
Distilling the Real Cost of
Production Garbage Collectors

Zixian Cai
Australian National University

zixian.cai@anu.edu.au

Stephen M. Blackburn
Australian National University, Google

steveblackburn@google.com

Michael D. Bond
Ohio State University

mikebond@cse.ohio-state.edu

Martin Maas
Google

mmaas@google.com

Abstract—Despite the long history of garbage collection (GC)
and its prevalence in modern programming languages, there is
surprisingly little clarity about its true cost. Without understand-
ing their cost, crucial tradeoffs made by garbage collectors (GCs)
go unnoticed. This can lead to misguided design constraints and
evaluation criteria used by GC researchers and users, hindering
the development of high-performance, low-cost GCs.

In this paper, we develop a methodology that allows us
to empirically estimate the cost of GC for any given set
of metrics. This fundamental quantification has eluded the
research community, even when using modern, well-established
methodologies. By distilling out the explicitly identifiable GC
cost, we estimate the intrinsic application execution cost using
different GCs. The minimum distilled cost forms a baseline.
Subtracting this baseline from the total execution costs, we can
then place an empirical lower bound on the absolute costs of
different GCs. Using this methodology, we study five production
GCs in OpenJDK 17, a high-performance Java runtime. We
measure the cost of these collectors, and expose their respective
key performance tradeoffs.

We find that with a modestly sized heap, production GCs
incur substantial overheads across a diverse suite of modern
benchmarks, spending at least 7–82 % more wall-clock time and
6–92 % more CPU cycles relative to the baseline cost. We show
that these costs can be masked by concurrency and generous
provisioning of memory/compute. In addition, we find that newer
low-pause GCs are significantly more expensive than older GCs,
and, surprisingly, sometimes deliver worse application latency
than stop-the-world GCs.

Our findings reaffirm that GC is by no means a solved
problem and that a low-cost, low-latency GC remains elusive. We
recommend adopting the distillation methodology together with a
wider range of cost metrics for future GC evaluations. This will
not only help the community more comprehensively understand
the performance characteristics of different GCs, but also reveal
opportunities for future GC optimizations.

Index Terms—garbage collection, OpenJDK

I. INTRODUCTION

Garbage collection (GC) is ubiquitous in software systems.
Managed languages, such as C#, Java, and JavaScript, continue
to grow in popularity due to their productivity and safety
benefits, which are in part provided by GC. On servers, many
widely used web services, such as Twitter, GitHub, Shopify,

We thank the anonymous reviewers and Ben Titzer for their detailed
feedback and insightful suggestions for improving the paper. This material is
based upon work supported by the Australian Research Council under Grant
No. DP190103367 and National Science Foundation under Grant No. CSR-
2106117. Zixian Cai is supported by an Australian Government Research
Training Program Scholarship.

and Alibaba, make extensive use of such languages. On clients,
JavaScript engines are embedded in every web browser, and
Java runtimes are embedded in every Android phone.

Because of the ubiquity of GC, the research community has
extensively studied GC performance. The approaches include
characterizing specific elements of GC behavior, performing
comparative evaluation among garbage collectors (GCs), and
deconstructing the performance of specific GCs. These aspects
are addressed by a substantial literature, including [1]–[10].
They are explicitly non-goals of our work.

While this rich literature helps us understand how GCs
compare, how they are designed, and what key sources of cost
are, there is a surprising lack of clarity regarding the real costs
that GC brings to a programming language. In this paper, we
focus on two key problems: (a) lack of clarity about the absolute
cost of GC, and (b) misinterpretations of GC evaluations due
to limited cost metrics. We now offer more detail regarding
these two problems and outline our contributions.

a) Unclear absolute costs: The absolute cost that garbage
collectors impose on modern production runtimes is an im-
portant quantification, but it has eluded the community to
date. Its importance is twofold. For programming language
implementers and hardware architects, understanding the
absolute cost of GC and its magnitude relative to the rest of the
language runtime can help them decide where to spend research
and engineering resources. For language users, knowing the
absolute cost of GC can help them decide whether to use a
managed language or to use alternatives such as C/C++ and
Rust—a decision that often cannot be easily reversed.

Hertz and Berger [11] attempted to answer this question,
but their work is limited by the fidelity of the simulation
infrastructure, and by requiring invasive changes to the runtime.
Due to this complexity, their method cannot be readily
applied to modern workloads and production runtimes, and
their particular analysis is now somewhat dated by advances
in language implementation and computer architecture, and
substantial changes to workloads.

In this paper, we develop a language- and runtime-agnostic
methodology to empirically place a lower bound on the absolute
cost of GC for any cost metric. The intuition behind our
methodology is simple. If we knew the intrinsic cost of running
an application without any of the costs of a garbage collector,
then we could use that as a baseline for understanding the
absolute cost imposed by real garbage collectors. However, in

1

mailto:zixian.cai@anu.edu.au
mailto:steveblackburn@google.com
mailto:mikebond@cse.ohio-state.edu
mailto:mmaas@google.com
Steve Blackburn
Z. Cai, S. M. Blackburn, M. D. Bond and M. Maas, "Distilling the Real Cost of Production Garbage Collectors," 2022 IEEE International Symposium on Performance Analysis of Systems and Software (ISPASS), 2022, pp. 46-57, doi: 10.1109/ISPASS55109.2022.00005.



Simple

Generational

Epsilon
Easy to measure

Intrinsic + hard to measure

Intrinsic
distillation

Fig. 1: Application execution is comprised of the intrinsic application cost shown in blue and GC costs shown in orange. Some
of the GC costs, shown with dashed lines, tightly couple with the execution and are hard to measure. The distillation process
subtracts the easy-to-measure GC costs from the total cost, and what remains approximates the intrinsic application cost. The
minimum distilled cost can be used to estimate the absolute cost of each GC.

practice, some of the GC costs permeate the execution process,
and are hard to tease out (Fig. 1). The key insight is that
we can approximate this baseline by running an application
with real collectors, and distilling out explicitly identifiable
GC costs from the total execution costs. The minimum distilled
cost overestimates the baseline, and can then be used to derive
an empirical lower bound on the absolute cost of each GC.

We analyze all five native GCs in OpenJDK 17, the latest
release of an industrial-strength, high-performance JVM. Our
methodology is simple yet effective: even an underestimate of
the GCs’ absolute costs reveals that they impose substantial
costs to program execution across a diverse set of workloads.
We used a wide range of cost metrics including CPU cycles,
cache misses, and RAPL energy. Due to space constraints,
we focus on two important metrics, the wall-clock time and
CPU cycles, in our case study. Using a modest heap size, our
methodology estimates that by using GC, applications spend
7–82 % more wall-clock time and 6–92 % more CPU cycles
relative to their intrinsic costs.

b) Misinterpretation of evaluation results: The second
problem we address is that GC evaluations are prone to
misinterpretation, even when modern, well-established method-
ologies (e.g., varying the heap size) are used. Such misinter-
pretation is dangerous: a costly GC technique understood as
cheap can mislead the community to overuse it and dismiss
cheaper alternatives, while discouraging future optimizations.
Unless a cost is properly measured, it will not be properly
addressed.

This danger is acutely clear in the new low-pause collectors.
These algorithms are popularly understood [12], [13] to make
applications more responsive at low cost to throughput. Our
case study (Section IV-D) shows this to be unfounded. These
algorithms impose substantial costs on application execution
and do not achieve good application responsiveness. Although
they deliver low pause times, the application overheads are
so great that responsiveness is often no better than simple
stop-the-world GCs.

In this paper, we analyze three important types of misinter-
pretation of GC evaluations arising from overly focusing on
limited metrics. We show how key performance tradeoffs made
by different GCs can go unnoticed. We recommend mitigating

this problem by using more cost and performance metrics,
including wall-clock time, CPU cycles, and application latency.

To summarize, our novel methodology allows the community to
grasp the substantial costs incurred by widely used production
GCs in real applications. We recommend empirically estimating
the absolute cost of GC, and using richer sets of metrics when
evaluating GCs to mitigate common misinterpretations. These
steps are important for revealing the tradeoffs and limitations
of different collectors, and for assisting language users in
choosing the most appropriate GC for a plethora of existing
and emerging workloads. Our findings invite future research
on developing low-latency, low-cost collectors.

The code we used in this work is publicly available: https:
//github.com/caizixian/distillation [14].

II. BACKGROUND AND RELATED WORK

This section discusses a few attempts to measure the absolute
cost of GC, and points out their limitations. We then highlight
two categories of GC costs that are hard to measure: costs
tightly coupled with application execution, and indirect costs.
We describe the established methodologies to measure such
costs, but they are insufficient to adequately characterize the
absolute GC cost on their own. Finally, we give an overview of
the production garbage collectors that we study in this paper,
and how they present such hard-to-measure sources of GC
cost.

A. Absolute Costs of Garbage Collection

Hertz and Berger [11] attempted to quantify the cost of
garbage collection over an explicit memory management regime.
Their work shares the same basic intuition as ours (comparing
against a hypothetical “zero-cost” baseline), but is an entirely
different approach.

