temporal notions of atomicity and serializability that are asso-
ciated with transactions. In this paper we consider the interrelation of the JVM and store levels in the
context of a transaction model and the cleanup mechanisms provided.

In section 2 the motivation for the finalize mechanism and the rules governing the mechanism are
covered. Section 3 describes the conflicts that arise from the mixing of transactions and the finalize
mechanism and section 4 describes an approach to resolve the conflict in a flexible and efficient way.
Finally a brief conclusion is given.

2 Program Level Resource Management
When constructing a software system there is often a need for explicit resource management. Such
resource management may, for example, take the form of a server that issues resources to many simulta-
neous clients. The resources provided by the server (possibly threads, class instances or computational
information) may be limited for some reason. By managing a shared pool of such resources, with clients
acquiring the resource only on a temporary basis, the total number of resources used can be limited.

When constructing libraries which manage a resource for a third party, it is wise not to rely on the
library users to correctly release the associated resources. The provision of a method which is automati-
cally called just prior to an object being reclaimed would allow resources to be safely released, making
the system more robust.

2.1 What is finalize and Why use It?
Java finalize methods provide a mechanism for performing resource management operations, and so
are superficially similar to C++ destructor methods. This similarity is due to the fact that both C++
destructors and Java finalize methods are invoked as part of the process of deallocating memory. The
difference lies in how the invocation of the methods come about.

C++ requires programs to explicitly deallocate objects. Consequently, the invocation of C++ de-
structors is synchronous to a programs thread of execution. Java, however, does not require explicit
deallocation of objects. Rather, it uses an independent garbage collection thread which is responsible for
finding objects which are candidates for garbage collection, invoking their finalize methods and deallo-
cating their memory. In effect, the invocation of a Java finalize method is asynchronous to the execution
of the user code.

The strongest statement that can be made about the timing of finalize method invokations is that, at
some stage after an object becomes a candidate for garbage collection, and prior to it being collected, the
finalize method will be invoked. This unpredictable invocation time and order, means that the authors of
finalize methods must take great care to ensure correct program behavior. Ill-considered use of finalize
can lead to unpredictable results, such as race conditions.

2.2 When finalize is Invoked
The JVM is responsible for the execution of Java programs. It also encompasses the loading and unload-
ing of classes used by the program as well as instantiation and reclamation of object instances. The JVM
determines when it can invoke the finalize method of an object based upon the state of the object. The
state of the object can be described as the cross product of reachability (reachable, f-reachable, unreachable)
and finalization (unfinalized, finalizable, finalized). Figure 2 shows all the possible states of an object, and
the valid transitions between those states (figure from [Gosling et al. 1996]).

The state describing the reachability of an object falls into one of three categories, these are:

� reachable: An object is reachable if it can potentially be accessed from any live thread.

� f-reachable: An object is f-reachable if it can be reached by a chain of references from some finaliz-
able object (possibly including itself if it is finalizable), and it is not reachable.

� unreachable: An object is unreachable if it is not reachable and it is not f-reachable.

The automatic invocation of the finalize method and the readiness of the object to have its finalize
method invoked is characterized by the finalization state of the object. There are three possible states:

� unfinalized: An object is unfinalized in it has not had its finalize method automatically invoke.

2



reachable reachablereachable

unfinalized finalizable finalized

f-reachable

finalized

f-reachablef-reachable

unfinalized finalizable

finalized

unreachableunreachable

unfinalized

A

B C D

E FG

H

I

J

K
L M N

O

Figure 2: The object state transitions for reachability and finalizability.

� finalizable: An object that has not had its finalize method automatically invoked, but the JVM may
eventually automatically invoke its finalizer.

� finalized: An object which has had its finalize method automatically invoked.

Figure 2 shows the possible state transitions. More specifically, the various transitions can occur
under the following situations:

A When an object is first created it is reachable and unfinalized.

B,C,D The object ceases to be referenced by any potential calculation but is f-reachable.

E,F The object ceases to be referenced by any potential calculation and is not f-reachable.

G An unfinalized object that is f-reachable can be promoted to f-reachable and finalizable by the JVM.

H An object which is not reachable from any object, but does have a finalize method, is promoted to
f-reachable and finalizable (enabling its finalize method to be invoked later).

I An object that is finalized and unreachable is no longer of any use and can be reclaimed.

J,K An object that is finalizable can have its finalize method run any time, at which point it becomes
reachable and finalized.

L,M,N An object that is f-reachable could at any time be made reachable again by some finalize method
executing and promoting the object to reachable.

O An object which is unreachable and does not have a finalize method defines is of no further use
and can be collected.

In general, once an object has ceased being reachable and it either has a finalize method, or it can be
reached from some f-reachable object, then it will slowly migrate across the diagram to the reachable
and finalized state and eventually it will be collected. Beyond this constraint it is generally not possible
to predict when a finalize method will be run; Java does not even guarantee the order in which finalize
methods are invoked.

