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Abstract
Garbage-First is among today’s most widely used garbage
collectors. It is used in the HotSpot and OpenJDK virtual
machines, and shares algorithmic foundations with three
other important contemporary collectors: Shenandoah, C4,
and ZGC. However, the design of the core algorithms and the
performance tradeoffs they manifest have not been carefully
analyzed in the literature. In this work, we deconstruct the G1
algorithm and re-implement it from first principles. We ret-
rospectively develop a concurrent, region-based evacuating
collector, CRE, which captures the principal design elements
shared by G1, Shenandoah, C4, and ZGC. We then evaluate
the impact of each of the major elements of G1 on perfor-
mance, including pause time, remembered set footprint and
barrier overheads. We find that G1’s concurrent marking and
generational collection reduces the 95-percentile GC pauses
by 64% and 93% respectively. We find that the space overhead
of G1’s remembered sets is very low, typically under 1%. We
also independently measure the barriers used by G1 and find
that they have an overhead of around 12% with respect to
total performance. This analysis gives users and collector
designers insights into the garbage-first collector and the
other fixed-size region-based concurrent evacuating collec-
tors, which we hope will lead to better use of the collectors
and provoke future improvements.
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1 Introduction
Garbage-First [12], Shenandoah [15], C4 [35], and ZGC [22]
are fixed-sized region-based concurrent evacuating garbage
collectors that share a common ancestor in Lang andDupont’s
collector from 1987 [21]. However, the underlying relation-
ship among these collectors has not been well-identified
or explored. Instead, the algorithms are often presented as
independent monoliths rather than refinements and improve-
ments over a largely coherent preexisting family of collectors.
Ignorance of the underlying relationships can make collec-
tors harder to understand, mask substantive contributions,
and mislead the design of future collectors.
The G1 algorithm has some known pathologies. As an

example, Nguyen et al. [25] show that G1 can sometimes
consume as much as 50% of a Java program’s execution
time. Therefore deeper understanding of the collector’s al-
gorithmic roots is warranted. The absence of a coherent
deconstruction of the core algorithm has also meant that the
contribution of the various constituent parts of the collector,
as well as each of the enhancements and extensions has not
been systematically measured in isolation. These problems
inhibit the understanding of the algorithms both for end
users and garbage collection researchers, which is a loss,
given the importance of this family of collectors.
The key contributions of our work are a decomposition

of Garbage-First (G1); the retrospective development of a
concurrent, region-based evacuating collector, CRE which
embodies key design elements shared by G1, Shenandoah,
C4 and ZGC; and analysis of the tradeoffs inherent in G1’s
design. We highlight the structural relationship between G1
and other fixed-sized region-based concurrent evacuating
collectors and we explore those structural relationships in
the context of Lang and Dupont’s collector and CRE.

We produce a ground-up implementation using the origi-
nal design of G1 [12] and its current implementation [29] as
our guide. We decompose G1 into several key components.
We start by implementing a trivial fixed-sized region-based
stop-the-world evacuating collector (SIM) and then imple-
ment CRE, which adds concurrent tracing, before adding
other algorithmic elements, producing six collectors in all,
including non-generational and generational variants of G1.
Each collector is a refinement, allowing the contribution of
various algorithmic elements to be measured.

https://doi.org/10.1145/3381052.3381320
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Based on this first-principles implementation, we conduct
a performance analysis of each component of G1. These
analyses include the measurement of the GC pause time,
barrier overheads and remembered-set footprint.

Our performance evaluation shows that concurrent-marking
and generational collection separately contribute to a reduc-
tion of 64% and 93% respectively to the 95-percentile GC
pause time on the DaCapo benchmark suite. We measure
the average remembered-set space overhead at just 0.66%.
The write barrier used by G1 for concurrent marking has
an overhead of 5.5%. G1’s remembered-set barrier has an
overhead of 7.7%. When combined two barriers together, G1
has an overall barrier overhead of 12.4%.
The performance analysis of G1 and its components will

help users better understand the choices inherent in the
selection of particular algorithms and will help GC designers
better understand tradeoffs underpinning current designs.

2 Background and Related Work
We now briefly overview background work, including: Lang
and Dupont’s collector; CRE, a collector we synthesize to
capture design elements common to G1, Shenandoah, C4,
and ZGC; an overview of G1; and a brief discussion of each
of the other collectors.

2.1 Lang and Dupont’s Collector
In 1987, Lang and Dupont [21] described a collector that
incorporates ideas common to the family of collectors we
discuss here. Their collector addresses an important tension
between two canonical tracing collector designs of the time.
On the one hand, semi-space collectors [8, 14] collect the
heap by evacuating live objects into a new space, allowing
the space from which they came to be reclaimed entirely.
This has the advantage of avoiding fragmentation and main-
taining good locality, but it requires that half of the heap
be kept in reserve to account for the worst-case where all
objects survive a collection. Thus semi-space is very space
inefficient. On the other hand, mark-sweep collectors [24]
do not move any objects, and instead leave live objects in
place and scavenge dead objects, placing them on free lists
for subsequent reuse. However, since they do not move any
objects, mark-sweep collectors are subject to fragmentation.
Lang and Dupont achieve much of the benefit of semi-

space without needing to reserve half the heap. They do
this by dividing the heap into fixed-size regions, leaving one
empty region in reserve. At each collection they target one
of the live regions for evacuation and the remaining regions
are collected using mark-sweep. The collection uses a full
heap trace, marking objects in non-targeted regions, and
evacuating reachable target region objects into the reserved
region. Their approach reduces the amount of space held
in reserve from 1/2 to 1/N, where N is the number of fixed-
size regions. They take full advantage of the mark-sweep

algorithm by sweeping the non-target regions and placing
freed objects on free lists. The algorithm is thus a true hybrid
of the semi-space and mark-sweep algorithms.
Although this design breaks the tension between semi-

space and mark-sweep, the Lang and Dupont collector has a
notable shortcoming: every collection requires a trace of the
whole heap—it is not possible to only trace part of the heap.
Furthermore, although they discuss concurrent designs, they
do not implement a concurrent collector. Mark-sweep and
semi-space also suffer these shortcomings.

We refer to Lang and Dupont’s collector as L&D.