By tracing the program execution, they construct a database
of object liveness information. This database allows them to
create an “oracular GC” that inserts malloc and free calls
into the program execution trace, which is processed by an
architectural simulator (SimpleScalar [15]). To do so, they need
to make invasive changes to the runtime as well as integrate
into SimpleScalar specific information about the behavior of
the runtime’s collector and allocator.

2

https://github.com/caizixian/distillation
https://github.com/caizixian/distillation


Although it is an interesting study, it is limited by the fidelity
of the simulation infrastructure (a problem whenever using
architectural simulation) and by the requirement of being able
to make such changes to the runtime and the appropriate
modeling within the simulator. The particular analysis has
other limitations including that it is now dated by changes in
architecture, workloads and algorithms.

In contrast, our methodology is very simple. It measures
any production collector running on native hardware, making
minimal assumptions about the GC implementation, and
without access to source code, entirely avoiding the issues
in prior work [11].

Some work (e.g., [8]) measures the cost of conservative GC
in the context of explicit memory management. In this paper,
we focus on precise GC in managed languages.

Numerous studies (e.g., [2]) measure GC pauses to quantify
GC costs. We show that this approach is problematic because
some GC activities (such as barriers) are carried out by mutators
on behalf of the GC, and are hard to separate. Moreover, for
concurrent GCs, while the GC pauses are shorter, the majority
of the work is shifted to run concurrently with the mutator
threads.

B. Costs Tightly Coupled with Application Execution

A GC can be considered in terms of three principal activities:
allocation, identification, and reclamation [16]. Allocation is
performed by the mutator using space provided by the GC.
Identification establishes which part of the heap is live and
which may be reclaimed. Reclamation makes space occupied
by unreachable objects available for reuse.

While some GC activities are performed directly by the
collector, others are performed by the mutator; for example:

1) Mutators can allocate on their respective local allocation
buffers, and only require periodic synchronization with
the GC.

2) Mutators can assist identification and reclamation via
barriers—code snippets that mediate mutators’ heap
operations on behalf of the GC [6].

3) Mutators can reclaim unreachable objects. For example,
in the case of naı̈ve reference counting (RC) [17], the
code that decrements the reference count of an object to
zero can immediately reclaim the memory.

For performance reasons, the above mechanisms, such as
allocation sequences and barriers, are tightly coupled with
mutator execution, often implemented using a “fast-and-slow-
path” paradigm [18]. Fast paths are short but frequently
executed code snippets, often inlined into the mutator code
by the just-in-time (JIT) compiler. Because they are so tightly
integrated into the mutator, measuring their costs requires
carefully crafted methodologies that avoid instrumentation
overheads that will affect the measurement:

1) Blackburn et al. [2] placed an upper bound on the cost
of a bump-pointer allocator by compiling the allocation
fast path out-of-line. Then, that upper bound was used to
derive the cost of a free-list allocator using their relative
performance.

2) The cost of barriers has also been extensively studied [3]–
[6]. These methodologies remove the requirement of
barriers for correctness, e.g., through a full-heap trace
for a generational GC, and then measure the execution
with and without barriers.

3) Blackburn et al. [2] measured the cost of a deferred
reference counting collector in terms of the mutator time.

These specialized methodologies require deep understanding
of the GC implementation and modifications to the collector
and/or runtime, and consequently are not trivially applied to
arbitrary language runtimes. Furthermore, they are insufficient
to adequately characterize the absolute GC cost on their
own. In this paper, we focus on devising a methodology that
encompasses all of these costs instead of measuring individual
components.

C. Indirect Costs and Benefits

Apart from GC’s direct costs, it can also bring indirect costs
and even benefits. A common source of indirect cost (or benefit)
is reduced (increased) mutator locality.

GC impacts locality through sharing caches with the mutator.
In the case of concurrent GC, GC threads contend with mutator
threads when they share caches. In the case of stop-the-world
pauses, GC code displaces the cache, leaving mutator threads
resuming with a cold cache.

However, GC can improve mutator locality through rear-
ranging objects. A compacting or evacuating GC can improve
spatial locality by moving objects that are frequently accessed
together to be spatially closer to each other [7].

Some of the locality impact might be observable through
hardware performance counters, such as cache miss events (e.g.,
LLC and TLB misses). However, in general, it is hard to
tease out the locality impact of GC running on real hardware,
because that would require achieving the same GC effects (like
compacting the heap) without affecting cache state in the
process. It may be possible to achieve such an effect under
simulation, but it would likely require significant compute
resources to evaluate and would suffer from the same limitations
as prior work [11].

In this paper, we are not concerned with teasing out the
indirect impact of GC. Our distillation methodology measures
the absolute cost of GC, including its indirect cost.

D. Garbage Collection Algorithms in OpenJDK

In our case study, we measure the cost of production GCs
in OpenJDK 17, and reveal common misinterpretations in their
evaluations. We highlight their key properties in Table I. Note
that analyzing the performance of a particular collector and
proposing improvements to its design are explicitly not our
objectives. There exists a substantial literature addressing those,
including a recent paper by Zhao and Blackburn that gives
a detailed performance analysis of a number of collectors,
including ones we study in this paper [10].

The first of these collectors, Epsilon, does not actually collect
garbage. Just like any other collector, its absolute cost—which

3



TABLE I: Garbage collectors that this paper studies. SATB = snapshot at the beginning [19]. LVB = loaded value barrier [20].

Collector Year Generational Parallel GC Concurrent GC Barriers

Epsilon 2018 No (no GC) No (no GC) No (no GC) No (no GC)
Serial 1998 Yes No No Write (card-marking)

Parallel 2005 Yes Yes No Write (card-marking)
G1 [21] 2009 Yes Yes Yes (tracing) Write (card-marking and SATB)

Shenandoah [12] 2019 No1 Yes Yes (tracing and copying) Write (SATB) and read (LVB2)
ZGC [13], [22] 2018 No3 Yes Yes (tracing and copying) Read (LVB)

we find to be nonzero—can be measured by our methodology.
The other five collectors can be divided into three groups:

1) Stop-the-world collectors (Serial and Parallel): the collec-
tor requires all mutators to be stopped while it is running,
i.e., it does not exhibit any concurrency with respect to
the mutator.

2) Concurrent tracing collector (G1): the collector performs
garbage identification concurrently via a trace. This trace
does not modify the heap, but marks reachable objects as
live. The correctness of the concurrent trace is typically
protected by write barriers.

3) Concurrent copying collectors (Shenandoah and ZGC):
in addition to concurrent tracing, the collector performs
reclamation concurrently by copying objects. This involves
modifying the heap and ensuring that the concurrently
executing mutator maintains a coherent view of the heap
even when objects it references are moved. The correctness
of concurrent copying is typically protected by read
barriers.

All collectors (except Epsilon) we studied use read and/or write
barriers to allow a part of the heap (a generation or a region)
to be independently collected. Since the main design goals
of the two concurrent copying collectors are to reduce the
GC pause times and improve the responsiveness for latency-
sensitive applications, we also refer to them as the low-pause
collectors in the rest of the paper.

These collectors all include hard-to-measure sources of
GC cost discussed previously in this section, hindering the
quantification of their absolute costs. For example, the alloca-
tion sequence and the barriers are tightly integrated with the
application by inline compilation. Moreover, when collector
threads run concurrently with mutators, it is hard to attribute
overheads due to resource contention to the originating threads.
These collectors (including Epsilon) therefore motivate our
methodology, with which we are able to measure and place a
lower bound on their implicit and explicit costs.

III. DISTILLING THE ABSOLUTE COST OF GARBAGE
COLLECTION

Due to the prevalence of GC, its cost is a hot—and sometimes
contentious—topic. The extensive existing literature focuses on
comparative evaluation, such as shown in Table II, which helps
us understand how GCs compare. In this section, we address

1In development, see https://openjdk.java.net/jeps/404.
2Brooks prior to JDK 13, Baker prior to JDK 14.
3In development, see https://github.com/openjdk/zgc/tree/zgc generational.

a distinctly different goal: measuring the absolute cost of GCs.
First, we describe our distillation methodology together with
an example. Then, we discuss the applicability, advantages,
and limitations of the methodology.

A. Definition with Examples

Section I sketched the intuitions underpinning our distillation
methodology (Fig. 1). To deepen the understanding, we now use
concrete evaluation results from three production GCs—Serial,
Parallel, and Shenandoah—running a real-world application, the
H2 database. This also serves as a running example throughout
this section.

Note that in the examples, we use one particular cost metric—
total CPU cycles used by all JVM threads—and one particular
way of excluding explicitly identifiable GC cost—costs incurred
during stop-the-word (STW) pauses. We emphasize that these
choices are orthogonal to the mechanism of our distillation
methodology. Our methodology can operate on other cost
metrics and other ways to isolate GC costs.

It is easy to measure the total costs of real collectors and see
how they compare. Table II shows that when using Serial, the
total cycle usage is the smallest, with Parallel and Shenandoah
being 0.2 % and 102.3 % more expensive, respectively. This
comparative analysis shows which GC is the best to use if
you are concerned about total CPU cycle consumption, a well-
understood methodology in the literature. However, it does not
measure the absolute CPU cycle cost of each collector alone.

