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Merlin timestamps objects and later uses the timestamps of dead objects to reconstruct when
they died. The Merlin algorithm piggybacks on garbage collections performed by the base system.
Experimental results show that Merlin can generate traces over two orders of magnitude faster
than the brute-force method which collects after every object allocation. We also use Merlin to
produce visualizations of heap behavior that expose new object lifetime behaviors.

Categories and Subject Descriptors: D.3.4 [Programming Languages]: Processors—Memory
management (garbage collection)

General Terms: Algorithms, Languages, Performance

Additional Key Words and Phrases: Garbage collection, trace design, object lifetime analysis, trace
generation

1. INTRODUCTION

While languages such as LISP and Smalltalk have always used garbage collec-
tion (GC), the dramatic increase in the number of programs written in Java,
C#, and other modern languages has prompted a corresponding surge in GC
research. A number of these studies have used garbage collection traces and
simulations to examine the effectiveness of new GC algorithms [Hirzel et al.
2003; Stefanović et al. 1999; Zorn 1989]. Other research has used traces to tune
garbage collection via profile feedback [Blackburn et al. 2001; Cheng et al. 1998;
Shaham et al. 2000; Ungar and Jackson 1992]. A perfect trace for garbage collec-
tion includes the birth and death time of all objects, measured in bytes allocated.
(The memory management community uses memory rather than operations to
measure lifetime.) Computing perfect lifetimes can be a very time-consuming
process. For instance, a tracing collector must determine all the reachable ob-
jects in the heap at every allocation by computing reachability from the stacks,
global variables, and local variables:

n∑

i=1

|live objects| at ai,

where n is the number of objects the program allocates, and ai is an allocation
event. This cost is prohibitive even for modest programs that allocate on the
order of 100 MB and have an average live size on the order of 10 MB, such
as the widely used SPECjvm98 benchmarks [SPECjvm98 1998]. On current
processors, many of these programs execute in under a minute, but brute-force
trace generation takes over 3 months. Costs are similar even for a reference
counting collector because it also requires a form of tracing to handle cycles.
While future technology advances will reduce this time, these same trends
inspire programmers to use larger data sets.

To avoid this cost, previous research often uses granulated traces which es-
timate object lifetimes periodically (e.g., after every k bytes of allocation). How-
ever, researchers have not studied the effects of granularity on the accuracy of
garbage collection simulations or measures computed from them. While Zorn
and Grunwald [1992] examined better methods of approximating traces, no
one has studied what effects these approximations have either. In this work,
we run simulations using granulated traces on a variety of copying garbage
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collection algorithms and metrics for evaluating them. The results demonstrate
that granulated traces can produce significantly different results and thus that
conclusions drawn from research based on simulations of granulated traces
may be problematic.

We introduce the Merlin object lifetime algorithm which efficiently computes
object lifetimes. The Merlin algorithm timestamps live objects when they lose
an incoming reference and later uses the timestamps to reconstruct the time
at which the object became unreachable. By using timestamps rather than
tracing to identify the time of death, the new algorithm does not require fre-
quent collections nor does it require whole-heap collections. Rather, it makes
use of those collections that the system (virtual machine) normally performs to
identify which objects have died, and then uses the timestamps to identify when
they died. Ordering the dead objects from the latest timestamp to the earliest,
the algorithm works from the current collection time backwards. Merlin thus
only processes each object once to compute its death time after it knows that the
object is dead. Merlin’s execution time is proportional to the total allocations
plus the number of times each object loses an incoming reference, m.

n∑

i=1

|object allocated| at ai +
m∑

j=1

r j .

Experimental results on SPECjvm98 and other programs show that in practice
the Merlin algorithm can improve performance by more than a factor of 800
over brute-force tracing, though it is 70 to 300 times slower than an untraced
program. Merlin thus makes producing perfect traces much more attractive.

This article extends our prior work [Hertz et al. 2002a] which introduced
the Merlin algorithm with (1) a better description of the Merlin algorithm, (2)
qualitative as well as quantitative analysis of the effects of trace granulation,
(3) a more detailed performance analysis, (4) an algorithm that uses Merlin to
generate granulated traces, and (5) results and analysis of Merlin heap lifetime
visualizations.

As a demonstration of the usefulness of perfect traces, we present heap life-
time visualizations. Stefanović [1999] used brute-force traces to produce similar
visualizations for a set of small programs to explore garbage collection perfor-
mance. By reducing the time to generate traces, we examine here much larger
and more realistic programs. These graphs reveal lifetime behaviors and trends
that enhance the understanding of object lifetimes and design of garbage col-
lection algorithms, and we offer some analysis here.

The remainder of the article analyzes the effects of trace granularity on
garbage collection simulation fidelity for a number of collectors, introduces the
Merlin trace generation algorithm, and describes additional uses of lifetime
traces. Section 2 gives some background on garbage collection, lifetime traces,
and trace granularity. Section 3 describes our experimental methodology for an-
alyzing the effects of trace granularity. Section 4 and 5 present and discuss the
results of our granularity analysis. Section 6 introduces the Merlin trace gen-
eration algorithm and describes how it improves on the previous approaches.
Section 7 presents and analyzes results from the new algorithm. Section 8
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presents additional uses of perfect lifetime traces. Finally, Section 9 presents
related work and Section 11 summarizes this study.

2. BACKGROUND

This section explains three background concepts: garbage collection (GC),
garbage collection traces and their use in simulations, and garbage collection
trace granularity.

2.1 Garbage Collection

Garbage collection automates the reclamation of heap objects that are no longer
needed [Jones and Lins 1996]. While a wide variety of systems use garbage
collectors, we assume a system that uses an implicit-free environment, that is,
a system that defines an explicit new command for object allocation, but not a
free command. Since garbage collectors cannot know which objects the program
will use in the future without additional information, collectors conservatively
approximate liveness with reachability; all reachable objects are assumed live,
and all unreachable objects may be reclaimed since it is not possible for the
program to access them again.1 To determine reachability, a collection begins
at a program’s roots. The roots contain all the pointers from outside of the heap
into the heap, such as the program stacks, static (global) variables, and local
variables in the current procedure. The collector then finds the live objects
by finding all objects in the transitive closure over the points-to (reachability)
relationship.

Whole-heap collectors compute the reachability of every object and remove
all unreachable objects on every collection. Many collectors (e.g., generational
collectors [Lieberman and Hewitt 1983; Ungar 1984]) often collect part of the
heap, limiting the work at a collection. Because the collector reclaims only
unreachable objects, it must conservatively assume that the regions of the heap
not examined contain only live objects. If objects in the unexamined region
point to objects in the examined region, the target objects must remain in the
heap. Collectors typically use write barriers to find pointers into the collected
region. A write barrier is code executed by the system in conjunction with each
pointer store operation. A write barrier typically tests if the pointer target is in
a region that will be collected before the region containing the pointer source,
and records such pointers in some data structure.

2.2 Copying Garbage Collection Algorithms

We use four copying GC algorithms for evaluating trace granularity: a
semispace collector, a fixed-size nursery generational collector [Lieberman
and Hewitt 1983; Ungar 1984], a variable-sized nursery generational collector
[Appel 1989], and an Older-First collector [Stefanović et al. 1999, 2003]. We
briefly describe each of these here and refer the reader to previous work for
more details [Jones and Lins 1996].