2.2 CRE: Concurrent Region-based Evacuating GC
We now describe a derivative of L&D, called CRE, which
we have synthesized to reflect key design elements of G1,
Shenandoah, C4 and ZGC.
CRE inherits two key design characteristics from L&D

and adds two more. It: (i) uses fixed-sized regions, (ii) uses a
(concurrent) full-heap trace to identify liveness, (iii) reclaims
space strictly through evacuation (unlike L&D), and (iv) pref-
erentially targets high-yield regions (unlike L&D). These
four design elements capture the foundation that G1,
Shenandoah, C4 and ZGC build upon.

Shortcomings of CRE include that: (i) it can only reclaim
space after a full heap trace (addressed by G1 and C4), (ii) it
must stop the world to perform evacuation (addressed by
Shenandoah, C4 and ZGC), and (iii) unlike L&D, it depends
entirely on evacuation to reclaim space (G1, Shenandoah, C4
and ZGC all share this trait).

2.3 Garbage First
In 2004, Detlefs et al. [12] developed the garbage-first collec-
tor, which is now widely known as ‘G1’. The collector has
subsequently become the default collector for Oracle’s JVM,
and is one of the most widely used garbage collectors.

G1 shares the characteristics of CRE outlined above. It mit-
igates CRE’s first shortcoming by supporting a generational
mode, whereby young objects can be collected on the basis
of remembered sets alone, foregoing the need for a full heap
trace. Like CRE, G1 performs its liveness trace concurrently,
but it does not perform evacuation concurrently.

As the algorithm’s name indicates, the capacity to collect
regions in any order introduces the possibility of preferen-
tially targeting for collection those regions that contain the
most garbage. Note that L&D can in principle also collect re-
gions in any order, but does not. Targeting garbage contrasts
with traditional generational garbage collectors [23, 36],
which collect the youngest objects first and can only col-
lect older objects when they also collect those younger than
them. The idea of targeting older objects follows a rich line
of prior work on age-based garbage collection [11, 34].

Like prior region-based collectors, such as the mature ob-
ject space collector (also known as the MOS, or the train



Deconstructing G1 VEE ’20, March 17, 2020, Lausanne, Switzerland

Table 1. Relationships between the fixed-sized single-level region collector described by Lang and Dupont [21], our simple
concurrent region-based evacuating collector, CRE, and the four collectors widely used today that share that design heritage.

L&D [21] CRE G1 [12] Shenandoah [15] C4 [35] ZGC [22]
Heap structure Single-Level, Fixed-Size, Region-Based
Primary Liveness Whole-Heap Trace
Reclamation Mixed Evacuation Only
Trace S.T.W. Concurrent SATB [40] Concurrent LVB [35]

Evacuation Stop-the-world
Concurrent

Brooks barrier [7]1
Concurrent LVB [35]

Generational GC Not supported Supported Not supported Supported Not supported

algorithm) [16], G1 uses remembered sets to track all cross-
region pointers. The remembered sets then serve as roots
when a region is independently collected; allowing the collec-
tor to update and forward the incoming references when it
moves objects within the region. Unlike MOS, G1, L&D, CRE
and each of the other collectors we address here require a full
heap trace to ensure completeness. By doing this, they sacri-
fice some of MOS’s incrementality but gain full flexibility in
collection order without compromising completeness.

In addition to ensuring correctness and completeness, G1’s
full heap trace allows it to accurately track the volume of
garbage in each region and thus preferentially target regions
that will yield the most garbage. Once the concurrent trace
is complete, G1 uses stop-the-world collection to perform
evacuation of a target set of regions. The impact of the stop-
the-world pause can be controlled to some extent by reducing
the number of regions targeted by a particular collection,
with a corresponding need to collect more frequently.

2.4 Shenandoah, C4, and ZGC
Shenandoah [15], C4 [35], and ZGC [22] are more recent
fixed-size region-based evacuating garbage collectors. Al-
though all of them share the four characteristics of CRE G1
enumerated in Section 2.2, each of them make substantial
and interesting innovations, mostly with respect efficiently
increasing concurrency. All of them improve over G1 by sup-
porting concurrent evacuation. C4, like G1, is generational,
while Shenandoah and ZGC are not. Despite the common
algorithmic foundation seen in CRE, each of these collec-
tors has significant innovations, and each of the published
descriptions naturally focus on these.

We identify the relationships between the four collectors,
L&D, and CRE in Table 1.
The first two rows of the table identify the characteris-

tics that all six collectors have in common. They all use
fixed-sized regions in a single-level hierarchy (in contrast
to hierarchical region-based collectors such as Immix [6]).
All rely on a full heap trace for correctness, in contrast to
region-based collectors such as MOS [16] which can inde-
pendently collect regions without a fully heap trace, and

region-based collectors such as RCImmix [32] which use
reference counting as the primary liveness criteria.
Aside from L&D, all of the collectors are strictly evacu-

ating, in contrast to region-based collectors such as [13],
and [6], which reclaim unused space from regions that are
not evacuated in addition to recovering evacuated regions.
(Those collectors allow bump-pointer allocation into ‘holes’
within regions that were not fully evacuated, as well as fully
recovering space from evacuated regions.)
Aside from L&D, they all use a concurrent trace for pri-

mary liveness.
The next two rows of the table identify key differences.

CRE and G1 perform evacuation in a stop-the-world pause,
while the other collectors perform evacuation concurrently.
CRE, G1 and the original Shenandoah use SATB to perform
their concurrent trace, while C4 and ZGC use a loaded value
barrier (LVB) to perform concurrent tracing and forward-
ing [35]. C4 builds directly upon the Pauseless GC [10]. ZGC
is similar to C4 although completely independently devel-
oped. The original Shenandoah algorithm used a Brooks-
style read barrier to implement concurrent copying.1

2.5 Evaluation of barrier overheads
Blackburn and Hosking [5] and Yang et al. [38] each eval-
uated a wide range of different read and write barriers on
JikesRVM, using theDaCapo benchmarks and the SPECjvm98
benchmarks. Among those evaluated, they measured the
overhead of a zone barrier, which G1 uses, and a bit stealing
read barrier, which should be a lower bound on C4’s LVB
barrier. Yang et al. [38]’s evaluation of the zone barrier uses
a generational collector with 32MB region size. Our eval-
uation uses a non-generational collector with 1MB region
size. Shenandoah has a command line option that removes
dependency on barriers for correctness. This mode allows
barriers to be selectively enabled and evaluated [9].