TABLE II: The total CPU cycles consumed when running the
DaCapo benchmark h2 with a 3× heap (see Section IV-A)
using three different collectors. Lower is better. The cycles are
also normalized to the best collector (Serial) shown in green.

Collector Total Normalized
billion cycles

Parallel 108.33 1.002
Serial 108.12 1.000
Shenandoah 218.72 2.023

Definition 3.1 (Intrinsic application cost): We define the
intrinsic application cost as the theoretical ideal cost of
running an application. This intrinsic cost includes the best
GC benefit (such as improved locality) any configuration could
bring (i.e., a collector with tuning parameters) but none of the
GC costs (such as barriers).

For example, if we knew the intrinsic cost of the application
H2 (inclusive of the best GC benefit but exclusive of the GC
costs) in terms of CPU cycles, we could subtract that from the

4

https://openjdk.java.net/jeps/404
https://github.com/openjdk/zgc/tree/zgc_generational


total cycles used by each real collector, giving us the absolute
cost of the respective collector.

Definition 3.2 (Distilled application cost): Of course, we do
not know the intrinsic application cost of a given workload. Our
key insight is that we can approximate the intrinsic application
cost by excluding the costs that we can easily ascribe to
GC from its total costs. This insight can perhaps be better
understood using the distillation analogy. The total cost is a
mixture of the intrinsic application cost (after considering the
best GC benefit) and the absolute GC cost. Some of the GC
costs can be explicitly identified (such as the cost incurred
during STW pauses), while others are hard to measure (such as
barriers). We cannot remove all hard-to-measure GC costs
from the mixture, but we can easily distill out explicitly
identifiable GC costs. This gives us an overestimate of the
intrinsic application cost.

Distilled cost≡ Total cost−Explicit GC cost ≥ Intrinsic cost

As shown in Table III, we can easily distill out explicitly
identifiable GC cost by excluding the cost during STW pauses,
where no mutator activities happen and costs are strictly
from GC. Repeating the distillation process for each of three
collectors, we obtain three distilled application costs.

TABLE III: Distilling out cycles used during stop-the-
world (STW) pauses from the total cycles in Table II. The
minimum distilled application cost (MDC) in cycles is shown
in green. The MDC value is used to calculate the empirical
lower bound on the cost of each of the collectors in Table IV.

Collector Total STW Distilled
billion cycles

Parallel 108.33 4.46 108.33−4.46 = 103.87
Serial 108.12 2.75 108.12−2.75 = 105.37
Shenandoah 218.72 0.03 218.72−0.03 = 218.69

Definition 3.3 (Minimum distilled application cost): The
minimum distilled cost (MDC) is the minimum of the distilled
application costs from running the application with each of
the collectors. Since we define the intrinsic application cost to
include the best benefit any GC configuration could bring, the
set of collectors used to derive the MDC can include the same
collector with different tuning parameters (e.g., heap size, the
number of collector threads). The MDC is the best overestimate
of the intrinsic cost.(

MDC ≡ min
g∈GCs

Distilled costg

)
≥ Intrinsic cost

In Table III, the MDC is 103.87 billion cycles (Parallel, shown
in green).

Definition 3.4 (Lower Bound Overhead of Garbage Collec-
tors): The MDC in turn allows us to place an empirical lower
bound on the absolute cost of the collectors, which we call
the LBO. Since Absolute GC cost = Total cost− Intrinsic cost
and MDC ≥ Intrinsic cost, for each GC g, we have

(LBOg ≡ Total costg −MDC)≤ Absolute GC costg

As shown in Table IV, we subtract the MDC from the total
cycles of each of the GCs, yielding a lower bound on the
absolute cycle cost of each GC.

Definition 3.5 (Normalized LBO): We can normalize the
LBO to the MDC, which we use in the rest of the paper:

Normalized LBO (NLBO) ≡ (LBO+MDC)/MDC

In the above example, we can see that in the context of the
H2 database running on OpenJDK, we spend at least 4.1 %,
4.3 %, and 110.6 % more CPU cycles than the intrinsic costs for
Serial, Parallel, and Shenandoah respectively. We note that even
though Shenandoah is not useful when calculating the MDC,
the absolute cost of Shenandoah is still accurately captured.

TABLE IV: The empirical lower bound (LBO) on the cycle
cost for each collector can be obtained by subtracting the MDC
from the respective total cycles in Table III. The lowest LBO
in green.

Collector LBO Normalized LBO
Total−MDC (LBO+MDC)/MDC

Parallel 108.33−103.87 = 4.46 1.043
Serial 108.12−103.87 = 4.25 1.041
Shenandoah 218.72−103.87 = 114.85 2.106

We emphasize that the distilled cost of any collector can
be calculated, and it is not the same as the cost of a no-GC
scheme (such as Epsilon in OpenJDK). In the above example,
all three collectors perform collection, and we estimate their
respective LBOs without using a no-GC scheme.

B. Discussion

The biggest advantage of our distillation methodology is
its simplicity. The only requirement of our methodology is to
exclude explicitly identifiable GC cost.

This simplicity makes our methodology generally applicable
on different runtimes and GC algorithms. In the above example,
we exclude the costs incurred during STW pauses, where the
costs are strictly from GC. This is conceptually easy, and can
be simply implemented as callbacks to delineate STW phases.
In fact, for OpenJDK, this instrumentation can be implemented
using JVMTI callbacks [23], and for .NET, implemented on
top of GCRealTimeMon [24].

This simplicity also allows us to evaluate GCs running
on native hardware. As a result, any hardware performance
counter can trivially be used as a cost metric when using
our methodology. This includes RAPL energy readings, cache
misses, and other metrics.

However, language implementers need to be careful when
applying our methodology to GCs in different runtimes. For
example, a compiler that performs escape analysis can lower
the GC costs despite no change to the GCs. Such analysis
allows objects to be allocated on the stack rather than on the
heap when the objects do not escape. This reduces overall
allocation, and therefore reduces the pressure on the GC.

We also note that to get a useful MDC, our methodology
requires at least one GC where the distilled cost is close

5



to the intrinsic cost. For example, if all evaluated collectors
were concurrent and if explicitly identifiable GC cost were
from STW pauses, the distilled costs from all collectors would
include costs from the concurrently running GC threads. In this
scenario, the MDC would be much higher than the intrinsic
cost, and would lead to a very poor empirical lower bound on
GC cost.

For hardware performance counters, we can address the
above deficiency by measuring the costs on a per-thread
basis. Instead of excluding STW costs, one can exclude costs
originating from GC threads.4 This measurement mode is easily
supported by, e.g., Linux’s perf event subsystem.

In our case study, we do not use this engineering optimization.
Because we have two STW collectors (Serial/Parallel) in the
set we studied, taking the whole-process reading at STW points
is sufficient to factor out the explicitly identifiable GC cost
to establish an MDC that closely approximates the intrinsic
application cost.

IV. CASE STUDY: COLLECTORS IN OPENJDK 17

Recall that we address two key problems in this paper:
1) lack of clarity about the costs imposed by GC, and
2) misinterpretation of GC evaluations due to limited cost
metrics. In the previous section, we proposed the distillation
methodology to estimate the cost of GCs for any given set
of metrics. In this section, we perform a case study of GCs
in OpenJDK 17 (Section II-D), the latest release of a high-
performance production JVM.

First, we apply our distillation methodology on these GCs,
and measure their costs using the lower bound overhead (LBOs)
defined in Section III. We focus on two cost metrics—the
wall-clock time (time LBOs) and the total CPU cycles (cycle
LBOs). We reveal that with a modest 2.4× heap and across
workloads, production collectors can incur substantial absolute
costs, evident in both high time LBO and high cycle LBOs. A
surprising trend is that in addition to being significantly slower
and cycle intensive, the low-pause collectors fail to deliver
better application latency for the evaluated workloads.

Second, we concretely show how simplistic evaluations of
these GCs can be misinterpreted. We highlight three important
types of misinterpretation: 1) not considering opportunity
cost, 2) not considering overheads due to concurrency, and
3) measuring pause time instead of application latency. We then
demonstrate how to mitigate the misinterpretation by using a
richer set of cost and performance metrics.

Based on our observations, we recommend that evaluations
of GCs should 1) use the distillation methodology to report the
costs of GCs, and 2) use more performance and cost metrics
in order to evaluate GCs holistically.

A. Methodology

a) Benchmarks and latency measures: We use a snapshot
release of the forthcoming Chopin release of the DaCapo
benchmark suite [25]. We exclude the benchmarks cassandra,

4Excluding costs of GC threads is not the same as excluding all GC costs.
For example, the cost of barriers will still be in the distilled cost.

h2o, and kafka, because they use deprecated Java features that
are not compatible with JDK 17.