2.3 Transactions, Garbage Collection and Persistent Java
The context for this discussion of transactions and Java finalizers is the development of orthogonally
persistent Java. As the concurrency control model of choice among persistent Java implementation
efforts, transactions [Härder and Reuter 1983] are important.

As a practical consequence of the ‘principles of persistence’ for orthogonally persistent systems
[Atkinson and Morrison 1995], persistence by reachability (PBR) is also important. Under PBR, the per-
sistence of an object is a function of its reachability from some persistent root (rather than being a function

3



of the object’s type, for example). Garbage collection is therefore central to the efficient implementation
of orthogonally persistent systems—objects not reachable from the persistent root can be reclaimed. The
implementation of PBR in the context of Java is well documented by Atkinson and Morrison [1995].

3 Transactions and finalize
Finalization is triggered by the act of severing a reference to some object so that the object ceases to be
reachable from some root. In an orthogonally persistent system such as PJama, all computation must
occur in the context of a transaction [Daynès et al. 1997], therefore a finalization ‘trigger’ will inevitably
occur within a transaction. This inevitability, the indeterminate temporal semantics of finalize , and the
stipulation that all computation must occur within transactional context raises difficult questions about
the semantics of finalize in the context of a transactional orthogonally persistent Java.

T1

Root

B

Root

BA

Figure 3: Example 1: Modified store

In the example illustrated in figure 3, an object that was previously held in the store (A) becomes
unreachable from any persistent root, and therefore finalizable (note that it is also unreachable from any
potential computation, including any current transaction). The sequence of events that perform this
transformation is encapsulated in transaction T1 (which reads the root object and then writes it back
having severed the link from the root to object A). As a result, object A is been made unreachable from
all persistent roots by T1. We note however, that object A retains a reference to object B.

Significantly, T1 has caused object A to become finalizable even though object A was not accessed as
part of the transaction. Consequentially the finalize method for object A must be run, with possible side
effects on other objects within the store (including object B, to which A retains a reference). However,
in general it is not possible to determine when the finalize method will be run and so it is not possible to
determine whether it will be executed within the scope of T1.

This problem of indeterminism can be characterized as a temporal conflict between the semantics of
transactions and those of the finalize method invocation. How is this situation dealt with? Does this mean
that the side effects of the transaction must be dealt with immediately? Or does it mean that the side
effects of the transaction can be postponed in some way? In the following section, some strategies for
dealing with this situation are explored.

4 Accommodating Transactions and finalize Methods
We now present two possible strategies for dealing with the temporal conflict between transactions and
finalize methods:

1. Immediate evaluation of all side effects (section 4.1).

2. A transactional finalize method (section 4.2).

4.1 Immediate Side Effect Evaluation
One solution to the temporal conflict is to require that the evaluation of any side effects that result from a
transaction be run as part of the transaction itself. While perhaps the most semantically elegant solution,
it depends on the difficult task of determining the transaction’s side effects. In the case of finalization,
this involves establishing whether the transaction has, through the severing of references, made some
object finalizable. It is not possible to determine this except by conducting a complete garbage collection
of the persistent space just prior to committing the transaction. This is therefore clearly an impractical
solution.

4



4.2 Transactional finalize Method
The alternative to executing finalize within the scope of the transaction that triggered it is to execute it
in some other transactional scope. This is not as unreasonable as it might at first seem. The ‘trigger’
for finalization is, after all, an act of omission rather than commission, and in general, it is not easy to
determine which object was the last to effect reachability of the candidate object. The question then
remains: In what context should the finalize be executed?

Transactions are introduced into the system to enable the maintenance of a stable and consistent
view of the store in the face of concurrency. Given this, and the fact that the JVM does not guarantee
when finalize methods will be invoked, we conclude that: If each of the finalize methods is executed
as a separate transaction then store consistency will be maintained without violating the operational
characteristics of the Java Virtual Machine.

Revisiting example 1, and accounting for the behavior of transactional finalization (as given above),
the effects of transaction T1 are shown in figure 4. At some point after T1 has completed, object A can be

T1

Root

BA

Root

BA

Figure 4: Example 1a: Modified store with transactional finalization

detected as having ceased being reachable from any potential computation and from any persistent root.
Subsequently the JVM may run a separate transaction to execute the finalize method of object A. This
transaction may perform some operations on object B (which is reachable from A). When the finalize
method returns, the finalize transaction attempts to commit its changes1. If the transaction commits
successfully then object A can be marked as having been finalized. As with any transaction, it may fail.
If the finalize transaction does fail, then the object will remain unfinalized and at some later stage the
JVM will again attempt to run that transaction. See section 4.3.2 for a discussion of abnormal finalize
methods.