3 Implementation
We consider G1 in terms of two major phases: marking and
evacuation; and three key algorithms: concurrent marking,
1In April 2019, Shenandoah moved from a Brooks-style barrier to a Baker-
style barrier, along the lines of ZGC and C4 [17–20].
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Table 2.We implement and evaluate six collectors in the G1
family, starting with a very simple region collector (SIM),
adding features progressively to produce non-generational
and generational variants of G1 (G1 and G1G).

SIM CRE REM GEN G1 G1G
Region Collection §3.1 ✓ ✓ ✓ ✓ ✓ ✓
Concurrent §3.2 ✓ ✓ ✓
Remembered Sets §3.3 ✓ ✓ ✓ ✓
Generational §3.4 ✓ ✓
Pause Time Prediction §3.5 ✓ ✓

remembered-set-based evacuation, and generational collec-
tion. We re-implement G1 from scratch in JikesRVM [1],
using the Memory Management Toolkit (MMTk) [2].

Instead of building the collector as a monolith, we build G1
in a modular way based on these deconstructed components,
allowing us to better analyze and evaluate the collector and to
better understand the relationships among the G1 family of
collectors. As shown in Table 2, we start with implementing
a simple region-based collector and then add the features
step by step to build six collectors in total, the last two of
which amount to bottom-up re-implementations of existing,
well-known variations of G1.

The following sections describe each of the collectors.

3.1 SIM: A Simple Region-Based Collector
SIM, is a simple stop-the-world variant of CRE, and the
foundation on which we develop the other collectors.

Heap Structure and Allocation Policy The SIM heap,
like that of L&D, CRE, and G1, is divided into fixed-size
regions. The number of regions is a function of heap size
and the region size. OpenJDK’s implementation of G1 has a
target of 2048 regions, selecting a power of two region size
between 1MB from 1MB to 32MB depending the command-
line-specified heap size [26]. G1’s region size can also be set
directly via a command line option. We use a 1MB region,
consistent with G1 for heaps < 3GB. We evaluate the impact
of region size in Section 5.3. Like G1, our implementation
uses thread-local allocation buffers (TLABs) to allow fast, un-
synchronized allocation into regions. Each thread maintains
its own bump pointer into its TLAB, and once exhausted,
requests more space from a global resource. Consecutive
TLAB requests will be serviced by the same region until that
region is exhausted. If the heap usage reaches a pre-defined
ratio (90%), mutators are paused and the collector starts a
collection cycle. SIM collections are fully stop-the-world.

Marking Like G1, SIM determines liveness via a full heap
trace. Staring from roots, it performs a trace, marking objects
as live. Then some number of regions are selected for evacua-
tion and marked objects within them are copied out, yielding
free space. Following G1’s implementation, mark state is held
in a side bitmap, using one bit per word of allocated memory.

Unlike CRE and G1, SIM performs the marking phase using
a stop-the-world collection.

Collection Set Selection During the marking phase, the
collector calculates the space consumed by live objects in
each region. The collector uses this data to perform collection-
set selection. It sorts all regions in ascending order by their
occupancy. Then the collector creates a collection set start-
ing with the regions with the smallest live size and continues
while the volume of selected live objects is not larger than
the remaining available memory in the heap (into which the
objects will be copied). SIM, CRE and G1 perform collection
set selection while the mutators are stopped.

Evacuation and Reference Updating Finally, SIM evacu-
ates live objects from regions in the collection set. Unlike G1,
SIM’s evacuation phase is achieved by performing a (second)
stop-the-world full heap trace. This means that SIM does not
require any write barrier. Later, we use this simplification to
precisely measure the cost of the write barrier and its various
functional components, while remaining otherwise faithful
to the G1 algorithm.

Whenever the collector encounters a reference to an object
within a region in the collection set, it checks the referent’s
header to determine whether it has already been copied.
If the referent has not been copied, the collector copies it,
marks the old object’s header as copied, and leaves behind a
forwarding pointer indicating the location of the new copy. If
the collector encounters a reference whose referent has been
copied, it uses the forwarding pointer to fix the reference to
point to the new copy. At the end of this trace, all selected
regions have had their reachable contents evacuated and
pointers to them have been redirected. The selected regions
are thus empty and can be reclaimed for use by the mutator.
At the end of this phase, the collection is complete and

the mutator resumes.

3.2 CRE: Concurrent Marking
The CRE collector replaces SIM’s stop-the-world mark with
a concurrent marking phase. Like G1 and Shenandoah, CRE
uses the snapshot-at-the-beginning (SATB) algorithm to per-
form concurrent marking [40]. The intuition behind SATB
is simple. Once an object becomes garbage, it will remain
garbage. It is therefore correct to use a stale snapshot of the
heap state to identify garbage. The SATB algorithm works by
intercepting any attempt to overwrite references while the
SATB trace is in progress, ensuring that it sees a consistent
view of the now-stale snapshot. The overwritten reference
is included in the trace by marking its referent as live. The
algorithm thus simply requires a write barrier that captures
the old reference before it is overwritten and adds that refer-
ence to the trace. Objects allocated during the SATB trace
are considered live.
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1 @Inline

2 public void SATBBarrier(ObjectReference src ,

3 Address slot) {

4 if (barrierActive) {

5 ObjectReference old = slot.loadObjectReference ();

6 if (!old.isNull ()) satbbuf.insert(old);

7 }

8 }

Figure 1. The snapshot-at-the-beginning (SATB) barrier
used by G1 [12, 30]. When the barrier is enabled, for ev-
ery non-null reference that is overwritten, the barrier will
remember the object.

Initial Mark Pause The snapshot-at-the-beginning algo-
rithm starts with an initial mark pause which stops the execu-
tion of all the mutators. During this pause the collector only
scans the roots and marks all of the root-reachable objects.

ConcurrentMarking During concurrentmarking, themu-
tators resume and the collector marks objects concurrently.
Since the roots have already been scanned, the collector sim-
ply continues the full-heap tracing concurrently to mark all
reachable objects in the heap. The concurrent marking pro-
cess stops when either the full-heap tracing is finished or the
mutators exhaust memory. In the second case, since marking
is not yet completed, but mutator allocation cannot continue,
the mutators are paused and the collector completes the
collection in a stop-the-world marking phase.