1Systems with finalization must maintain pointers to these objects until they perform the finaliza-
tion operations, at which point the collector can reclaim them.
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A semispace collector (SS) allocates into From space using a bump pointer.
A bump pointer defines a boundary between allocated and free memory within
a larger contiguous region. It allows simple and efficient allocation by incre-
menting the pointer by the size of the allocated object. When SS runs out of
space, it collects this entire space by finding all reachable objects and copying
them into a second space, called To space. The collector then reverses From and
To space and continues allocating. Since all objects in From space may be live,
it must conservatively reserve half the total heap for the To space, as do the
generational collectors that generalize this collector.

A fixed-size nursery (FG) two-generation collector divides the From space of
the heap into a nursery and an older generation. It allocates into the nursery.
When the nursery is full, it collects the nursery and copies the live objects into
the older generation. It repeats this process until the older generation is also
full. It then collects the nursery together with the older generation and copies
survivors into the To space of the older generation.

A variable-size nursery two-generation collector (VG) also divides the From
space into a nursery and an older generation, but does not fix the boundary
between them. In the steady state, the nursery is some fraction of From space.
When the nursery is full, VG copies live objects into the older fraction. The new
nursery size is reduced by the size of the survivors. When the nursery becomes
too small, VG collects all of From space. The obvious generalization of these
variants to n generations apply.

The Older-First collector (OF) organizes the heap in order of object age. It
collects a fixed-size window that slides through the heap from older to younger
objects. When the heap is full in the steady state, OF collects the window, re-
turns the free space to the nursery, compacts the survivors, and then positions
the window for the next collection at objects just younger than those that sur-
vived. If the window bumps into the allocation point, OF resets the window to
the oldest end of the heap. OF need only reserve space the size of one window
for collection (as opposed to half the heap for the other algorithms).

2.3 Garbage Collection Traces and Simulations

Given the typical difficulty of implementing a known garbage collector, imple-
menting and debugging new garbage collection algorithms and optimizations
can be a daunting process. Especially when a collector is designed to take advan-
tage of new or unavailable hardware (e.g., a 64-bit address space [Stefanović
1999]) or compiler optimizations (e.g., Hirzel et al. [2003]), researchers have
often used simulators to enable rapid prototyping and evaluation before in-
vesting in a full implementation. By loosening restrictions on the knowledge
available to a collector and what a GC algorithm may do, simulators are also
useful for oracle-driven limit studies [Hertz and Berger 2004; Stefanović 1999].
A final value of simulators is their ability to support evaluations of a single
implementation of a garbage collector with input from any number of different
programming languages or virtual machines. As a portion of our study is an
examination of simulator fidelity, here we provide the reader a basic description
of GC simulators and the traces that drive them.
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A garbage collection trace is a chronological record of every object alloca-
tion, heap pointer update, and object death (object becoming unreachable) over
the execution of a program. Following common practice, traces measure time
in bytes of allocation and not number of operations. Each event includes the
information that a memory manager needs for its processing. Processing ob-
ject allocation records requires an identifier for the new object and the object’s
size; pointer update records include the object and field being updated and the
new value of the pointer; object death records indicate which object became un-
reachable. These events constitute the minimum amount of information that
GC simulations need. Depending on the algorithm and detail of simulation,
other events, such as procedure entry and exit, field reads, or root pointer enu-
meration, may also be necessary and/or useful.

Simulators then apply one or more GC algorithms and optimizations to a
given program trace. The trace must contain all the information that a garbage
collection algorithm would actually use in a live execution and all of the events
upon which the collector may be required to act, independent of any specific
GC implementation. Traces do not record all aspects of program execution, but
only those which are needed to recreate collector performance accurately. While
even single-threaded garbage collection may not be deterministic, simulations
return deterministic results since the trace file is fixed. With representative
trace files, researchers can rely upon these results, making simulation attrac-
tive and accurate traces critical.

GC trace generators must be integrated into the memory manager of the
interpreter or virtual machine in which the program runs. If the program is
compiled into a stand-alone executable, the compiler back end must generate
trace generation code in addition to the ordinary memory management code at
each object allocation point and pointer update. The generator can log pointer
updates by instrumenting pointer store operations; this instrumentation is par-
ticularly easy if the language and GC implementation use write barriers, since
the generator can simply piggyback its instrumentation onto existing code.

The common brute-force method of computing object lifetimes determines
reachability by performing a whole-heap GC after every allocation. The brute-
force method incurs the expense of collecting the entire heap prior to allocating
each object. In current technology, brute-force accurate trace generation for a
small micro benchmark at all allocation points takes days; traces of simple
single-threaded programs from SPECjvm98 can require several months.

Even though objects may die between allocations, the memory management
literature uses bytes of allocation to measure object lifetimes. Many GC algo-
rithms only trigger collection when they need additional space in the heap,
that is, immediately before allocating a new object, and thus this measurement
is fully accurate. GC algorithms such as deferred reference counting [Deutsch
and Bobrow 1976; Blackburn and McKinley 2003] can initiate collections at
other GC safe points as well, such as a procedure call or return. A GC safe
point requires that the garbage collector correctly enumerate all root pointers.
Although we do not consider these additional points here, such a trace would
include markers for all such points, and a brute-force trace generator would
perform additional reachability analyses at all these points as well.
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2.4 Garbage Collection Trace Granularity

To reduce the prohibitive cost of brute-force trace generation, previous work
often performs object lifetime analysis only periodically, for example, after ev-
ery k bytes of allocation. It also guarantees the trace to be accurate only at
those specific points; the rest of the time the trace may overestimate the set of
live objects. For correctness, any simulation must assume that objects become
unreachable only at the accurate points. The granularity of a trace is the period
between these moments of accurate death knowledge.

3. EFFECTS OF TRACE GRANULARITY

This section evaluates the effects of trace granularity on simulation accuracy
using copying garbage collectors as the set of client algorithms. We first de-
scribe our simulator and programs. To our knowledge, all previous GC simu-
lation work (including our own) neglected to consider precisely the question of
information accuracy at different points in a trace with a given granularity. We
explore a variety of methods for handling granularity in simulation. We find
that, although some methods yield better results than others, all methods intro-
duce inaccuracies into GC algorithm simulations, even with relatively modest
trace granularity.

3.1 Simulator Suite

For our trace granularity experiments, we used gc-sim, a GC simulator suite
from the University of Massachusetts with front-ends for Smalltalk and Java
traces. In our simulator, we implemented four different GC algorithms: SS,
FG, VG, and OF, as described in Section 2.2. The first three collectors are in
widespread use. For each collector, we used a number of fixed heap sizes to
explore the inherent space-time tradeoff in garbage collection. We simulated
eight different From space sizes, from 1.25 to 3 times the maximum size of the
live objects within the heap, at 0.25 increments. For FG and VG, we simulated
each heap size with five different nursery sizes, and, for OF, five window sizes.
These latter parameters ranged from 1

6 to 5
6 of From space, in 1

6 increments.