DaCapo’s Chopin snapshot release includes a number of
latency-sensitive benchmarks. In these benchmarks, latency-
sensitive services handle remotely issued requests (e.g., over a
network) that arrive at some remotely determined rate. When
such a system is unable to process a request immediately, it is
placed in a queue. The latency of a request is impacted by three
major sources of delay: the uninterrupted time taken to compute
the request; the time taken inclusive of interruptions such as GC
and scheduling; and the time taken inclusive of interruptions
and queuing. For these latency-sensitive benchmarks, DaCapo
reports two measures of latency, simple and metered, DaCapo’s
simple latency ignores queuing, while metered latency models
requests coming at a metered rate with an arbitrary-sized queue.
When an interruption such as a GC pause occurs, the metered
measure reflects the delay that this imposes not only on the
currently executing requests, but also on those that are enqueued
during the delay. We use metered latency here because it more
accurately models latency-sensitive services.

We also investigate the SPECjbb2015 benchmark, which
is often used in the literature when evaluating low-pause
GCs. However, unlike the DaCapo suite, SPECjbb2015 fixes
the workload to a constant amount of time rather than to
constant work, preventing us from easily measuring the costs
of different GCs executing the same amount of work. Therefore,
SPECjbb2015 is not included in our analysis.

b) Cost metrics: We implement our distillation method-
ology as a Java Virtual Machine Tool Interface (JVMTI) [23]
agent. We implement the distilled cost in the methodology by
excluding costs incurred in stop-the-world (STW) pauses. The
STW points are provided by the JVMTI callbacks for the starts
and the ends of GC pauses.

In addition to the wall-clock time, our JVMTI agent captures
a wide range of hardware performance counters, including
CPU cycles, instruction counts, cache misses, and Intel RAPL
energy measurements. To read these counters, we use the
perf_events subsystem in the Linux kernel. In this section,
we focus on two important metrics: the wall-clock time and
CPU cycles.

c) JVM parameters: In this paper, we focus on the out-of-
the-box performance characteristics of GCs, and deliberately
do not set any GC-related parameters except for the heap size.
GC tuning is often specific to particular (classes of) workloads,
whereas our concern is the real cost of each GC when handling
a diverse set of workloads. Also, in general, GC tuning is an
open-ended problem, outside the scope of this paper. We report
the performance of each GC for different heap sizes, because
the performance of GC is sensitive to the heap size [9]. Except
for Epsilon, which does not perform GC, we set the heap size
relative to the minimum heap size (Table V) required to run
each benchmark (e.g., 2.0× means that the heap size is set to
be twice as big as the minimum heap required for a particular
benchmark). The minimum heap size for each benchmark is
measured using G1 because it is the most space-efficient GC
among the ones we study.

6



TABLE V: Minimum heap size required to run each benchmark.

Benchmark Heap size (MB)

avrora 7
batik 189
biojava 95
eclipse 411
fop 15
graphchi 255
h2 773
jme 29
jython 25
luindex 42
lusearch 21
pmd 156
sunflow 29
tomcat 21
tradebeans 131
tradesoap 103
xalan 8
zxing 97

The only other JVM parameters we set are
-server -XX:-TieredCompilation -Xcomp, to speed up
the warmup of the JVM and reduce the experimental
noise due to JIT compilation. We omit parameters
-XX:-TieredCompilation -Xcomp for tradebeans and
tradesoap, because these parameters cause these two
benchmarks to crash for the version of OpenJDK we use.

d) Execution methodology: For each configuration, we
invoke each benchmark for 20 times. We interleave invocations
of different configurations to minimize bias due to systemic
interference. In each invocation, the benchmark performs five
iterations, and we report results from the last iteration, with the
first four iterations serving to warm up the runtime. For each
configuration, we report the mean and the 95 % confidence
interval (CI) based on the 20 invocations.

e) Hardware: While microarchitectural sensitivity of a
GC algorithm is important, it is orthogonal to this work. We
use two identical machines with Intel Core i9-9900K (Coffee
Lake) CPUs (8 cores, 16 threads), with 4×32G DDR4-3200
memory. We disable the dynamic frequency scaling (i.e., Turbo
Boost) to reduce experimental noise.

f) Software: All machines run identical Ubuntu 18.04.6
LTS images with 5.4.0-89-generic kernels. We use the
Temurin-17.0.1+12 release of OpenJDK, which is Eclipse
Temurin’s (formerly AdoptOpenJDK’s) distribution of Open-
JDK. We focus on OpenJDK 17 in this paper, as it is the
latest LTS release as of writing and is supposed to bring
many GC performance improvements (such as [26], [27])
since OpenJDK 11. We also measured OpenJDK 11 using the
AdoptOpenJDK-11.0.11+9 release, and the overall results
were quite similar to those of OpenJDK 17. All benchmarks
are executed on an otherwise idle machine, with as many
background daemons and periodic tasks disabled as possible.

B. Results: Costs of Garbage Collection

First, we estimate the costs of each configuration (a collector
at a heap size) using our distillation methodology. The distilled
cost for each configuration is the total cost excluding the STW

TABLE VI: Time LBOs averaged over 16 benchmarks. The
best value for each heap size is shown in green. Where a
collector cannot run all benchmarks at a particular heap size,
the entry is left blank. Parallel outperforms other collectors,
except at 1.4×, where G1 has the lowest cost.

GC 1.4× 1.9× 2.4× 3.0× 3.7× 4.4× 5.2× 6.0×

Ser. 1.42 1.17 1.14 1.13 1.11 1.10 1.09 1.09
Par. 1.41 1.09 1.07 1.06 1.05 1.04 1.04 1.03
G1 1.24 1.16 1.11 1.09 1.08 1.07 1.07 1.06
Shen. * 1.94 1.64 1.43 1.37 1.30 1.25 1.23
ZGC * * 1.82 1.54 1.39 1.32 1.27 1.23

TABLE VII: Cycle LBOs averaged over 16 benchmarks. The
best value for each heap size is shown in green. Where a
collector cannot run all benchmarks at a particular heap size,
the entry is left blank. Serial consistently outperforms other
collectors for all heap sizes.

GC 1.4× 1.9× 2.4× 3.0× 3.7× 4.4× 5.2× 6.0×

Ser. 1.22 1.08 1.06 1.06 1.04 1.04 1.04 1.04
Par. 1.70 1.15 1.12 1.10 1.07 1.06 1.06 1.05
G1 1.54 1.34 1.17 1.14 1.10 1.09 1.09 1.09
Shen. * 1.75 1.54 1.47 1.42 1.39 1.36 1.33
ZGC * * 1.92 1.68 1.55 1.46 1.40 1.34

cost. Note that Epsilon does not actually collect garbage, and
therefore, its distilled cost is the same as the total cost.

Though Epsilon is not a practical GC, its distilled cost could
potentially help us obtain an MDC that better estimates the
intrinsic cost of a workload. However, in practice, Epsilon has
high absolute costs because the spatial locality of objects is
poor, and the allocation sequence will always need to request
more physical memory from the operating system. This is
evident in Tables VIII and IX, showing the LBOs of Epsilon
beside those of standard collectors, for cases in which Epsilon
is able to run a benchmark without exhausting the machine’s
available memory. From the tables, we can see that Epsilon
only affects the MDC of one benchmark—sunflow—indicated
by the 1.000 time LBO and the 1.000 cycle LBO. For the rest
of the section, we focus on the absolute costs of collectors
other than Epsilon.

Table VI shows the time LBOs of the collectors we study
while Table VII shows the cycle LBOs. Each table covers
eight different heap sizes, ranging from a small 1.4× heap to
a generous 6.0× heap (see Section IV-A for the multiplier
notation). The LBO value for each configuration is the
geometric mean over 16 DaCapo benchmarks.5

The production GCs incur substantial costs. For a modest
2.4× heap, production GCs on average spend at least 7–82 %
more wall-clock time and 6–92 % more cycles relative to the
intrinsic costs. Even for a generous 6.0× heap, the costs are
as much as 23 % in terms of time and 34 % in terms of cycles.

5We use 18 DaCapo benchmarks in total. However, eclipse and xalan are
excluded in the geometric mean calculation because too many collectors were
not able to run these two benchmarks for small heap sizes. If we were to
include these two benchmarks, a lot more entries would be missing from the
tables.

7



TABLE VIII: Time LBOs at 3× heap (except Epsilon) using
distillation. Lower is better. xalan is excluded from the summary
statistics due to ZGC failing to run, and the corresponding row
is grayed out. The best results for each benchmark are shown
in green (light green for xalan). Each LBO is the mean of 20
invocations, with its 95 % CI shown below in gray. Parallel
outperforms other collectors for most benchmarks.