Snapshot-At-The-Beginning Barrier Although the intu-
ition behind SATB is a snapshot of the whole heap, directly
taking a snapshot is not practical. Instead, SATB uses a write
barrier to preserve a virtual snapshot. Consider the execu-
tion of a field assignment obj.x = y. If obj.x contained the last
heap reference to the referent object, z, then z will become
disconnected from the heap. However, z could be held in a
root and subsequently reconnected to the heap. If the newly
referencing object had already been traced, then z would not
be marked and the trace would be incorrect. This situation
violates the snapshot-at-the-beginning principle. Each object
to which a reference is overwritten during the collection
must be conservatively marked as live since it may have
been reachable from the roots. To deal with this problem, the
SATB algorithm introduces a write barrier; a code fragment
inserted before each pointer update, including each putfield

or aastore bytecode. Figure 1 shows the write barrier used
by G1 and our implementations. When the barrier is enabled
(barrierActive), for all non-null overwritten references, the
barrier remembers this object by inserting it into a buffer.
The trace terminates once all entries have been consumed.
We additionally implemented a conditional variant of the
barrier which avoids duplicate satbbuf entries by using a bit
in the object’s header to record whether it has been added.

Final mark pause During the final marking pause, the
collector drains the SATB buffer and marks all remaining ob-
jects. By using the SATB algorithm, the collector can perform
most of the marking work concurrently, greatly reducing GC
pause times. The SATB algorithm is inherently conservative
since it can only reclaim objects that were dead at the start
of the collection, leading to floating garbage.

3.3 REM: Remembered sets
The next refinement to the base algorithm is to avoid a full
heap trace during the reference updating phase by using
remembered sets. G1 uses remembered sets of card tables
to track references into regions [12]. For each region T , it
maintains a set of card tables.

Classically, a card table is a data structure that for a heap
divided into power-of-two-sized cards, records for each card
whether the card should be scanned for potentially interest-
ing pointers [37] at the next minor collection. In the simple
implementation, each time a pointer is written, a bit corre-
sponding to the card on which the pointer resides is set.

G1’s implementation is more interesting. For each region
T , G1 maintains a set of card tables—one card table for each
region S that contains pointers intoT . Each card table in the
set is a bit map, with one bit for each 2n (512) byte card within
the 2m (1M) byte region, S . If a bit is set, it indicates that the
corresponding card in S at some point contained an incoming
reference into the regionT , so must be checked at collection
time. Additionally, as an optimization, G1 maintains a global
card table which it uses to filter the work of processing
pointer updates into its per-region sets of card tables.
This differs from classic card marking [37], which keeps

a single global card table, and differs from classic remem-
bered sets which remember pointers into regions (rather than
remembering a card table for each region S that contains
incoming pointers to the region T ). We follow the original
G1 design faithfully in each of the collectors that use remem-
bered sets (REM, GEN, G1, and G1G).

Figure 2 shows the data structure used by the remembered
sets. A remembered set consists of a list of PerRegionTables.
Each PerRegionTable is a bitmap responsible for remembering
cards within a specific foreign region.

Remembered Set Barrier The remembered set barrier is
additional to the write barrier presented in Section 3.2 (Fig-
ure 1). Detlefs et al. [12] inject the SATB barrier before the
pointer store operation, and inject the remembered set bar-
rier after the pointer store barrier. Figure 3 demonstrates the
remembered set barrier described by Detlefs et al. [12], the
current implementation in OpenJDK, and our implementa-
tion in JikesRVM. Note that unlike the classic unconditional
card marking barrier [37] this barrier is conditional, filtering
first with a zone barrier [34, 38] and then with a check of the
global card table. For each object reference field assignment
obj.x = y, the barrier checks whether obj and y belong to
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Remembered set

Region not in 
collection set, splitting 

into cards

Region in collection 
set

Figure 2. The remembered set data structure used by G1 and
REM. Each collection region (right) has a remembered set of
cards which may contain pointers into that region [12].

different regions. The barrier uses a single XOR operation to
check for such cross-region pointers. When a cross-region
pointer is created, the barrier tries to mark the global card
containing the source (obj) as dirty. If the global card has
already been marked as dirty, the barrier does nothing more.
Otherwise, the barrier pushes the address of the card to a lo-
cal dirtyCardBuffer. The local dirty card buffer has a fixed size
of 256 entries. When this buffer is filled, the barrier pushes
the buffer to a global filledRSbuffers queue [12].

Note that while OpenJDK’s compiler implements the bar-
rier as depicted in Figure 1(b), OpenJDK’s interpreter imple-
ments a variation: Instead of filtering cross-region pointers,
this variant simply jumps to the slow path and performs
conditional card marking [29]. We implement and evaluate
both variations.

Concurrent Remset Refinement When the size of the
global filledRSbuffers queue reaches a threshold of five dirty-

CardBuffers, a remset refinement thread is started to con-
currently consume the global filledRSbuffers and process
each dirtyCardBuffer. The refinement thread processes each
of the cards in each dirtyCardBuffer. (Because the filtering
performed through the global card table is unsynchronized,
duplicate dirtyCardBuffer entries are possible.) If the card is
marked in the global card table, the thread clears the card’s
mark, and then linearly scans the card for cross-region point-
ers and for each of themmarks the card in the corresponding
card table within the remembered-set.

Hot Card Processing Throughout the continuous process
of concurrent remset refinement, some cards may be en-
queued and scanned multiple times. To avoid redundant
scanning, a hotness value is assigned to each card. Every
scan of a card increments its hotness value. When the hot-
ness value for a card exceeds a threshold (the default is four),

this card is considered a “hot card”. Hot cards are pushed
into a separate hot card queue and the processing of all hot
cards is delayed until the start of the evacuation phase.

GC Evacuation Phase By using remembered sets, the col-
lector can evacuate objects from any region or set of regions
without performing full-heap tracing. During the evacua-
tion phase, the collector scans root objects, linearly scans
the cards in remembered-sets, and recursively evacuates
all reachable objects within the selection set. All external
pointers pointing into the collection-set are guaranteed to
be recorded in the remembered sets or the root set. The GC
pause time due to evacuation can thus be controlled.