3.2 Granularity Schemes

We designed and implemented four different schemes to handle trace granu-
larity. Each of these schemes is independent of the simulated GC algorithm. By
affecting when the collections occur, they explore the limits of trace granularity.

3.2.1 Unsynchronized. When we began this research, our simulator used
this naive approach to handling trace granularity: it did nothing. We call this
method Unsynchronized. Unsynchronized simulations allow a GC to occur at
any time in the trace; simulated collections occur at the natural collection points
for the garbage collection algorithm (such as when the heap or nursery is full).
This scheme allows the simulator to run the algorithm as it is designed and does
not consider trace granularity when determining when to collect. Unsynchro-
nized simulations may treat an object as reachable because the object death
record was not yet reached in the trace, even though the object is unreachable.
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Fig. 1. These figures show points with perfect knowledge (triangles) and the natural collection
point (N) (where the collector runs out of space). The shaded region highlights a granule-sized
region of the trace and contains the collection point (C) where the Synchronization scheme will
actually simulate a collection.

However, they allow a GC algorithm to perform collections at their natural
points, unconstrained by the granularity of the input trace.

3.2.2 Synchronized Schemes. Three other schemes, which we call Synchro-
nized, simulate collections only at those points in the trace with accurate knowl-
edge of unreachable objects. The schemes check if a GC is needed, or will be
needed soon, only at the accurate points and simulate a collection only at these
points. Figure 1 shows how each of the Synchronized schemes makes collection
decisions. In each of these figures, the solid line labeled N is the natural collec-
tion point for the algorithm. The triangles denote points with perfect knowledge
and the shaded region indicates one granule of the trace. Each scheme performs
the collection at the point in the trace with perfect knowledge within the shaded
region. This point is shown by the arrow labeled C.

SyncEarly. The first scheme we call SyncEarly. Figure 1(a) shows how
SyncEarly decides when to collect. If, at a point with perfect knowledge, the
simulator determines that the natural collection point will be reached within
the following granule of the trace, SyncEarly forces a collection. SyncEarly
always performs a collection at or before the natural point is reached. Even
assuming there are no effects from trace granularity, SyncEarly simulations
may still perform extra garbage collections, for example, when the last natural
collection point occurs between the end of the trace and what would be the next
point with perfect knowledge. But SyncEarly ensures that the simulated heap
will never grow beyond the bounds it is given.
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SyncLate. The second scheme is SyncLate. Figure 1(b) shows how SyncLate
decides when to collect. At a point with perfect knowledge, if SyncLate computes
that the natural collection point occurred within the preceding granule of the
trace, SyncLate invokes a garbage collection. SyncLate collects at or after the
natural point is reached. SyncLate simulations may collect too few times, for
example, when the last natural collection point occurs between the last point
with perfect knowledge and the end of the trace. SyncLate allows the heap
and/or nursery to grow beyond their nominal bounds between points with per-
fect knowledge, but enforces the bounds whenever a collection is completed.

SyncMid. The last Synchronized scheme is SyncMid. Figure 1(c) shows how
SyncMid decides when to collect. SyncMid forces a GC invocation at a point with
perfect knowledge if a natural collection point is within half of a granule in the
past or future. SyncMid requires a collection at the point with perfect knowl-
edge closest to the natural collection point. SyncMid simulations try to balance
the times they invoke collections too early and too late to achieve results close
to the average. SyncMid simulations may, like SyncEarly, perform more or may,
like SyncLate, perform fewer garbage collections. Between points with perfect
knowledge, SyncMid simulations may also require the heap and/or nursery to
grow beyond their nominal bounds. However, heap bounds are enforced imme-
diately following a collection.

4. TRACE GRANULARITY RESULTS

Using our simulator suite, we performed a number of experiments to deter-
mine if trace granularity affects garbage collection simulations. We examined
the performance of each combination of collector and trace granularity scheme
described above on a variety of Java and Smalltalk benchmarks across several
commonly used GC metrics. Our results show that even small trace granular-
ities produce differences in simulator results and that algorithm choice could
help limit, but not eliminate, this problem. The remainder of this section de-
scribes in more detail the metrics we considered, the experiments we performed,
and presents an overview of these results.

4.1 GC Simulation Metrics

Each GC simulation measures the following: the number of simulated collec-
tions, the mark/cons ratio, the number of write-barrier stores, and the space-time
product. For a given trace, these metrics are deterministic.

The mark/cons ratio is the number of bytes that the collector copied (marked)
divided by the number of bytes allocated (cons’ed, in LISP terminology). The
ratio approximates the amount of work done by a collector. Higher mark/cons
ratios suggest an algorithm will need more time, because it must process and
copy more objects and more bytes.

Another metric we report is the number of write-barrier stores during a
program run. Since many garbage collectors do not collect the entire heap,
they use a write barrier to find pointers between collection regions (as dis-
cussed in Section 2.1). The write barrier instruments pointer store operations to
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determine if the pointer crosses from one collection region to another. Depend-
ing on the GC algorithm, pointers crossing particular region boundaries in
particular directions must be recorded (“remembered”) so that they can subse-
quently be examined at GC time; these stores are called write-barrier stores.
The number of pointer stores, and the cost to instrument each of these, does not
vary in a program run, but the number of write-barrier stores varies between
GC algorithms at run time and affects their performance.

We measured the space-time product, computing the sum of the number of
bytes used by objects within the heap at each allocation point multiplied by the
size of the allocation, that is, the integral of the number of bytes used by objects
within the heap with respect to bytes of allocation (time). Since the number of
bytes allocated does not vary between algorithms, this metric captures how well
an algorithm manages issues such as fragmentation throughout the program
execution.

None of these metrics is necessarily sufficient in itself to determine how well
an algorithm performs. Algorithms can perform better in one or more of the
metrics at the expense of another. The importance of considering the totality of
the data can be seen in models developed that combine the data to determine
the total time each algorithm needs [Stefanović et al. 1999].

4.2 GC Traces

We used 15 GC traces in this study. Nine of the traces were from the Jikes
RVM [Alpern et al. 1999; Alpern et al. 2000], a compiler and run-time system
for Java in which we implemented our trace generator. Because the Jikes
RVM is written in Java, these traces included heap allocations from both
the application and the Jikes RVM. The nine Java traces were bloat-bloat
(Bloat [Nystrom 1998] using its own source code as input), two different
configurations of Olden health (5 256 and 4 512) [Cahoon and McKinley 2001],
and compress, jess, raytrace, db, javac, and jack from SPECjvm98 [SPECjvm98
1998]. We also had six GC traces that we generated previously using the
University of Massachusetts Smalltalk Virtual Machine. The Smalltalk traces
were lambda-fact5, lambda-fact6, tomcatv, heapsim, tree-replace-random,
and tree-replace-binary [Hosking et al. 1992; Stefanović et al. 1999]. More
information about the programs appears in Table I. These programs are widely
used in the garbage collection literature.