4.3 Implications for Persistent Java Systems
The transactional finalize model may lead to changes in the structure of the JVM and store interaction,
and to the determination of which objects must be maintained in the store. The model requires two
garbage collection levels: one at the level of the JVM; the second at the level of the store2.

JVM and Store Interaction The store level garbage collection mechanism must be aware of and op-
erate according to the various states of the JVM collector (as presented in fig. 2). When the store level
garbage collector finds a finalizable object it must inform the JVM to execute a finalize transaction thread
for the object. This behavior infers two way communication between the JVM and store.

Redefining Reachability It is clear from example 1a (fig. 4), that object A must be retained in the
store pending the execution of its finalize method. Upon determining the unreachability of A, the store
level garbage collector can mark A as finalizable, and pass it to the JVM for the execution of the finalize
transaction.

Only retaining objects that were previously in the store, (even though they are no longer reachable
from a persistent root), is clearly not adequate. This is illustrated by example 2, (fig. 5).

The transaction T2 in figure 5 executes the following events:

� Object C is created and is made to reference object B, (object B is now reachable from object A).

� The reference from the root to A is removed.
1The finalize transaction may, of course, be an updating transaction. This should not be surprising, after all, the triggering

transaction must have also been an updating transaction.
2A persistent Java system could, in principle, be implemented with a single level of garbage collection

5



C

Root

A B

Root

A B
T2

Figure 5: Example 2: Additional Objects

In this example we again deal with the situation where object A is not reachable (from any object or
potential computation). It is clear that for object A to be able to execute its finalize method then it may
need to be able to access object C. Therefore object C must also be held in the store, even though neither
C nor A are reachable from the root.

Example 2 illustrates that the set of objects that must be maintained in the store should be extended
to include objects that are f-reachable from any existing objects within the store, including any objects
that were promoted to the store.

4.3.1 The context for finalize methods execution

The store level garbage collector will at some stage determine that object A should execute its finalize
method. Having detected which object is to have its finalize method invoked, the store must inform an
appropriate JVM to execute the finalize transaction.

Given the extension of persistence by reachability to include f-reachability, the execution of a finalize
method only ever involves information that is held in the store (see section 4.3). This being the case, the
implementer is given the choice of running the finalize transactions on the same JVM, a separate JVM or
even a dedicated JVM.

4.3.2 Abnormal finalize Methods

Although a mechanism for sensibly managing resources is provided, we have no guarantee that it will be
used reasonably—a programmer can easily write pathological code. This raises the following questions:
Under what conditions should a finalize transaction succeed or fail? How do we deal with the abnormal
cases?

To determine the conditions under which a finalize transaction should succeed or fail, we revise the
principal reason for introducing transactions, that is to maintain consistency of the stable image in the
face of concurrency. The basis for determining the success of a finalize transaction should therefore be
only whether a resource conflict exists, not whether the finalize code is sensible or otherwise.

An abnormal finalize transaction could still cause problems if it is not dealt with in some way. Two
examples of abnormal behavior are:

1. Calling System.exit.

2. Throwing an Exception.

If the transaction executing the finalize caught any possible exception from the finalize method being
called then this would further limit the damage that could be done. But this is still not adequate. One
mechanism introduced to restrict the environment in which programs (or applets), can run is the sand-
box. The same mechanism with different restrictions could be introduced to govern the finalize transac-
tion execution environment. Within the sand-box the System.exit method would terminate the finalize
method, thus finishing the finalize transaction. Other detrimental functions/methods can be dealt with
by the same sand-box.

5 Conclusion
This paper has identified a mismatch between the temporal semantics of transactions and the arbitrary
timing of Java finalize methods. The problem can be dealt with through the use of additional background

6



transactions that execute the finalize methods of objects that have become finalizable with respect to
the store. A consequence of the finalize transaction is that the notion of reachability so important to
orthogonal persistence must be extended to include f-reachability.

Bibliography
ATKINSON, M. P., DAYNÈS, L., JORDAN, M. J., PRINTEZIS, T., AND SPENCE, S. 1996. An orthogo-

nally persistent java. SIGMOD Record 25, 4 (Dec.), 86–75.

ATKINSON, M. P. AND MORRISON, R. 1995. Orthogonally persistent systems. The VLDB Journal 4, 3
(July), 319–402.

DAYNÈS, L., ATKINSON, M. P., AND VALDURIEZ, P. 1997. Customizable concurrency control for
Persistent Java. In S. JAJODIA AND L. KERSCHBER Eds., Advanced Transaction Models and Architectures,
Chapter 7. Kluwer.

GOSLING, J., JOY, B., AND STEEL, G. L., JR. 1996. The Java Language Specification. Addision Wesley.

HÄRDER, T. AND REUTER, A. 1983. Principles of transaction-oriented database recovery. ACM Com-
puting Surveys 15, 4 (Dec.), 287–317.

7