3.4 GEN: Generational Collection
GEN supports generational collection, following the design
of G1. It exploits the weak generational hypothesis that says
that newly allocated objects die quickly [23, 36]. The collec-
tor classifies the regions into three generations: the eden,
survivor, and old generations. Regions within the eden gen-
eration contain objects that were allocated since the last
collection. Regions within the survivor generation contain
objects that survived one collection since allocation. Regions
within the old generation contain objects that survived col-
lections of the survivor generation. During allocation, newly
allocated regions are marked as eden regions. When the ratio
of the total number of eden and survivor regions exceeds a
newSizeRatio threshold, a young collection is triggered, which
targets (only) regions in the eden and survivor generations.
During a young collection, live objects in eden regions are
evacuated to survivor regions and objects in survivor regions
are evacuated to old regions.
Young collections simply evacuate objects, and do no

global marking work. Instead of determining the liveness of
objects by marking, during young collections the collector
considers all objects that are not in the collection set to be
live. The collector simply starts from the root objects and
remembered-sets to recursively evacuate all of the reachable
objects in the collection set.
When the committed memory in the heap exceeds some

threshold (the default is 45%), generational G1 (and GEN)
will initiate a concurrent marking phase for a mixed collec-
tion. When the available memory is almost exhausted during
concurrent marking, G1 switches to a stop-the-world full
GC to continue the unfinished collection work (GEN does
the same).

3.5 Pause Time Predictor
Following the design of G1, we add a mechanism to predict
and control the GC pause time. The predictor is based on
an assumption that the pause time is (approximately) pro-
portional to the size of the collection-set, so controlling the
size of the collection-set will change the collector pause time.
With a concurrent marking phase, the predictor is principally
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1 rTmp := rX XOR rY

2 rTmp := rTmp >> LogOfHeapRegionSize

3 // Below is a conditional move instr
4 rTmp := (rY == NULL) then 0 else rTmp

5 if (rTmp == 0) goto filtered

6 call rs_enqueue(rX)

7 filtered:

(a) Detlefs et al. [12].

1 if (new_val == NULL) return

2 xor_res = addr XOR new_val

3 xor_shift_res =

4 xor_res >> LogOfHeapRegionSize

5 if (xor_shift_res != NULL)

6 goto slow_path

7 return

(b) OpenJDK[27, 28]

1 @Inline

2 void remsetBarrier(

3 ObjectReference src , Address slot ,

4 ObjectReference ref) {

5 if (!(src.xor(ref).rshl(LOG_REGION ). isZero ())) {

6 markAndEnqueueCard(src);

7 }

8 }

(c) Our implementation

Figure 3. Three versions of the fast path of the remembered set barrier used by G1. The first is verbatim from the original
article [12]. The second is pseudo-code reflecting the current OpenJDK implementation [27, 28]. The last is our implementation.

concerned with controlling the pause time of the stop-the-
world evacuation phase. The task of these phases are fixed:
dirty card refinement, linear scan of remembered-set cards
and object evacuation.
We implement the Detlefs et al. [12] prediction equation

for our pause time prediction:

TCS = Tf ixed +Tcard × Ndir tyCard

+
∑
r ∈CS

(Tr s card × rsSize(r ) +Tcopy × liveBytes(r ))

Where
TCS is the total predicted pause time
Tf ixed is the time of all extra work involved during the
GC pause
Tcard is the time for linear scanning a card for remem-
bered set refinements
Ndir tyCard is the number of dirty cards that have to be
processed before evacuation
Tr s card is the time to linearly scan a card in the remembered-
set for evacuation
rsSize(r ) is the number of cards in the remembered-set of
region r
Tcopy is the time for evacuating a byte
liveBytes(r ) is the total live bytes for evacuation

By examining the remembered-sets and using the pause
time prediction model at the start of each GC cycle, the
collector can choose the size of the collection-set to meet a
user-defined soft pause-time goal.

Pause time prediction for young GCs G1 modifies the
pause time prediction model to support generational collec-
tion, and we do the same for GEN. For young collections,
following OpenJDK’s implementation [31], the predictor es-
timates the remembered set size, dirty cards and surviving
bytes for each nursery region. Then the predictor controls
the size of the young generation (young regions + survivor
regions), based on the previously estimated data and the
formula discussed above. For mixed collections, just as in
non-generation G1, the predictor still controls the collection-
set size to meet the pause time goal, as discussed above. For

full collections, the collector does not try to meet the pause
time goal and always collects as many regions as possible.

4 Evaluation
We measure the performance of G1 using our JikesRVM [1]
implementation, considering three key metrics: remembered
set footprint, GC pause time, and barrier overhead.

4.1 Methodology
We now describe the methodology used throughout our eval-
uations.

Benchmarks We use 19 benchmarks from the DaCapo [3]
and SPECjvm98 [33] suites as well as the pjbb2005 bench-
mark [4]. We omit some of the DaCapo benchmarks because
they do not run on JikesRVM.

Operating System and Hardware All of our experiments
are run on machines with identical software configurations,
each running Ubuntu 18.04.2 LTS (Linux 4.15.0). We ran all
experiments on an Intel i7-6700k (Skylake) four-core proces-
sor running at 4GHz with a 8MB LLC and 16GB of DDR4
RAM. To assess microarchitecture sensitivity, we also ran
our barrier experiments on an Intel Xeon E3-1270 (Sandy
Bridge) four-core processor running at 3.5 GHz with an 8MB
LLC and 4GB of DDR3 DRAM.

JVM and Replay Methodology We base our implemen-
tations on JikesRVM at commit 087d300e4 (February 2018).
Although JikesRVM only supports a 32-bit address space, we
established that we could run with usable heap sizes up to
2GB. We use JikesRVM’s warmup replay methodology as re-
fined by Yang et al. [38], to remove the non-determinism from
the adaptive optimization system. Before conducting the fi-
nal evaluations, we run each benchmark 10 times and collect
run-time compiler optimization profiles from the fastest in-
vocation. When we perform the final evaluation, we first
execute each benchmark once, unoptimized, to resolve all
the classes and warm up the JVM. Then we apply optimiza-
tions according to the profile gathered off line, before starting
a second iteration of the benchmark, which we measure. The
warmup replay method keeps the uncertainty of JikesRVM’s
compiler and optimizer to a minimum, and ensures that
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optimizations are aggressively and uniformly applied. We
evaluate each configuration 20 times (invocations) and report
the min, max and average for each measurement.