We implemented a filter that accepts a perfect trace and target value, and
outputs the trace with the targeted level of granularity. From our perfectly accu-
rate traces for each of the programs we generated seven granulated versions of
each trace with trace granularities ranging from 1 KB to 64 KB. To examine the
effects of very large trace granularity, we used granularities of 512 KB, 1024 KB
and 2048 KB. We selected the minimum 1 KB granularity to be smaller than
most prior traced-based research but still large enough to provide some savings
in trace generation time. Table II shows an example of the simulator output
where |GC| is the number of collections, xcopy b is the number of excess copied
bytes (unreachable bytes copied), and mut. i/s is the number of write-barrier
stores that occur during program execution.

ACM Transactions on Programming Languages and Systems, Vol. 28, No. 3, May 2006.



486 • M. Hertz et al.

Table I. Traces Used in the Experiment. (Sizes are Expressed in Bytes)

Program Description Max. Live Bytes Alloc. Objs. Alloc.
bloat-bloat Bytecode-Level Optimization

and Analysis Tool 98 using
its own source code as
input

3 207 176 164 094 868 3 653 255

Olden Health (5 256) Columbian health market
simulator from the Olden
benchmarks, recoded in
Java

2 337 284 14 953 944 662 395

(4 512) A smaller run of Olden
health

1 650 444 9 230 756 353 094

SPEC 201 compress Compresses and
decompresses 20 MB of
data using the Lempel-Ziv
method

8 144 188 120 057 332 138 931

SPEC 202 jess Expert shell system using
NASA CLIPS

3 792 856 321 981 032 8 575 988

SPEC 205 raytrace Raytraces a scene into a
memory buffer

5 733 464 154 028 396 6 552 000

SPEC 209 db Performs series of database
functions on a memory
resident database

10 047 216 85 169 104 3 314 278

SPEC 213 javac Sun’s JDK 1.0.4 compiler 11 742 640 274 573 404 8 096 562
SPEC 228 jack Generates a parser for Java

programs
3 813 624 322 274 664 8 107 004

lambda-fact5 Untyped lambda calculus
interpreter evaluating 5! in
the standard Church
numerals encoding

25 180 1 111 760 53 580

lambda-fact6 Untyped lambda calculus
interpreter evaluating 6! in
the standard Church
numerals encoding

54 700 4 864 988 241 864

tomcatv Vectorized mesh generator 126 096 42 085 496 3 385 900
heapsim Simulates a garbage

collected heap
549 504 9 949 848 764 465

tree-replace-random Builds a binary tree then
replaces random subtrees
at a fixed height with
newly built subtrees

49 052 2 341 388 121 588

tree-replace-binary Builds a binary tree then
replaces random subtrees
with newly built subtrees

39 148 818 080 34 729

4.3 Analysis

We began our experiments by simulating all combinations of benchmark, trace
granularity, granularity scheme, GC algorithm, and From space and nursery
(window) size, recording the four metrics from above for each combination. This
provided us with 600 OF, VG, and FG simulation runs and 120 SS simulation
runs for each combination of trace granularity and granularity scheme. From
this large population of data we performed qualitative and statistical analyses
of the results.
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Table II. Simulator Output From a Fixed-Size Nursery (FN) Simulation of Health (4, 512)
(The top lines are the metrics after six collections, when the differences first become

obvious; the bottom lines are the final results of the simulation.)

|GC| alloc b copy b xcopy b garbage b mark/con xcopy/copy mut. i/s
6 5 221 236 1 098 480 268 088 3 770 048 0.210 387 0.244 054 14 243

10 9 230 756 1 552 152 284 404 6 622 732 0.168 150 0.183 232 40 675
(a) Perfect trace

|GC| alloc b copy b xcopy b garbage b mark/con xcopy/copy mut. i/s
6 4 787 328 1 443 608 355 768 2 824 328 0.301 548 0.246 444 11 644

11 9 230 756 2 007 252 375 464 6 392 528 0.217 453 0.187 054 41 949
(b) SyncMid with 1 KB granularity

We excluded the following sets of simulations that did not exercise the mem-
ory system well, and/or yield incomplete information: simulations with fewer
than 10 garbage collections: simulations where the trace granularity equaled
50% or more of the simulated From space size, since trace granularity would
obviously impact these results; simulations where either the simulation us-
ing the perfect trace or granulated trace could not run within the given heap
size (for example, where the heap size was too small to accommodate imperfect
collection due to late or early synchronization.)

For our statistical study, the number of experiments remaining at the 1 KB
granularity was about 90 for SS, 200 for VG, 250 for FG, and 425 for OF. The
number of valid simulations did not vary by more than 2%–3% until the 32 KB
granularity. At the 32 KB granularity, there were 20% fewer valid simulations.
The numbers continued to drop as the granularity increased; by the 2048 KB
granularity there were fewer than half the number of usable simulations as at
the smallest granularity.

We analyze the data as follows to reveal if trace granularity affected GC
simulations and if it did, at what granularities the differences appeared. To
aggregate the data, we normalized the granulated trace simulation results to
the results of an identically configured simulation using a perfect trace. We
used the logarithm of this ratio so that values twice as large and half as much
averaged to 1. To provide a qualitative analysis of the effects of trace granu-
larity, we compared the normalized simulator result of each metrics versus the
granularity of the trace being simulated. We found that expressing the trace
granularity by different methods helped show different causes of these errors.
The three graphs in Figure 2 all show normalized mark/cons values for SyncMid
with VN, but using three different methods of expressing the trace granularity.

Figure 2(a) plots the relative mark/cons ratio as a function of the trace gran-
ularity. This graph reveals that normalized simulator results for this metric
ranged from 1.6 to 0.5 at even the smallest granularity, with the spread in-
creasing at larger granularities. From this graph, however, it is difficult to
determine how much of this behavior was due to the relative size of the trace.
Figure 2(b) shows the same results as a function of trace granularity relative
to the maximum live size of the trace. It separates the data, and shows the
range of errors for the mark/cons ratio that can occur at a single heap size.
Figure 2(c) expresses the trace granularity relative to the size of the simulated
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Fig. 2. Qualitative analyses of the effects of trace granularity on simulator fidelity of mark/cons
measurements for runs of VN using SyncMid. While relatively large errors occur at even the
smallest trace granularities, patterns emerge when the results are plotted against the ratio of
trace granularity versus simulated heap size.

heap and is a better predictor of error, but still does not place a tight bound on
the deviations. Figure 3 plots relative trace granularity for VN using SyncEarly,
SyncLate, and Unsynchronized. In comparison to Figure 2(c), SyncMid was as
good as or better than the other granulation schemes.

While these results are helpful for understanding when errors occur, statis-
tical analysis is needed to determine (1) if measures of trace granularity are
simulation-dependent, (2) if there exists some granularity size that could yield
acceptable error at trace generation time; and (3) if even when relative trace
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Fig. 3. Qualitative analyses of the effects of trace granularity on simulator fidelity for measure-
ments of mark/cons on VN. At even the smallest granularities, there are wide ranges in simulator
results.

granularity is quite small, we will continue to see a sizable error in simulated
results.