Bench. Serial Para. G1 Shen. ZGC Eps.

avrora 1.009 1.025 1.031 1.101 1.072 1.010
±0.7 % ±0.5 % ±0.6 % ±0.8 % ±0.7 % ±0.7 %

batik 1.146 1.092 1.067 1.089 1.077 1.087
±0.2 % ±0.4 % ±1.0 % ±0.4 % ±0.3 % ±0.2 %

biojava 1.006 1.007 1.033 1.221 1.882 1.157
±0.1 % ±0.1 % ±0.2 % ±0.2 % ±1.0 % ±0.1 %

eclipse 1.050 1.010 1.062 1.127 1.136 1.180
±0.4 % ±0.1 % ±0.2 % ±0.2 % ±0.1 % ±0.3 %

fop 1.159 1.129 1.201 1.414 2.107 1.175
±0.2 % ±1.6 % ±1.2 % ±0.8 % ±0.6 % ±0.3 %

graphchi 1.021 1.011 1.020 1.191 1.125 1.054
±0.3 % ±0.3 % ±0.4 % ±1.5 % ±0.4 % ±0.7 %

h2 1.121 1.044 1.093 1.570 1.964 1.483
±0.3 % ±0.3 % ±0.6 % ±0.3 % ±0.6 % ±0.2 %

jme 1.003 1.003 1.002 1.010 1.006 1.006
±0.0 % ±0.0 % ±0.0 % ±0.0 % ±0.1 % ±0.0 %

jython 1.037 1.022 1.065 1.609 2.204 1.231
±1.7 % ±0.2 % ±0.2 % ±0.9 % ±0.5 % ±0.3 %

luindex 1.007 1.011 1.044 1.150 1.097 1.055
±0.2 % ±0.3 % ±0.4 % ±0.7 % ±0.3 % ±0.8 %

lusearch 1.230 1.105 1.135 3.766 2.701
±0.2 % ±0.3 % ±0.4 % ±1.6 % ±0.4 %

pmd 1.613 1.124 1.188 1.559 1.777 1.165
±0.2 % ±0.2 % ±0.3 % ±0.6 % ±8.7 % ±0.4 %

sunflow 1.412 1.156 1.156 2.180 2.109 1.000
±2.0 % ±2.0 % ±1.2 % ±2.2 % ±0.6 % ±0.4 %

tomcat 1.157 1.137 1.144 1.305 1.914 1.145
±0.2 % ±0.2 % ±0.1 % ±0.2 % ±0.6 % ±0.1 %

tradebeans 1.120 1.020 1.164 1.423 1.327 1.415
±0.6 % ±0.6 % ±0.7 % ±0.8 % ±0.5 % ±0.5 %

tradesoap 1.094 1.011 1.112 1.340 1.282 1.376
±0.4 % ±0.2 % ±0.3 % ±0.2 % ±0.2 % ±0.2 %

xalan 3.380 3.074 3.496 30.176 1.111
±0.3 % ±0.4 % ±0.3 % ±1.7 % ±0.6 %

zxing 1.030 1.058 1.028 1.274 1.235 1.062
±1.1 % ±1.8 % ±1.3 % ±1.1 % ±1.1 % ±1.3 %

min 1.003 1.003 1.002 1.010 1.006
max 1.613 1.156 1.201 3.766 2.701

mean 1.130 1.057 1.091 1.490 1.589
geomean 1.121 1.055 1.089 1.407 1.513

For all heap sizes shown, Serial achieves the lowest costs in
terms of cycles, while Parallel achieves the lowest costs in
terms of time for all but the smallest heap size.

Note that even though Serial is single-threaded, the rest
of the VM is still multithreaded, hence the difference in
between the time and cycle LBOs for Serial. Unsurprisingly,
this difference is more pronounced on benchmarks with more
mutator parallelism.

Tables VIII and IX take a closer look at the 3.0× heap size.
This allows us to observe how different collectors behave when
challenged with a diverse, modern workload.

C. Analysis of Results

We compare the performance trends among and within three
groups of GCs (see Section II-D).

a) Stop-the-world (STW) GCs vs. Concurrent GCs:
Overall, STW collectors (Serial and Parallel) are cheaper than
concurrent collectors (G1, Shenandoah, and ZGC), both in
terms of the time and cycles. The exception is that Serial is
uncompetitive in terms of time due to its lack of parallelism. At
a 3.0× heap, in terms of cycles, STW collectors are never more
expensive than concurrent collectors.6 In terms of time, STW
collectors are only more expensive than concurrent collectors
for 2 out of 17 benchmarks: batik and zxing.7

b) Single-threaded vs. multi-threaded STW GC: Between
two stop-the-world collectors, Parallel is more expensive than
Serial in terms of cycles (as much as 48 % for a small 1.4×
heap), and the reverse is true in terms of time. This effect
occurs presumably because a multi-threaded collector exploits
the available parallelism to shorten pauses but introduces
synchronization overhead among collector threads. At 3.0×
heap, in terms of cycles, Parallel is only cheaper than Serial for
2 out of 17 benchmarks: lusearch, tradebeans, and tradesoap.8

In terms of time, Serial is only cheaper than Parallel for avrora.9

c) Concurrent tracing vs. concurrent copying GC:
Among concurrent collectors, the newer, concurrent copying
collectors (Shenandoah and ZGC) are significantly more costly
than the concurrent tracing collector (G1). The difference is
up to 75 % in terms of cycles (G1 vs. ZGC at 2.4× heap)
and 78 % in terms of time (G1 vs. Shenandoah at 1.9× heap).
This is presumably due to the use of costly read barriers and
the (un)timeliness of reclamation, which we discuss below.
At 3.0× heap, G1 consistently outperforms Shenandoah and
ZGC for all benchmarks in terms of time. In terms of cycles,
Shenandoah and ZGC are only cheaper than G1 for batik and
xalan (not statistically significant for sunflow).

d) Pathological Modes of Concurrent Copying Collectors:
We observe two pathological modes of concurrent copying
collectors when challenged with workloads that have high
allocation rates but low survival rates. In such scenarios,
the concurrent copying collectors often fall back to STW
collections and/or stall the mutators to keep up with the
allocation, resulting in poor performance.

One stark result is for xalan, where Shenandoah has
an enormous time LBO of 30.2, about ten times that of
Serial/Parallel/G1. ZGC simply failed to run xalan with OOM
errors. Despite the high time LBO, Shenandoah has a modest
cycle LBO of 1.74, which is close to the 1.63 LBO of
Parallel and even slightly better than the 1.78 LBO of G1. To
understand this behavior, recall that Shenandoah and ZGC rely
on tracing to establish liveness, and strictly rely on evacuation
for reclamation (see Section II-D). The consequence is a
substantial delay between when an object becomes unreachable
and when the unreachable object is reclaimed. The delay’s

6For sunflow, Parallel is 1 % more expensive than ZGC, but the confidence
intervals overlap.

7The differences for jme and sunflow are negligible (and also not statistically
significant for sunflow).

8The differences for jython and sunflow are not statistically significant.
9The differences for biojava, luindex, and sunflow are not statistically

significant.

8



TABLE IX: Cycle LBOs at 3× heap (except Epsilon) using
distillation. Lower is better. xalan is excluded from the summary
statistics due to ZGC failing to run, and the corresponding row
is grayed out. The best results for each benchmark are shown
in green (light green for xalan). Each LBO is the mean of
20 invocations, with its 95 % CI shown below in gray. Serial
outperforms other collectors for most benchmarks.

Bench. Serial Para. G1 Shen. ZGC Eps.

avrora 1.007 1.014 1.047 1.201 1.209 1.017
±0.6 % ±0.7 % ±0.7 % ±0.6 % ±0.7 % ±0.4 %

batik 1.146 1.991 1.565 1.454 1.915 1.087
±0.2 % ±2.1 % ±0.8 % ±0.5 % ±3.3 % ±0.2 %

biojava 1.006 1.014 1.046 1.521 3.962 1.157
±0.1 % ±0.1 % ±0.3 % ±0.7 % ±1.0 % ±0.1 %

eclipse 1.054 1.109 1.317 1.390 1.474 1.196
±0.4 % ±0.1 % ±1.2 % ±0.3 % ±0.5 % ±0.1 %

fop 1.160 1.203 1.460 1.893 2.227 1.175
±0.3 % ±1.5 % ±1.9 % ±1.1 % ±1.1 % ±0.3 %

graphchi 1.008 1.031 1.048 1.226 1.226 1.099
±0.3 % ±0.3 % ±0.3 % ±2.2 % ±0.7 % ±0.6 %

h2 1.053 1.055 1.123 2.131 2.645 1.365
±0.1 % ±0.2 % ±0.4 % ±0.3 % ±0.7 % ±0.2 %

jme 1.071 1.132 1.091 1.517 1.470 1.133
±0.3 % ±0.4 % ±0.3 % ±0.5 % ±1.0 % ±0.3 %

jython 1.036 1.034 1.072 2.038 2.444 1.225
±1.7 % ±0.2 % ±0.2 % ±0.7 % ±0.4 % ±0.3 %

luindex 1.010 1.018 1.067 1.207 1.199 1.065
±0.2 % ±0.2 % ±1.3 % ±0.8 % ±0.5 % ±0.9 %

lusearch 1.045 1.030 1.081 1.213 1.268
±0.3 % ±0.2 % ±0.2 % ±0.3 % ±0.3 %

pmd 1.096 1.178 1.286 1.563 1.655 1.266
±0.5 % ±0.4 % ±0.6 % ±0.5 % ±10.1 % ±0.2 %

sunflow 1.125 1.087 1.088 1.240 1.076 1.000
±2.4 % ±2.1 % ±1.2 % ±0.8 % ±0.8 % ±0.4 %

tomcat 1.010 1.015 1.022 1.119 1.119 1.035
±0.1 % ±0.1 % ±0.1 % ±0.1 % ±0.1 % ±0.1 %

tradebeans 1.060 1.049 1.211 1.637 2.171 1.293
±0.4 % ±0.3 % ±0.7 % ±0.3 % ±0.5 % ±0.6 %

tradesoap 1.052 1.029 1.117 1.710 2.155 1.251
±0.4 % ±0.4 % ±0.8 % ±0.4 % ±0.4 % ±0.2 %

xalan 1.211 1.633 1.783 1.744 1.139
±0.4 % ±0.3 % ±0.3 % ±0.4 % ±0.3 %

zxing 1.017 1.034 1.027 1.275 1.238 1.061
±1.1 % ±1.8 % ±1.4 % ±1.2 % ±1.1 % ±1.4 %

min 1.006 1.014 1.022 1.119 1.076
max 1.160 1.991 1.565 2.131 3.962

mean 1.056 1.119 1.157 1.490 1.791
geomean 1.055 1.103 1.148 1.462 1.671

impact is amplified by the high allocation rates and low survival
rates of benchmarks such as xalan and lusearch;10 because
allocation would fail if reclamation did not keep up with the
allocation rate, the collector resorts to STW collections. In this
case, it would be more beneficial to use a STW collector in
the first place and thus avoid the concurrency overhead (as we
discuss in Section IV-D).