4.2 GC Pause Time
We evaluate GC pause time for several variants of the col-
lectors. The complexity of the G1 implementation, which
includes concurrent helper threads, makes it difficult to break
down the pause-time impact of every element of the collector
design. Here we measure the pause time for the following
four collectors:

• SIM: Stop-the-world marking + no remsets - non gen-
erational

• CRE: Concurrent marking + no remsets - non genera-
tional

• REM: Stop-the-world marking + remsets - non gener-
ational

• GEN: Stop-the-world marking + remsets + genera-
tional (fixed 15% nursery ratio)

G1’s pause time prediction algorithm always attempts to
control the GC pause time to meet a pre-defined pause time
goal. Here, we turn the pause time predictor off to expose
the impact of the underlying GC on pause time, in isolation.
For each benchmark, we collect the GC pause time data

for each mutator thread for four different heap sizes, from
small to large. Note that we use the same set of fixed heap
sizes for all benchmarks because the elements we evaluate
are affected by absolute heap size rather than benchmark-
specific, relative heap size. To measure latency, we attach a
high resolution timer to each mutator to record the duration
between when the mutator starts waiting for a collection
and when it resumes after collection. We log the times and
analyze them after the benchmark has completed. We sum-
marize the results to report the median, average, maximum
and 95%-percentile GC pause times.

4.3 Remembered Set Footprint
As stated in Section 3.3, the remembered set data structurewe
implement follows the original G1 design. Here we evaluate
the remembered set footprint and compare the results from
the original G1 GC paper [12]. Note that the worst-case space
overhead has a quadratic complexity with respect to the total
region count within the heap, since each region maintains a
remembered set of card tables, one for each referring region.

We record the peak footprint value for each GC cycle. The
highest space overhead happens after all the dirty cards are
processed, before the evacuation phase of a GC. At this point,
no card is marked as dirty, thus the remembered-set reaches
its largest overhead within the current GC cycle to remember
all necessary cards.

We define the remset footprint ratio as the ratio of the
memory allocated for remembered sets versus the total com-
mitted memory at a specific execution point. This reflects
the proportion of the heap that remembered sets consume.

Remset footprint ratio =
Committed memory for remsets

Total committed memory
× 100%

Note that G1 has a remembered set for each region. Also,
the remembered set size for each region depends on the num-
ber of regions that contain pointers into the target region.
Such a remembered set structure means that different region
sizes may significantly affect the remembered set footprint.
Therefore, we also evaluate the remembered set footprint for
different region sizes, ranging from 64KB to 8MB, to analyze
the impact of region size on remembered set footprint.

4.4 Barrier overhead
We measure both barriers used by G1, using the method
introduced by Yang et al. [39]. We use SIM to measure these
barriers. We do this for two reasons. First, following Yang
et al. [39]’s method, we choose this collector because al-
though it shares structural and algorithmic elements with
G1, it does not require any barriers, which allows us to add
and remove the barriers without affecting the correctness
of the program. Second, this collector has no concurrent
helper threads (such as the marking thread and remset re-
finement thread), so we can measure the barrier overheads in
isolation, without interference from these other sources. We
apply each of the barriers to SIM, and compare the mutator
time to SIM without the barriers. This approach is similar to
the one outlined for Shenandoah [9].

SATB Barrier This barrier is used for concurrent trac-
ing. It first checks the barrierActive flag, loads the to-be-
overwritten value, and if non-null, unconditionally enqueues
it to a thread-local SATB buffer [30] (We call it Uncondi-
tional SATB Barrier). Note that this barrier can result in
duplicate SATB buffer entries. We considered and evaluated
a variation of the SATB barrier (theConditional SATBBar-
rier) that checks whether the to-be-overwritten value has
already been enqueued (via atomic test and set of a logging
bit in the header), and if so avoids enqueuing a duplicate.

Remset Barrier The fast path of the remembered set bar-
rier uses an XOR operation to filter out intra-region pointers
(§3.3 and Figure 3). The slow path checks to global card table
and if unmarked, it pushes the address of the relevant card
to the dirtyRSBuffer. For this measurement, we modify the
barrier so that it never triggers a concurrent remset refine-
ment, which would confound the measurement and is not
part of the barrier itself.

Unfiltered Remset barrier In OpenJDK’s implementaton
of G1, the interpreter uses the card-marking barrier without
the XOR [29] filter. We build a separate GC to measure the
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Figure 4. Collection count (top), collection time, mutator time, and total time (bottom) for SIM, normalized to semi-space [8, 14].
SIM strips away concurrency and remembered sets, but retains the core region collection algorithm of G1. Performance is
evaluated at 2.5× the minimum heap size. SIM’s reduction in number of collections is offset by more expensive collections.

unfiltered remset barrier overhead and compare it with the
(default) filtered barrier.

Combined barriers We also combine the SATB and rem-
set barriers to measure the overall barrier overhead of G1’s
barriers.
For the barrier evaluations, we use both Sandy Bridge and
Skylake microarchitectures. We limit the number of proces-
sors to one to reduce the uncertainty caused by CPU task
scheduling. We report the mutator time only, normalizing to
the base case with no barrier. We also evaluate the impact
on the zone barrier overhead of varying region sizes.

5 Results
We start with an evaluation of the SIM collector, which is the
most basic foundation of the G1 design. We then report and
analyze the three key dimensions of the G1 design: pause
time, remembered set footprint, and barrier overheads.