For a more definitive answer as to whether trace granularity affects GC
simulations, we performed two-tailed t-tests on the aggregated results for all
metrics. A two-tailed t-test determines if the difference between the actual
mean (e.g., the result from the granulated trace) and expected mean (e.g., the
result if trace granularity had no effect on the simulator results) is the result of
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Table III. Smallest Granularity (in KB) at which Each Metric Becomes Significantly Different,
by Simulation Method and Collector. (Differences were tested using a two-tailed t-test at the 95%

confidence level (p = 0.05).)

Unsynced SyncMid SyncEarly SyncLate
SS FG VG OF SS FG VG OF SS FG VG OF SS FG VG OF

Mark/Cons 1 1 1 1 none 1 none 1 1 1 4 4 1 8 16 4
Space-Time 1 1 1 1 none 1 2 1 1 1 1 1 1 1 1 2
|GC| 1 1 16 1 none 1 16 1 1 1 4 4 1 1 1 1
WB Stores n/a 16 16 1 n/a 32 16 none n/a 2 8 4 n/a 2 4 8

natural variance in the data or the effects of trace granulation are larger than
can be explained by normal variance. Following convention, we considered only
differences at the 95% confidence level or higher (p ≤ 0.05) to be statistically
significant (more than the result of the random variations observable in the
simulator results). When the t-test finds that the granulated results are signif-
icantly higher at the 95% confidence level, it signifies that were the experiment
to be repeated with similarly granulated traces, 95% of repeated experiments
would also find the granulated trace to be larger than results generated from
perfect traces [Natrella 1963]. A similar argument exists for results that the
t-test determine are significantly lower. Table III shows the smallest granu-
larity, in kbytes, at which we observe a statistically significant difference for
each combination of collector, metric, and simulation method. It includes the
mark/cons ratio, Space-Time, which measures fragmentation; |GC| the number
of collections, and WB Stores the number of pointers the write barrier must
record for incremental collection (i.e., older to younger pointers in FG and VG,
and cross increment pointers in OF). Section 4.1 describes these in more detail.

Programs with smaller From space and nursery (window) sizes will obvi-
ously be more sensitive to trace granularity. Just as we removed simulations
where the granularity was over half of From space size, we reran our analysis
using only those traces that, at some point, had enough live objects to equal
the largest trace granularity. The excluded programs were small enough that
a trace generator using the brute-force method of lifetime analysis could gen-
erate perfect traces in under 8 h. The traces remaining in this analysis were
those for which tracing using the brute-force method would need to generate
granulated traces. The number of remaining simulations ranged from around
40 (for SS) to around 220 (for OF) at the 1 KB granularity and did not vary by
more than 1 or 2 until the 2048 KB granularity where the counts of the OF and
all Unsynchronized simulations decreased by about 10%. The results of this
analysis appear in Table IV.

5. TRACE GRANULARITY DISCUSSION

The data in Table III is quite revealing about the effects of trace granularity and
the usefulness of the different schemes in handling granulated traces. While
Figure 2(a) shows that there can be a considerable range of errors, Table III
shows that this still wasn’t enough to establish statistically significant distor-
tions. For a majority of the metrics, however, a granularity as fine as 1 KB was
enough to cause this distortion. Clearly, trace granularity significantly affects
the simulator results.
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Table IV. Smallest Granularity (in KB) at which Each Metric Becomes Significantly Different, by
Simulation Method and Collector. (Differences were tested using a two-tailed t-test at the 95%

confidence level (p = 0.05). This table considers only data from traces with a maximum live size of
2 MB or more.)

Unsynced SyncMid SyncEarly SyncLate
SS FG VG OF SS FG VG OF SS FG VG OF SS FG VG OF

Mark/Cons 1 1 4 32 none 512 none 64 8 512 none 8 32 1 1024 16
Space-Time 4 1 512 1 1 1 512 32 1 1 512 2 16 1 512 512
|GC| 32 1 512 16 none 1 512 1024 64 1 512 8 16 1 64 8
WB Stores n/a 512 2098 512 n/a 16 1 none n/a 32 1 8 n/a 16 1024 16

5.1 Unsynchronized Results

Unsynchronized collections dramatically distort simulation results. In
Table III, two collectors (SS and OF) have statistically significant differences
for every metric at the 1 KB granularity. In both cases, the granulated traces
copied more bytes, needed more collections, and their heaps were consistently
fuller. For both collectors the differences were actually significant at the 99.9%
confidence level or higher (p ≤ 0.001), meaning we would expect similar results
in 999 out of 1000 experiments. The generational collectors did not fare much
better. VG and FG simulations using traces with only 1 KB of granularity aver-
aged 2.8% and 5.0% higher mark/cons ratios than with perfect traces, respec-
tively. As one would expect, these distortions grew with the trace granularity.
In Unsynchronized simulations, collections may come at inaccurate points in
the trace; the garbage collector must process and copy objects that are reach-
able only because the trace has not reached the next set of death records. Once
copied, these objects increase the space-time product and cause the heap to be
full sooner, and thus require more frequent GCs. At the 16 KB granularity, FG
averaged “only” 2.0% more collections—the other collectors averaged from 6.9%
(VG) to 10.5% (SS) more. As these incorrectly promoted objects cause needless
promotion of the objects to which they point, this process snowballs so that even
small granularities quickly produce significant differences. Only the number of
write-barrier stores for the generational collectors and the number of collec-
tions required for VG are not immediately affected. There are not significantly
more pointers from the older generation to the nursery because Unsynchro-
nized collections tend to incorrectly promote objects that are unreachable and
cannot be updated.

We expect simulations using larger heaps to be less affected by these issues.
The results in Table IV show that this hypothesis is true. The space-time prod-
uct and mark/cons results for SS show that objects are staying in the heap
longer. For VG simulations, however, we do not see a significant increase in
the number of collections (at 16 KB granularity, these simulations averaged
only 0.09% more collections); the extra objects require the collector to perform
more whole-heap collections and not just nursery collections. Therefore each
collection does more work: a conclusion validated by the significantly higher
mark/cons ratio (at 16 KB granularity VG’s mark/cons ratio is 15.7% greater
on average than perfect simulation). Irrespective of the collection algorithm,
Unsynchronized simulations clearly distort the results. This finding suggests
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that trace file formats should clearly label the points in the trace with perfect
knowledge.

5.2 Synchronized Results

Synchronized simulations tend to require slightly higher granularities than
Unsynchronized before producing significant distortions. As can be seen in
Table III, every Synchronized scheme significantly distorts the results for each
metric for at least one collector and at least one metric for each collector. Ex-
amining the results from Table III and Table IV reveals a few patterns. Con-
sidering all the traces, SyncEarly and SyncLate still produce differences from
simulations using perfect traces, but require slightly larger trace granularities
than Unsynchronized before the differences become statistically significant.
SyncMid has several cases where significant distortions do not appear, but this
result is both collector- and metric-dependent. In addition, there are still sta-
tistically significant distortions when using traces with granularities as small
as 1 KB. In Table IV, which considers only traces with larger maximum live
sizes, Synchronized simulations provide better estimates of the results from
simulating perfect traces. There still exist significant differences at fairly small
granularities, however.