By examining the logs from Shenandoah, we observe two
pathological modes. First, the untimeliness of reclamation
causes allocation failures, and Shenandoah requires STW
collection to finish an in-flight concurrent collection (known
as degenerated GCs in Shenandoah). Second, in order to avoid

10Both benchmarks allocate multiple GBs per second, and their minimum
heap sizes are merely 8 MB and 21 MB, respectively.

STW collections, Shenandoah throttles allocations by stalling
the mutator at allocation sites (known as pacing in Shenandoah,
or “allocation stall” in ZGC). Since sleeping threads do not
contribute to the cycles consumed, but increase the wall-clock
time needed to run a workload, this explains the much higher
time cost but modest cycle cost.

D. Misinterpretation of Evaluation Results

Prior work [1], [2] points out common pitfalls and respective
mitigations when evaluating GCs. We have applied these
suggestions where possible (see Section IV-A). For example, we
control the heap size relative to the minimum heap size required
to run a given workload. We reaffirm that the fundamental time–
space tradeoff is still applicable in a modern, diverse benchmark
suite (Tables VI and VII). However, these suggestions are
not sufficient to avoid misinterpretation of evaluation results,
especially in light of modern hardware, concurrent GCs, and
emerging latency-sensitive workloads. In this section, we
highlight three important types of misinterpretation. In the
next section, we make recommendations on mitigations.

In this section, we present the misinterpretation by comparing
the absolute costs of different GCs shown earlier. We would
like to emphasize that this misinterpretation is also applicable
in classic comparative analysis, and using more metrics still
improves the evaluations in that context.

a) Opportunity cost: Comparing Table VI and Table VII,
we notice that collectors have higher cycle LBO than time LBO.
The only exceptions are Serial, which is a single-threaded GC,
and Shenandoah at small heap sizes due to pacing, which we
discussed previously. In particular, the cycle LBOs of Parallel
and G1 are about 0.3×MDC larger than the respective time
LBO at a small 1.4× heap. In the extreme case, such as for
batik at 3.0× heap, Parallel has a mere 1.09 time LBO but a
significant 1.99 cycles LBO, the highest among all collectors
studied. This difference reveals that substantial cycle costs can
go unnoticed when only the wall-clock time is reported.

Historically, GC performance has been mostly measured
using wall-clock time only. This methodology implicitly
assumes that on machines with free cores available, the free
cores may be used by GC with no repercussions. On modern,
massively parallel hardware, this assumption can mean that a
significant portion of the hardware is dedicated to the GC. This
assumption, however, ignores the incurred opportunity cost.

On multi-tenant hosts, which are increasingly common to
increase utilization in datacenters, more CPU cores taken by
GC threads mean fewer cores available for other applications
on the same host. That is, when heavily relying on parallelism,
a collector will not only run slower when deployed in multi-
tenant settings, because fewer cores are available to run GC,
but also negatively impact other applications on the same host.
Even when the server has only one application, using fewer
cycles to run the application can free up CPU cores and reduce
energy consumption.

b) Concurrency overhead: A commonly used metric to
tune GC for throughput is the fraction of time spent in GC (such
as the -XX:GCTimeRatio flag suggested in the GC tuning

9



TABLE X: Percent of wall-clock time spent in STW pauses
averaged over 16 benchmarks. Lower is better. The best value
for each heap size is shown in green. Where a collector
cannot run all benchmarks at a particular heap size, the
corresponding entry is left blank. ZGC consistently outperforms
other collectors where it runs.

GC 1.4× 1.9× 2.4× 3.0× 3.7× 4.4× 5.2× 6.0×

Ser. 9.0 4.7 3.7 3.1 2.7 2.5 2.4 2.3
Par. 9.0 2.9 2.1 1.7 1.3 1.1 1.0 0.9
G1 5.2 2.8 1.6 1.3 0.9 0.9 0.7 0.7
Shen. 0.3 0.2 0.2 0.1 0.1 0.1 0.1
ZGC 0.1 0.0 0.0 0.0 0.0 0.0

TABLE XI: Percent of total cycles spent in STW pauses
averaged over 16 benchmarks. Lower is better. The best value
for each heap size is shown in green. Where a collector
cannot run all benchmarks at a particular heap size, the
corresponding entry is left blank. ZGC consistently outperforms
other collectors where it runs.

GC 1.4× 1.9× 2.4× 3.0× 3.7× 4.4× 5.2× 6.0×

Ser. 4.3 2.1 1.6 1.4 1.2 1.1 1.0 1.0
Par. 13.1 5.3 4.0 3.4 2.8 2.6 2.4 2.2
G1 8.1 5.0 3.3 2.8 2.1 2.1 1.9 1.8
Shen. 0.1 0.1 0.1 0.1 0.1 0.1 0.0
ZGC 0.0 0.0 0.0 0.0 0.0 0.0

guide from the vendor [28]). Tables X and XI show the fraction
of time and cycles spent in STW pauses for different GCs.
Similar to Tables VI and VII, the results are grouped by heap
sizes, and show the geometric means over 16 benchmarks.
Compared with Tables VI and VII, we can see that the classic
methodology of estimating the GC costs from the time/cycles
spent in GC pauses is highly problematic, especially for the
concurrent collectors. In particular, the two concurrent copying
collectors spend a negligible fraction of time/cycles in GC
pauses, but have enormous LBOs.

With fixed hardware resources, concurrent GC threads
compete with mutator threads, e.g., for cache capacity and
memory bandwidth, resulting in more severe effects for more
parallel workloads. In other words, concurrent GC costs are
high not only from the expensive mechanisms they use, such
as read and write barriers, but also from resource contention.

c) Low pause ̸= low latency: A commonly used metric to
tune GC for latency-sensitive applications is the maximum GC
pause time (such as the -XX:MaxGCPauseMillis suggested
in the GC tuning guide from the vendor [28]). It is well
known that the pause time is a poor metric to assess GCs for
latency-sensitive applications [29]. We reaffirm this here, and
highlight the importance of using more metrics. The following
example shows that fixating on limited metrics (e.g., pause
times) can even make a language implementer unintentionally
work against the motivating goal (the responsiveness of the
application).

Figures 2 and 3 show the distribution of pause times and
query latencies (using metered latency; see Section IV-A) of dif-

0 90 99 99.9 99.99
Percentile

10 2

10 1

100

101

Pa
us

e 
tim

e 
(m

s)

Ser.
Par.
G1
Shen.
ZGC

Fig. 2: GC pause time for lusearch in a 3.0× heap. Each line
and its shade show the mean and 95 % CI over 20 invocations.

0 90 99 99.9 99.99 99.999 99.9999
Percentile

10 1

101

103

Q
ue

ry
 la

te
nc

y 
(m

s)

Ser.
Par.
G1
Shen.
ZGC

Fig. 3: Metered latency for lusearch in a 3.0× heap. Each line
and its shade show the mean and 95 % CI over 20 invocations.

ferent GCs running the lusearch benchmark at 3.0× heap. The
low-pause collectors (Shenandoah and ZGC) indeed achieve
better pause times in general, with ZGC consistently having
the lowest pause time for all percentiles, while Shenandoah
has lower pause times than the other three GCs under the 90th
percentile. However, low pause times do not automatically
confer low application latencies. Indeed, both Shenandoah and
ZGC have worse (by factors of 10–100×) query latencies than
the other three collectors.

Application latencies are affected by GC pauses—both by
their durations and frequency. Short but frequent pauses will
not impact the distribution of pause times, but can certainly
impact application latency.

Importantly, application latencies are also functions of muta-
tor performance. As discussed in previous sections, concurrent
copying GC can affect mutator performance through expensive
mechanisms, such as read barriers, and through resource
contention. In the case of the pathological modes we discussed,
Shenandoah and ZGC throttle mutator threads when the GC
cannot keep up with allocation. Such throttling indeed avoids
triggering a STW collection, keeping each GC pause short.
However, it comes at great cost: if the mutators are sufficiently
throttled, both the application latency and throughput will be
worse than a simple STW GC, as evidenced in the above graphs
and Table VIII.