5.1 The Simple Region-Based Collector
Figure 4 shows the performance of the SIM collector, com-
pared to a semi-space collector, which is the canonical evacu-
ating garbage collection algorithm [8, 14], and thus the most
basic point of comparison for a simple copying algorithm
such as SIM. Recall that SIM has all of the fundamental el-
ements of G1, but strips away concurrency and performs a
full-heap evacuating trace rather than using remembered
sets. This evaluation thus exposes the fundamental costs of
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Conc. Pause-time Mean Median 95% Max
Mark Remset Gen Predictor 256 645 1125 1696 256 645 1125 1696 256 645 1125 1696 256 645 1125 1696

SIM 34 61 76 88 29 41 69 93 61 153 189 212 75 356 201 224
CRE ✓ 5 11 11 13 1 3 3 4 22 95 111 120 49 360 348 372
REM ✓ 43 91 114 142 37 78 98 133 73 210 290 402 102 327 338 411
GEN ✓ ✓ 7 10 10 10 6 7 7 7 16 33 28 27 70 87 174 246
G1 ✓ ✓ ✓ 4 5 5 7 1 1 1 2 15 22 29 42 114 161 205 320
G1G ✓ ✓ ✓ ✓ 4 5 13 16 2 3 7 8 14 14 59 59 27 52 137 116

Table 3. Pause times in milliseconds for four variants of G1 collectors we construct, measured over 20 invocations of nineteen
benchmarks and reported with respect to four heap sizes. The pause-time goal for G1 and G1G collector is set to 40ms.

such region-based collectors, which are otherwise hard to
measure because they are performed concurrently.

We trigger the SIM collection when the heap is over 90%
full. Figure 4 shows a geomean 48% decrease in number of
collections but a 14.3% increase in collection time compared
to semi-space. The sharp reduction in number of collections
is because SIM does not need to hold half the heap in re-
serve. This is more than outweighed by more the inherent
overheads associated with tracing through each live object
twice: once for the initial mark, and again for evacuation,
leading to a net increase in total collection time. This ob-
servation is important because while much of this overhead
can be obscured by concurrent tracing, it is inherent to all
collectors we study here. On the other hand, the mutator per-
formance of SIM is better than semi-space, resulting in a net
performance advantage. The reason for the better mutator
performance is better locality. SIM has slightly better last-
level cache mutator performance and 10% better L1D cache
mutator performance (not shown). While both collectors use
a bump pointer allocator, each time they collect, they move
objects and displace hot data from the cache. Not only does
semi-space perform nearly twice as many collections, but it
also copies all objects at every collection, which is substan-
tially more disruptive than SIM, which only moves about
10% of the objects at any collection. SIM leaves objects in
their allocation order for longer than semi-space.

5.2 GC Pause Time
Table 3 shows our evaluation of six collector variants with re-
spect to pause times. As discussed in §4.2, the pause time pre-
dictor is not implemented in the first four collectors, which
increases determinism and exposes the underlying behavior
of the collectors. G1 and G1G both have the pause time pre-
dictor enabled with a pause time goal of 40ms. We perform
the evaluation on four logarithmically increasing heap sizes:
256MB, 645MB, 1125MB and 1696MB. Note that each data
point in the table corresponds to a statistic with respect to
20 invocations of all nineteen benchmarks. We produce each
data point by concatenating the pause time data from all
20 invocations of all nineteen benchmarks, and taking the
relevant statistic.
First, we note that the pause times generally grow with

heap size. This is explained in the case of SIM,REM, andGEN
because they trace the entire heap at each stop-the-world
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Figure 5. Remembered set footprint for non-generational G1
(REM), for four heap sizes, as a percentage of heap size. This
shows the percentage of memory used for the remembered
sets versus total committed memory. Most benchmarks use
under 0.6% of the heap. pjbb2005 has the highest footprint,
but remains within 1.5%. jython is the next highest footprint
benchmark, at around 0.7%.

collection. CRE does not, but it performs evacuation in the
stop-the-world phase, which is also heap size-dependent. By
comparing SIM and CRE, we see that concurrent marking
reduces the 95-percentile pause time by around 41%–64%
on four measured heap sizes. Unsurprisingly, the results
highlight the importance of concurrent tracing in reducing
pause times.
However, the results for SIM and REM show that using

remembered sets for evacuation instead of full-heap tracing
increases the 95-percentile pause time by 20%, 37%, 53%, and
90% respectively on four measured heap sizes. The remem-
bered set scanning overhead is proportional to the heap size.
Note that these collectors only perform collection when the
heap is over 90% full and always collect as many regions as
possible. This result highlights that the overhead of remem-
bered set scanning can be significant, and will be exposed
if too many regions are collected. These results motivate
generational collection and avoiding full GCs.

By comparing REM andGEN, we see a 95-percentile pause
time reduction by 78%, 84%, 90%, and 93% respectively on
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Figure 6. Remembered-set footprint for GEN and REM.
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Figure 7. Remembered-set footprint for REM as a function of region size. At 64 KB, the overhead is so high that pjbb2005 does
not run to completion.

the four measured heap sizes simply due to the introduction
of a generational policy. We also note that as the heap size
grows, the overhead of full GC remembered set scanning
increases, and the collector will benefit (with respect to GC
pause time) by performing generational collection.
The last two rows of Table 3 reveal that with the pause-

time prediction feature turned on, both G1 and G1G attempt
to control the pause time within the pre-defined 40ms pause-
time goal. Both collectors do well with respect to mean and
median pauses, and with three exceptions (42ms, 59ms,
59ms) stay within their goal at the 95th percentile. How-
ever, their maximum pauses all exceed the goal, and in the
case of G1, its maximum pauses are the worst of the six
collectors studied at the smallest heap size. Some of this is
due to remembered set processing (which is performed in a
stop-the-world setting), also seen in the results for REM.

5.3 Remembered Set Footprint
First, we measure the footprint on the REM and GEN collec-
tors, fixing the nursery size for GEN at 10%, 20% and 30%.
As shown in Figure 6, all four scenarios have geomean foot-
prints of around 0.6%. For generational G1, the footprint
increases slightly as the nursery size ratio increases. In our
measurements, the lowest geomean footprint (0.61%) occurs
when the nursery ratio is 10%. REM has the highest overhead
of 0.64%. This result highlights the space efficiency of G1’s
remembered set design at the heap sizes we evaluate. Note
that the quadratic nature of remsets means that the footprint
may grow considerably at heap sizes that are significantly
larger than the ones we evaluate.

Next we evaluate the impact of heap size on remembered
set footprint. Figure 5 shows the footprint of remembered
sets as a function of heap size for each benchmark for REM.
The region size is fixed to 1MB. All but two benchmarks have
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overheads under 0.7%. The highest among them is pjbb2005
with a peak overhead of just 3.1%. The remembered set foot-
print does not have notable increase as the heap size in-
creases.