Because Synchronized simulations affect only when the collections occur,
they do not copy unreachable objects merely because the object death record
has not been reached. Instead, adjusting the collection point causes other prob-
lems. Objects that are allocated and those whose death records should occur
between the natural collection point and the Synchronized collection point are
initially affected. Depending on the Synchronized scheme, these objects may
be removed from the heap or processed and copied earlier than in a simula-
tion using perfect traces. Once the heap is in error (containing too many or
too few objects), it is possible for the differences to be compounded as the Syn-
chronized simulation may collect at points even further away (and make differ-
ent collection decisions) than the simulation using perfect traces. Just as with
Unsynchronized simulations, small initial differences can snowball.

5.2.1 SyncEarly. SyncEarly simulations tend to decrease the space-time
products and increase the number of collections, write-barrier stores, and
mark/cons ratios versus simulations using perfect traces. While generally true,
FG contradicts this trend, which produces a higher space-time product at
smaller granularities. Normally, FG copies objects from the nursery because
they have not had time to die before collection. SyncEarly exacerbates this
situation, collecting even earlier and copying more objects into the older gener-
ation than similar simulations using perfect traces. At even 1 KB of granularity,
the average FG simulation’s space-time product is more than 1.0% larger than
identical simulations using perfect traces considering all experiments and just
those with larger live sizes. As trace granularity grows, however, this result dis-
appears (the simulations still show significant distortions, but in the expected
direction) because the number of points in the trace with perfect knowledge
limits the number of possible GCs.
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5.2.2 SyncLate. In a similar, but opposite manner, SyncLate simulations
tend to decrease the mark/cons ratio and number of collections. As trace gran-
ularity increases, these distortions become more pronounced as the number of
potential collection points is limited as well. Not every collector produces the
same distortion on the same metric, however. Excluding the traces with smaller
live sizes, FG averages 1.8% higher mark/cons ratios and 0.5% more GCs versus
perfect traces at even a 1 KB granularity. While SyncLate simulations allow
it to copy fewer objects early on, copying fewer objects causes the collector to
delay whole-heap collections. The whole-heap collections remove unreachable
objects from the older generation and prevent them from forcing the copying
of other unreachable objects in the nursery. The collector eventually promotes
more and more unreachable objects, so that it often must perform whole-heap
collections soon after nursery collection, boosting both the mark/cons ratio and
the number of GCs.

5.2.3 SyncMid. As expected, the best results are for SyncMid. From
Table IV, the larger From space sizes produce similar results for SyncMid sim-
ulations and simulations using perfect traces at even large granularities. The
design of SyncMid averages the times that it collects too early with those it
collects too late. This balance makes the effects of trace granularity hard to
predict. Both SyncEarly and SyncLate showed collector-dependent behavior.
While conclusions for a new or unknown collector should not be drawn from
their results, one could make assumptions about how they affect simulated
metrics. In contrast, SyncMid simulations produce biases that are dependent
upon both the metric and the collector: at a 2 KB granularity, FG averages a
mark/cons ratio 1.6% higher than simulations with perfect traces while VG’s
average mark/cons ratio is 0.4% too low. While the results were very good on
the whole, there was still not a single metric for which every collector returned
results without statistically significant distortions.

5.3 Trace Granularity Conclusion

While Unsynchronized simulations clearly caused extreme distortions,
SyncMid sometimes allowed the use of traces with very small granularities to
be simulated without significant differences. However, all of the Synchronized
simulations suffered from statistically significant deviations. Because the met-
rics are distorted differently depending on the metric and simulated garbage
collection algorithm, it would be impossible to “adjust” simulator results for
novel algorithms or optimizations. Although we simulated copying garbage-
collection, most of the metrics and algorithms are not dependent on copying,
and should hold for other algorithms such as mark-sweep (see Section 10 for
additional discussion). These results prove the need for an accurate tracing and
simulation environment in which to evaluate and compare garbage collection
algorithms.

6. TRACE GENERATION USING MERLIN LIFETIME COMPUTATION

Life can only be understood backwards; but it must be lived forwards.
–Søren Kierkegaard
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The previous section motivates accurate traces for use in GC simulations,
but the cost of whole-heap collection after each object allocation in a tracing
collector is prohibitive. This section presents our new Merlin Algorithm for
computing accurate object lifetimes. We designed Merlin for use with tracing
copying collectors that we had already built. However, the key propagation
of time stamps is similar to the use of decrements in reference counting (see
Section 9) and could easily be used with other collectors, such as mark-sweep
(see Section 10). Merlin reduces the time needed to generate the Java traces
discussed in Section 4.2 from several years to a single weekend. Merlin does
not require frequent collections and thus places less stress on the underlying
system than the brute-force method of computing object lifetimes.

According to Arthurian legend, the wizard Merlin began life as an old man.
He then lived backwards in time, dying at the time of his birth. Merlin’s knowl-
edge of the present was based on what he had already experienced in the future.
Merlin, both the mythical character and our algorithm to compute object life-
times, works in reverse chronological order so that each decision can be made
correctly based upon knowledge of the outcome. Because our algorithm works
backward in time, the first time Merlin encounters an object in its calculation
is the time the object dies (i.e., is not reachable).

The remainder of this section overviews how Merlin computes when objects
transition from reachable to unreachable, gives a detailed explanation of why
Merlin works, and discusses implementation issues. While our initial discus-
sion focuses on using Merlin on-line for generating the perfect traces needed
for simulation, we also present how Merlin can be used to compute object life-
times offline from an otherwise complete trace, and finally we discuss, if using
granulated traces is appropriate, how Merlin can generate them.

6.1 Merlin Algorithm Overview

The brute-force method of computing object lifetimes is slow because, at each
possible time, it computes which objects are unreachable by collecting the entire
heap. The Merlin algorithm improves upon brute force by instead computing
the last time objects are reachable. Since time advances in discrete steps, an
object’s death time is the time interval immediately following the one when it
was last reachable.

Merlin has three key parts: (1) a forward pass that records events that make
objects unreachable, (2) garbage collections that identify dead objects, and (3) a
backward pass that computes for all dead objects the time at which they become
unreachable.

During the forward pass, Merlin timestamps each object with the current
time whenever it may become unreachable—that is, whenever an object loses
an incoming reference. If the object later loses another incoming reference (be-
cause the earlier update did not leave it unreachable), then Merlin simply over-
writes the previous timestamp with the current time. Since an object only dies
once when it becomes unreachable, Merlin computes this time after it knows
an object is dead. Merlin could compute this time at the end of program exe-
cution when all objects are dead. Merlin instead uses a more efficient solution
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Fig. 4. When the program eliminates the last incoming references to objects A and B, they tran-
sition to unreachable. When the program eliminates the last reachable reference to object C, it
becomes unreachable, even though it has other incoming references. Updates to objects that point
directly or transitively to objects D, E, and F make them unreachable.

that piggybacks on a host system garbage collection to identify garbage objects
periodically. Given a set of dead (unreachable) objects, Merlin then computes
when they were last reachable in a backward pass.