10



E. Recommendations

Drawing on these observations, we make two recommenda-
tions for improving GC evaluation in future research. First, the
distillation methodology should be used to report the costs of
GCs. This helps us better understand the scale of the impact
of GC on the program execution. Second, a richer set of
performance and cost metrics should be used when evaluating
GCs. At a minimum, both the wall-clock time and the CPU
cycles used should be reported. Any additional metric can
help us understand the performance characteristics of different
GCs better. This includes measuring application latency for
applications with latency requirements, instead of using pause
times as a surrogate.

V. CONCLUSION

In this paper, we identify two important problems in
empirical evaluation of GCs: unclear costs, and easy-to-
misinterpret results presented using limited metrics. To address
these problems, we first devise the distillation methodology to
place an empirical lower bound on the costs of GCs for any
given cost metric. Then, we use the distillation methodology
to measure the costs of five production collectors in OpenJDK
17. We find that these GCs incur substantial costs: (as an
underestimate) at least 7–82 % more time and 6–92 % more
cycle overhead relative to the intrinsic application cost for a
modest 2.4× heap.

Our results also show how a lack of diverse cost/performance
metrics can lead to misinterpretation of GC evaluations,
hindering GC development. We identify three important types
of misinterpretation: neglecting opportunity cost, neglecting
concurrency overhead, and using GC pause times as a proxy
metric for application latency. These types of misinterpretation
can be mitigated by including more metrics in the evaluation.

Our findings reveal substantial costs in production GCs,
highlighting opportunities for future research on low-latency
collectors with low costs. We recommend using more metrics
when evaluating GCs, because this helps reveal tradeoffs and
limitations of GCs that often go unnoticed. The distillation
methodology is language and runtime agnostic, and thus can
benefit GC research on a wide range of managed languages and
platforms, such as Go, .NET (for C# and other CLI languages)
and V8 (for JavaScript).

REFERENCES

[1] S. M. Blackburn, K. S. McKinley, R. Garner, C. Hoffmann, A. M. Khan,
R. Bentzur, A. Diwan, D. Feinberg, D. Frampton, S. Z. Guyer, M. Hirzel,
A. L. Hosking, M. Jump, H. Lee, J. E. B. Moss, A. Phansalkar,
D. Stefanovic, T. VanDrunen, D. von Dincklage, and B. Wiedermann,
“Wake up and smell the coffee: evaluation methodology for the 21st
century,” Commun. ACM, vol. 51, no. 8, pp. 83–89, 2008. [Online].
Available: https://doi.org/10.1145/1378704.1378723

[2] S. M. Blackburn, P. Cheng, and K. S. McKinley, “Myths and realities:
the performance impact of garbage collection,” in Proceedings of the
International Conference on Measurements and Modeling of Computer
Systems, SIGMETRICS 2004, June 10-14, 2004, New York, NY, USA,
E. G. C. Jr., Z. Liu, and A. Merchant, Eds. ACM, 2004, pp. 25–36.
[Online]. Available: https://doi.org/10.1145/1005686.1005693

[3] B. G. Zorn, “Barrier methods for garbage collection,” University
of Colorado Boulder, Tech. Rep., 11 1990. [Online]. Available:
https://scholar.colorado.edu/concern/reports/47429970d

[4] A. L. Hosking, J. E. B. Moss, and D. Stefanovic, “A comparative
performance evaluation of write barrier implementations,” in Conference
on Object-Oriented Programming Systems, Languages, and Applications
(OOPSLA’92), Seventh Annual Conference, Vancouver, British Columbia,
Canada, October 18-22, 1992, Proceedings, J. R. Pugh, Ed. ACM, 1992,
pp. 92–109. [Online]. Available: https://doi.org/10.1145/141936.141946

[5] S. M. Blackburn and A. L. Hosking, “Barriers: friend or foe?”
in Proceedings of the 4th International Symposium on Memory
Management, ISMM 2004, Vancouver, BC, Canada, October 24-25,
2004, D. F. Bacon and A. Diwan, Eds. ACM, 2004, pp. 143–151.
[Online]. Available: https://doi.org/10.1145/1029873.1029891

[6] X. Yang, S. M. Blackburn, D. Frampton, and A. L. Hosking, “Barriers
reconsidered, friendlier still!” in International Symposium on Memory
Management, ISMM ’12, Beijing, China, June 15-16, 2012, M. T.
Vechev and K. S. McKinley, Eds. ACM, 2012, pp. 37–48. [Online].
Available: https://doi.org/10.1145/2258996.2259004

[7] X. Huang, S. M. Blackburn, K. S. McKinley, J. E. B. Moss, Z. Wang,
and P. Cheng, “The garbage collection advantage: improving program
locality,” in Proceedings of the 19th Annual ACM SIGPLAN Conference
on Object-Oriented Programming, Systems, Languages, and Applications,
OOPSLA 2004, October 24-28, 2004, Vancouver, BC, Canada, J. M.
Vlissides and D. C. Schmidt, Eds. ACM, 2004, pp. 69–80. [Online].
Available: https://doi.org/10.1145/1028976.1028983

[8] B. G. Zorn, “The measured cost of conservative garbage collection,”
Softw. Pract. Exp., vol. 23, no. 7, pp. 733–756, 1993. [Online]. Available:
https://doi.org/10.1002/spe.4380230704

[9] S. M. Blackburn, R. Garner, C. Hoffmann, A. M. Khan, K. S. McKinley,
R. Bentzur, A. Diwan, D. Feinberg, D. Frampton, S. Z. Guyer, M. Hirzel,
A. L. Hosking, M. Jump, H. B. Lee, J. E. B. Moss, A. Phansalkar,
D. Stefanovic, T. VanDrunen, D. von Dincklage, and B. Wiedermann,
“The DaCapo benchmarks: Java benchmarking development and analysis,”
in Proceedings of the 21th Annual ACM SIGPLAN Conference on
Object-Oriented Programming, Systems, Languages, and Applications,
OOPSLA 2006, October 22-26, 2006, Portland, Oregon, USA, P. L. Tarr
and W. R. Cook, Eds. ACM, 2006, pp. 169–190. [Online]. Available:
https://doi.org/10.1145/1167473.1167488

[10] W. Zhao and S. M. Blackburn, “Deconstructing the garbage-first
collector,” in VEE ’20: 16th ACM SIGPLAN/SIGOPS International
Conference on Virtual Execution Environments, virtual event [Lausanne,
Switzerland], March 17, 2020, S. Nagarakatte, A. Baumann, and
B. Kasikci, Eds. ACM, 2020, pp. 15–29. [Online]. Available:
https://doi.org/10.1145/3381052.3381320

[11] M. Hertz and E. D. Berger, “Quantifying the performance of garbage
collection vs. explicit memory management,” in Proceedings of
the 20th Annual ACM SIGPLAN Conference on Object-Oriented
Programming, Systems, Languages, and Applications, OOPSLA 2005,
October 16-20, 2005, San Diego, CA, USA, R. E. Johnson and
R. P. Gabriel, Eds. ACM, 2005, pp. 313–326. [Online]. Available:
https://doi.org/10.1145/1094811.1094836

[12] C. H. Flood, R. Kennke, A. Dinn, A. Haley, and R. Westrelin,
“Shenandoah: An open-source concurrent compacting garbage collector
for OpenJDK,” in Proceedings of the 13th International Conference on
Principles and Practices of Programming on the Java Platform: Virtual
Machines, Languages, and Tools, Lugano, Switzerland, August 29 -
September 2, 2016, W. Binder and P. Tuma, Eds. ACM, 2016, pp.
13:1–13:9. [Online]. Available: https://doi.org/10.1145/2972206.2972210

[13] P. Lidén and S. Karlsson, “The Z garbage collector,” http://cr.openjdk.java.
net/∼pliden/slides/ZGC-FOSDEM-2018.pdf, 2018, accessed: 2021-12-07.
[Online]. Available: http://web.archive.org/web/20211207112406/http:
//cr.openjdk.java.net/∼pliden/slides/ZGC-FOSDEM-2018.pdf

[14] Z. Cai, “ISPASS 2022 artifact: Distilling the real cost of production
garbage collectors,” Apr. 2022. [Online]. Available: https://doi.org/10.
5281/zenodo.6476821

[15] D. Burger and T. M. Austin, “The simplescalar tool set, version 2.0,”
SIGARCH Comput. Archit. News, vol. 25, no. 3, pp. 13–25, 1997.
[Online]. Available: https://doi.org/10.1145/268806.268810

[16] S. M. Blackburn and K. S. McKinley, “Immix: a mark-region garbage
collector with space efficiency, fast collection, and mutator performance,”
in Proceedings of the ACM SIGPLAN 2008 Conference on Programming
Language Design and Implementation, Tucson, AZ, USA, June 7-13,
2008, R. Gupta and S. P. Amarasinghe, Eds. ACM, 2008, pp. 22–32.
[Online]. Available: https://doi.org/10.1145/1375581.1375586

[17] G. E. Collins, “A method for overlapping and erasure of lists,”