Region size and remembered-set footprint In Figure 7
we evaluate the impact of region size on remembered set size,
for regions ranging from 64KB to 8MB. The impact of region
size is dramatic, with the footprint decreasing exponentially
to insignificantly small numbers. The remset overhead is so
high at small region sizes that the 64 KB region size failed to
run to completion on pjbb2005.

5.4 Barrier Overheads
Figure 8 and Table 4 evaluate the overheads of four different
barriers, compared to the SIM collector with no barriers. In
each case, the only change is the introduction of the barrier
— the collector performs identically in each case. Since the
collector behavior is unchanged, and we are concerned only
with the barrier overhead, we only present mutator overhead
in these results. The graph shows mutator time normalized
to the time of the base case with no barriers. The top graph
uses a recent Skylake microarchitecture, while the bottom
uses an older Sandy Bridge machine. We use two microarchi-
tectures because prior work has demonstrated that barrier
performance can be sensitive to microarchitecture [38]. The
overheads in Figure 8 are slightly higher than those observed
on the Skylake machine.

The SATB barrier results show that the conditional SATB
barrier we propose has a measurable advantage compared to
unconditional SATB barrier, which is used by OpenJDK’s G1.
The advantage is likely to be greater when the whole system
is measured because the conditional barrier generates fewer
SATB entries and thus less SATB tracing work.

Comparing the filtered and unfiltered remset barriers (7.7%
v 10.7%), it is clear that filtering out intra-region pointers with
the XOR is effective. We also evaluated the remset barrier
overhead as a function of region size, from 64KB to 8MB.We
saw no significant difference in terms of the barrier overhead
(not shown).

The overhead results show that the cost of the combined
barrier (12.4%) is higher than the sum of the parts (3.4% +
7.7%). We measured the L1 instruction cache miss rate of all
of the measured barriers, normalized to the base case with no
barrier. The results show a high instruction cache miss rate
for both the unconditional SATB Barrier and the combined
barrier, compared to other barriers, which is consistent with
these barriers having significantly larger fast paths. This
likely explains the discrepancy between the sum and the
parts we see here.

6 Threats to Validity
The key contribution of our work is based on a methodology
of deconstruction. This approach allows insight into the

Percent Overhead / SIM (no barriers)
Skylake Sandy Bridge

Time L1I Miss Time L1I Miss
Conditional SATB 3.4 5.4 4.0 7.7
Unconditional SATB 5.5 13.9 6.9 20.9
Remset 7.7 9.6 9.3 12.4
Unfiltered Remset 10.7 4.5 12.2 12.3
Remset + Uncond. SATB 12.4 26.5 14.0 31.3

Table 4. Mutator overheads for barriers, in time and L1I
misses, relative to SIM, the base case with no barriers. Ge-
omean of 19 benchmarks. Results shown as a percentage.

underlying algorithms, but comes with methodological risks
and threats to validity of our findings.

First, our re-construction of G1 is built uponMMTk [2] and
Jikes RVM [1], which provides us with a modular, performant
GC framework ideal for such a study. Other GC frameworks
are not readily amenable to such studies, as evidenced by
the absence of prior studies of this kind. However, the major
drawbacks of using Jikes RVM are that it only supports 32-bit
machines with up to 2GB heap sizes, and only supports up
to Java 1.6 (due to its use of GNU Classpath).
Second, no matter how careful, any reconstruction of a

nearly-two-decademature production systemmay not reflect
every nuanced optimization both in the algorithm itself and
in the runtime’s adaptation to that algorithm (particularly
the compiler).

We thus identify five major threats to the validity of find-
ings reported here:

• The behavior of G1 on 64-bit machines and large heap
sizes remains unexplored by our work. A 64-bit plat-
formmay impact tradeoffs in barriers and remembered
set design due to lower pointer density (unless com-
pressed pointers are used). Larger heap sizes would
allow exploration of the scalability of the family of
algorithms, particularly with respect to pause times.

• We only evaluate the remembered set footprint with a
maximum region size of 1MB with modest heap sizes
(< 2GB), so have not considered the case of very large
heaps with large numbers of regions. Instead, we use
small region sizes (64 KB to 512KB) to increase the
number of regions.

• We can only perform our measurements using rela-
tively outdated benchmarks that compile on Java 1.6.

• Although our implementation is faithful to the original
G1 algorithm and the key algorithmic features present
in the implementation within OpenJDK today, further
maturation of our implementation will inevitably af-
fect performance.

• Our study does not attempt to compare among the
various production collectors, such as G1, Shenandoah,
C4 and ZGC. Each of those collectors is highly tuned,
and is constantly refined. A study of the relative merits
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Figure 8. Barrier overheads for Skylake (top) and Sandy Bridge (bottom) microarchitectures.

these collector implementations is beyond the scope
of this paper.

7 Conclusion
We explore the family of fixed-sized region-based concurrent
evacuating garbage collectors by deconstructing the design
and implementation of G1 and showing its relationship to
other contemporary collectors. We synthesize a collector,
CRE, reflecting an algorithmic foundation common to G1,
Shenandoah and ZGC. We implement six variations of the
most simple underlying region-based collector, SIM, offering
insight into the various tradeoffs inherent to the design of
G1. We identify the overheads associated with the collection
strategy employed by G1, and measure the overheads of its
write barriers and remembered sets.

We ground our evaluation with a study of an absolutely
minimal fixed-size region-based evacuating collector, SIM,
and identify its fundamental advantages and costs compared
to the most simple of copying collectors, semi-space.We then
build and analyze region-based collectors of incrementally
greater sophistication, finishing with two standard varia-
tions on G1. We illustrate how each of these design steps
contributes to the performance of G1 in terms of through put

and pause time. Remembered sets are core to the design of
G1, so we conduct a detailed analysis of the space overheads
associated with remembered sets (they are very low), and
how those overheads grow as region size shrinks. We also
evaluate the overheads of each of the barriers used to sup-
port G1, revealing how key aspects of the algorithm impact
mutator performance.
Our hope is that these insights will inform those using

such collectors and those designing the next generation of
algorithms.
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