If a dead object has no incoming references, its current timestamp directly in-
dicates its death time. However, some objects become unreachable even though
they still have incoming references, as shown in Figure 4. Merlin thus performs
a timestamp propagation phase on unreachable objects. (By definition, no reach-
able object points to an unreachable one.) It starts with the unreachable object
with the latest timestamp (ts) and continues processing unreachable objects in
decreasing timestamp order. Sorting the list is �(n log n) in the number of dead
objects. For each object with a pointer (s ⇒ t), if sts > tts, Merlin propagates the
later timestamp from the source to the target. Otherwise, Merlin stops propa-
gating. Since it starts with the latest timestamp, worst-case processing time is
the number of unreachable (dead) objects.

6.2 Details and Implementation

This section expands on the key insights and implementation issues for Merlin.
It first compares the time complexity of the brute-force and Merlin algorithms. It
then discusses trace requirements, object reachability, timestamp propagation,
and other uses of Merlin.

Finding dead objects requires a reachability analysis which with brute-force
tracing on every allocation costs:

n∑

i=1

|live objects| at ai,

where n is the number of objects the program allocates, and ai is an allocation
event. Merlin eliminates the need to perform reachability analysis on every
allocation. Merlin instead records object timestamps when an object loses an
incoming pointer, and delays the bulk of its propagation step until it can piggy-
back on a reachability analysis that occurs during a garbage collection. After
a collection, Merlin works backward in time to find exactly when each dead
object was last reachable. Merlin’s execution time is thus proportional to pro-
cessing each object once plus the number of times each object loses an incoming
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Table V. How Objects Become Unreachable

(1) A pointer update transitions an object from one to zero incoming references. For example,
objects A and B in Figure 4.

(2) A pointer update transitions an object from n to n − 1 incoming references, and now all n − 1
references are from unreachable objects. For example, object C in Figure 4.

(3) An object’s number of incoming references does not change, but a pointer update transitions
the last reachable objects pointing to it to unreachable. For example, objects labeled D, E,
and F in Figure 4.

reference, m.
n∑

i=1

|object allocated| at ai +
m∑

j=1

r j .

6.2.1 Trace Requirements. The in-order brute-force method processing
adds death records as it produces the trace. Since Merlin determines death
times out-of-order, it needs to introduce timekeeping into the traces. Time is
related to trace granularity; time must advance wherever object death records
may occur.2

6.2.2 How Objects Become Unreachable. Table V lists a series of general-
izations that demonstrate how objects within the heap transition from reach-
able to unreachable. Scenarios 1 and 2 describe an object that is reachable until
an action involving the object; Scenario 3 describes an object that becomes un-
reachable without direct involvement in an action. Not every pointer store kills
an object, but if an object d dies, d either loses an incoming pointer or some other
object o loses a reference which points to d directly or indirectly (the transitive
closure of reachability from o).

6.2.3 Finding Potential Last Reachable Times. We propagate time stamps
after an object is dead, instead of when it loses a reference. This section presents
the Merlin pseudocode used to compute these last reachable times.

—Instrumented pointer stores. Most pointer stores can be instrumented by a
write barrier. The Merlin write barrier timestamps objects losing an incoming
reference (the old target of the pointer) with the current time. Since time
increases monotonically, each object will ultimately be stamped with the final
time it loses an incoming reference. If the last incoming reference is removed
by an instrumented pointer store, the Merlin code shown in Figure 5 stamps
the object with the last time it was reachable.

—Uninstrumented pointer stores. Because root pointers (especially ones in reg-
isters or thread stacks) are updated very frequently, instrumenting root
pointer stores is prohibitively expensive and is rarely done. An object that
is reachable until a root pointer update may not have the time it transitions
from reachable to unreachable detected by any instrumentation. Just as a

2For many collectors, time need only advance at object allocations. To simulate collectors that can
reclaim objects more frequently, for example, reference counting collectors, time would advance at
each location where the collector could scan the program roots and begin a collection.
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Fig. 5. Code for Merlin’s pointer store instrumentation.

Fig. 6. Code for Merlin’s root pointer processing.

normal GC begins with a root scan, the Merlin algorithm performs a mod-
ified root scan at each allocation. This modified root scan enumerates the
root pointers, but merely stamps the target objects with the current time.
While root-referenced, objects are always stamped with the current time; if
an object was reachable until a root pointer update, the timestamp will be
the last time the object was reachable. Figure 6 shows Merlin’s pseudocode
executed whenever the root scan enumerates a pointer.

—Referring objects become unreachable. We also compute the time an object
was last reachable for objects unreachable only because the object(s) pointing
to them are unreachable (Scenario 3 of Table V). To handle pointer chains,
updating the last reachable time for one object requires recomputing the last
reachable times of the objects to which it points. We simplify this process
by noting that each of these object’s last reachable time is the latest last
reachable time of an object containing the former in its transitive closure set.

6.2.4 Computing When Objects Become Unreachable. Because the Merlin
algorithm is concerned with when an object was last reachable and cannot
always determine how the object became unreachable, the issue is to find a
single method that computes every object’s last reachable time. The methods in
Figures 5 and 6 timestamp the correct last reachable time for those objects that
are last reachable as described in Scenarios 1 and 2 of Table V. By combining
the two timestamping methods with computing death times by membership in
transitive closure sets of reachability, Merlin can determine the last reachable
time of every object.

To demonstrate that this combined method works, we consider each scenario
from Table V. Since an object last reachable as described by Scenario 1 is not the
target of a pointer after it is last reachable, it is only a member of its transitive
closure set, and the last reachable time Merlin computes will be the object’s own
timestamp. For Scenario 2 the last reachable time Merlin computes will also
be the time with which the object is stamped: since the source of any pointers
to the object must already be unreachable when the object is last timestamped,
the source objects’ last reachable times must be earlier. We show above that
this combined method computes last reachable times for objects in Scenario 3,
so Merlin can compute last reachable times by combining timestamping and
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Fig. 7. Computing object death times, where ti < ti+1. Since Object D has no incoming references,
Merlin’s computation cannot change its timestamp. Although Object A was last reachable at its
timestamp, care is needed so that the last reachable time does not change via processing its incom-
ing reference. In (a), Object A is processed finding the pointer to Object B. Object B’s timestamp
is earlier, so Object B is added to the stack and last reachable time set. We process Object B and
find the pointer to Object C in (b). Object C has an earlier timestamp, so it is added to the stack
and timestamp updated. In (c), we process Object C. Object A is pointed to, but it does not have an
earlier timestamp and is not added to the stack. In (d), the cycle has finished being processed. The
remaining objects in the stack will be examined, but no further processing is needed.

computing the transitive closures, and need not know how each object transi-
tioned from reachable to unreachable.