11

https://doi.org/10.1145/1378704.1378723
https://doi.org/10.1145/1005686.1005693
https://scholar.colorado.edu/concern/reports/47429970d
https://doi.org/10.1145/141936.141946
https://doi.org/10.1145/1029873.1029891
https://doi.org/10.1145/2258996.2259004
https://doi.org/10.1145/1028976.1028983
https://doi.org/10.1002/spe.4380230704
https://doi.org/10.1145/1167473.1167488
https://doi.org/10.1145/3381052.3381320
https://doi.org/10.1145/1094811.1094836
https://doi.org/10.1145/2972206.2972210
http://cr.openjdk.java.net/~pliden/slides/ZGC-FOSDEM-2018.pdf
http://cr.openjdk.java.net/~pliden/slides/ZGC-FOSDEM-2018.pdf
http://web.archive.org/web/20211207112406/http://cr.openjdk.java.net/~pliden/slides/ZGC-FOSDEM-2018.pdf
http://web.archive.org/web/20211207112406/http://cr.openjdk.java.net/~pliden/slides/ZGC-FOSDEM-2018.pdf
https://doi.org/10.5281/zenodo.6476821
https://doi.org/10.5281/zenodo.6476821
https://doi.org/10.1145/268806.268810
https://doi.org/10.1145/1375581.1375586


Commun. ACM, vol. 3, no. 12, pp. 655–657, 1960. [Online]. Available:
https://doi.org/10.1145/367487.367501

[18] S. M. Blackburn, P. Cheng, and K. S. McKinley, “Oil and water?
high performance garbage collection in Java with MMTk,” in 26th
International Conference on Software Engineering (ICSE 2004), 23-28
May 2004, Edinburgh, United Kingdom, A. Finkelstein, J. Estublier, and
D. S. Rosenblum, Eds. IEEE Computer Society, 2004, pp. 137–146.
[Online]. Available: https://doi.org/10.1109/ICSE.2004.1317436

[19] T. Yuasa, “Real-time garbage collection on general-purpose machines,”
J. Syst. Softw., vol. 11, no. 3, pp. 181–198, 1990. [Online]. Available:
https://doi.org/10.1016/0164-1212(90)90084-Y

[20] G. Tene, B. Iyengar, and M. Wolf, “C4: the continuously concurrent
compacting collector,” in Proceedings of the 10th International
Symposium on Memory Management, ISMM 2011, San Jose, CA, USA,
June 04 - 05, 2011, H. Boehm and D. F. Bacon, Eds. ACM, 2011, pp.
79–88. [Online]. Available: https://doi.org/10.1145/1993478.1993491

[21] D. Detlefs, C. H. Flood, S. Heller, and T. Printezis, “Garbage-first
garbage collection,” in Proceedings of the 4th International Symposium
on Memory Management, ISMM 2004, Vancouver, BC, Canada, October
24-25, 2004, D. F. Bacon and A. Diwan, Eds. ACM, 2004, pp. 37–48.
[Online]. Available: https://doi.org/10.1145/1029873.1029879

[22] P. Lidén and S. Karlsson, “JEP 333: ZGC: A scalable low-latency
garbage collector (experimental),” http://openjdk.java.net/jeps/333, Feb
2018, accessed: 2021-12-07. [Online]. Available: http://web.archive.org/
web/20211207112317/http://openjdk.java.net/jeps/333

[23] Oracle, “JVMTM tool interface,” https://docs.oracle.com/en/java/
javase/17/docs/specs/jvmti.html, Jun 2021, accessed: 2021-12-09.
[Online]. Available: https://web.archive.org/web/20211209121820/https:

//docs.oracle.com/en/java/javase/17/docs/specs/jvmti.html
[24] M. Stephens, “GCRealTimeMon,” https://github.com/Maoni0/realmon,

Nov 2021, accessed: 2021-12-09. [Online]. Available: https://web.archive.
org/web/20211209122302/https://github.com/Maoni0/realmon

[25] DaCapo Group, “DaCapo benchmarks evaluation snapshot 29a657f,”
Oct. 2021. [Online]. Available: https://doi.org/10.5281/zenodo.6475255

[26] P. Lidén, “ZGC | what’s new in JDK 17,” https://malloc.se/blog/zgc-jdk17,
Oct 2021, accessed: 2021-12-07. [Online]. Available: http://web.archive.
org/web/20211115113228/https://malloc.se/blog/zgc-jdk17

[27] R. Kennke, “Shenandoah in OpenJDK 17: Sub-millisecond
GC pauses,” https://developers.redhat.com/articles/2021/09/
16/shenandoah-openjdk-17-sub-millisecond-gc-pauses, Sep
2021, accessed: 2021-12-07. [Online]. Available: http:
//web.archive.org/web/20211207114248/https://developers.redhat.com/
articles/2021/09/16/shenandoah-openjdk-17-sub-millisecond-gc-pauses

[28] Oracle, “Java platform, standard edition HotSpot
virtual machine garbage collection tuning guide,
release 17,” https://docs.oracle.com/en/java/javase/17/gctuning/
hotspot-virtual-machine-garbage-collection-tuning-guide.pdf, Sept 2021,
accessed: 2021-12-13. [Online]. Available: http://web.archive.org/web/
20211213041034/https://docs.oracle.com/en/java/javase/17/gctuning/
hotspot-virtual-machine-garbage-collection-tuning-guide.pdf

[29] P. Cheng and G. E. Blelloch, “A parallel, real-time garbage collector,” in
Proceedings of the 2001 ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI), Snowbird, Utah, USA,
June 20-22, 2001, M. Burke and M. L. Soffa, Eds. ACM, 2001, pp.
125–136. [Online]. Available: https://doi.org/10.1145/378795.378823

12

https://doi.org/10.1145/367487.367501
https://doi.org/10.1109/ICSE.2004.1317436
https://doi.org/10.1016/0164-1212(90)90084-Y
https://doi.org/10.1145/1993478.1993491
https://doi.org/10.1145/1029873.1029879
http://openjdk.java.net/jeps/333
http://web.archive.org/web/20211207112317/http://openjdk.java.net/jeps/333
http://web.archive.org/web/20211207112317/http://openjdk.java.net/jeps/333
https://docs.oracle.com/en/java/javase/17/docs/specs/jvmti.html
https://docs.oracle.com/en/java/javase/17/docs/specs/jvmti.html
https://web.archive.org/web/20211209121820/https://docs.oracle.com/en/java/javase/17/docs/specs/jvmti.html
https://web.archive.org/web/20211209121820/https://docs.oracle.com/en/java/javase/17/docs/specs/jvmti.html
https://github.com/Maoni0/realmon
https://web.archive.org/web/20211209122302/https://github.com/Maoni0/realmon
https://web.archive.org/web/20211209122302/https://github.com/Maoni0/realmon
https://doi.org/10.5281/zenodo.6475255
https://malloc.se/blog/zgc-jdk17
http://web.archive.org/web/20211115113228/https://malloc.se/blog/zgc-jdk17
http://web.archive.org/web/20211115113228/https://malloc.se/blog/zgc-jdk17
https://developers.redhat.com/articles/2021/09/16/shenandoah-openjdk-17-sub-millisecond-gc-pauses
https://developers.redhat.com/articles/2021/09/16/shenandoah-openjdk-17-sub-millisecond-gc-pauses
http://web.archive.org/web/20211207114248/https://developers.redhat.com/articles/2021/09/16/shenandoah-openjdk-17-sub-millisecond-gc-pauses
http://web.archive.org/web/20211207114248/https://developers.redhat.com/articles/2021/09/16/shenandoah-openjdk-17-sub-millisecond-gc-pauses
http://web.archive.org/web/20211207114248/https://developers.redhat.com/articles/2021/09/16/shenandoah-openjdk-17-sub-millisecond-gc-pauses
https://docs.oracle.com/en/java/javase/17/gctuning/hotspot-virtual-machine-garbage-collection-tuning-guide.pdf
https://docs.oracle.com/en/java/javase/17/gctuning/hotspot-virtual-machine-garbage-collection-tuning-guide.pdf
http://web.archive.org/web/20211213041034/https://docs.oracle.com/en/java/javase/17/gctuning/hotspot-virtual-machine-garbage-collection-tuning-guide.pdf
http://web.archive.org/web/20211213041034/https://docs.oracle.com/en/java/javase/17/gctuning/hotspot-virtual-machine-garbage-collection-tuning-guide.pdf
http://web.archive.org/web/20211213041034/https://docs.oracle.com/en/java/javase/17/gctuning/hotspot-virtual-machine-garbage-collection-tuning-guide.pdf
https://doi.org/10.1145/378795.378823

	I Introduction
	II Background and Related Work
	II-A Absolute Costs of Garbage Collection
	II-B Costs Tightly Coupled with Application Execution
	II-C Indirect Costs and Benefits
	II-D Garbage Collection Algorithms in OpenJDK

	III Distilling the Absolute Cost of Garbage Collection
	III-A Definition with Examples
	III-B Discussion

	IV Case Study: Collectors in OpenJDK 17
	IV-A Methodology
	IV-B Results: Costs of Garbage Collection
	IV-C Analysis of Results
	IV-D Misinterpretation of Evaluation Results
	IV-E Recommendations

	V Conclusion
	References