6.2.5 Computing Death Times Efficiently. Computing the full transitive
closure sets is a time-consuming process, requiring O(n2) time. But Merlin
needs to find only the latest object containing the former object in its transitive
closure set. Merlin performs a depth-first search from each object, propagating
the last reachable time forward to the objects visited in the search. To save time,
our implementation of Merlin first orders the unreachable objects from the ear-
liest timestamp to the latest and then pushes them onto the search stack so that
the latest object will be popped first. Figure 7(a) shows this initialization. Upon
removing a new source object from the stack, the Merlin algorithm analyzes
it for pointers to other (target) objects. If any target objects are stamped with
an earlier time, the algorithm updates their timestamp with that of the source
object. If the target object is definitely unreachable (e.g., will be reclaimed when
the collection completes), it is pushed onto the stack also. Figures 7(b) and 7(c)
show examples of this analysis. If the target object’s timestamp is equal to that
of the source object, then we do not need to push it on the stack, since we ei-
ther have found a cycle (e.g., Figure 7(c)) or the target object is already on the
stack. We also do not push the target object onto the stack if its timestamp
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Fig. 8. Code of Merlin trace generation last reachable time computation.

is later than the source object’s timestamp, since the target object must have
remained reachable after the time currently being propagating. Pushing ob-
jects onto the stack from the earliest stamped time to the latest means each
object is processed only once. The search proceeds from the latest stamped time
to the earliest; after a first examination, any repeated examinations of an ob-
ject must be computing earlier last reachable times. Hertz et al. [2002b] proved
this asymptotically optimal method of finding last reachable times requires only
�(n log n) time, limited only by the sorting of the objects, where n is restricted
to dead objects for this collection. Figure 8 shows the Merlin pseudo-code for
this modified depth-first search.

6.3 The Merlin Algorithm

As described so far, Merlin is able to reconstruct when objects were last reach-
able. However, it is still unable to determine which objects are no longer reach-
able. The Merlin algorithm uses two simple solutions to overcome this problem.
Whenever possible, it delays computation until immediately after a collection,
but before any memory is cleared. At this time, the object lifetime computation
algorithm has access to all of the objects within the heap and the garbage collec-
tor’s reachability analysis. By piggybacking upon this work, Merlin saves a lot
of duplicative analysis. At other times (e.g., just before a program terminates),
GC may not occur but the algorithm still needs a reachability analysis. In this
case, Merlin first stamps the root-referenced objects with the current time and
then computes the last reachable times of every object in the heap as usual.
Objects with a last reachable time equal to the current time are still reach-
able and do not need object death records. All other objects must be unreach-
able and death records for them are added to the trace as usual. This method
of finding unreachable objects enables the Merlin algorithm to work with any
garbage collector. Even if the garbage collector cannot guarantee that it will col-
lect all unreachable objects, Merlin performs the combined object reachability/
last reachable time analysis just before the program terminates to find all of
the last reachable times.
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As stated in Section 2.1, we rely upon a couple of assumptions about the host
garbage collector. First, we assume that any object the collector is treating as
live will have the objects it points to also treated as live, as is required among
GC algorithms without additional information. The collector thus removes an
object only when all other objects pointing to it are provably unreachable. Sec-
ond, the Merlin algorithm assumes that there are no pointer stores involving
an unreachable object. Therefore, we assume that, once an object becomes un-
reachable, its incoming and outgoing references are constant. Both of these pre-
conditions are important for our transitive closure computation, and languages
such as Java, C#, and Smalltalk satisfy them. Last, the Merlin algorithm adds
an additional requirement, the reasons for which are explained in Section 6.2.3,
that the instrumented pointer stores has access to the old value of the pointer.
As the trace generator must already include a write barrier to output pointer
updates, and many write barriers already include these values (e.g., a reference
counting write barrier), this additional requirement is not a hardship.

The order in which a trace generator using the Merlin algorithm adds object
death records to the trace is an issue. As discussed in Section 6.2.1, the Merlin
algorithm requires that the trace generator use the concept of time to determine
where in the trace to place each object death record. The object death records
either are added to the trace in chronological order before writing the trace
to disk, or are included in the trace as they occur and a postprocessing step
places the records into proper order. Holding all the trace records in memory
until Merlin computes all the object deaths is a difficult challenge; with larger
traces, holding these records requires significant amounts of memory. Our trace
generation implementation using Merlin for object lifetime computation uses an
external postprocessing step that sorts and integrates the object death records.
Either way of handling this issue has advantages and disadvantages, but adds
very little time to trace generation.

6.4 Using Merlin Offline

Merlin does not need to perform its object lifetime analysis online: researchers
have successfully used Merlin to compute object lifetime information from an
otherwise complete garbage collection trace [Hertz and Berger 2004; Hirzel
et al. 2003]. As described, the Merlin algorithm only needs to track pointer up-
dates and to enumerate root pointers. This information can be obtained through
instrumenting pointer store operations and performing a periodic modified root
scan, but can also be acquired from a file that faithfully records all pointer stores
and enumerates all root pointers. With this file, a simulator can generate the
state of the program heap over the course of the program execution and use
Merlin to compute the object lifetime information missing from the trace. Com-
puting object lifetimes offline can save substantial time when the lifetimes for
only a subset of the objects are desired (e.g., only objects allocated during a
particular phase of program execution).

6.5 Using Merlin for Granulated Traces

Our discussion of the Merlin algorithm has, until now, focused on the perfect
traces required for GC simulation. GC traces are used not only for simulations,
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however, but have also been used to gain a deeper understanding of the issues
affecting object lifetimes [Hirzel et al. 2002a, 2002b; Shaham et al. 2000] and
to measure the effects of GC optimizations [Shaham et al. 2002]. Because of the
speedup in trace generation achieved by the Merlin algorithm, it is now feasible
to consider generating traces at granularities finer than each allocation. For
instance, using Merlin, the trace generator could create a dynamic “escape-
analysis” trace that is accurate at each method exit.

As described in Section 6.2.3, Merlin advances the trace time and enumerates
and processes the root pointers at each allocation to help generate a perfect
trace. However, these actions should occur whenever the trace must be accurate
(which is every allocation in a perfect trace, but would be every method exit for
a dynamic escape-analysis trace).3 The Merlin algorithm is identical for any
trace generation, the only change being how often the time is updated and the
modified root scan is performed; the algorithm otherwise acts the same after
each collection and at every instrumented pointer update.

7. EVALUATION OF MERLIN

We implemented a trace generator in the Jikes RVM that can use either the
brute-force method or the Merlin algorithm to compute object lifetimes. We
then performed timing runs on a Macintosh Power Mac G4, with two 533-MHz
processors, 32 KB on-chip L1 data and instruction caches, 256 KB unified L2
cache, 1-MB L3 off-chip cache, and 384 MB of memory, running PPC Linux 2.4.3.
We used only one processor for our experiments, which were run in single-user
mode with the network card disabled. We built two versions of the VM with trace
generation, one using Merlin for object lifetime computation and one using the
brute-force method. Whenever possible we used identical code in the two VMs.
For these experiments, the trace generator employed the semispace collector
needed by the brute-force method so as to keep the two systems as similar as
possible.

Merlin’s running time is spent largely in performing the modified root scan
required after every allocation. We further improved Merlin’s running time by
including a number of optimizations to minimize the number of root pointers
that must be enumerated at each of these locations. Our first optimization
was to instrument pointer store operations involving static pointers. With this
instrumentation, Merlin need not enumerate these pointers during its root
scan. Instead, it can treat them as it does heap pointers, since any stores to
these pointers will be processed by the same instrumentation. Because Java
allows functions to access only their own stack frame, repeated scanning within
the same method always enumerates the same objects from the pointers below
this method’s frame. We implemented a stack barrier that is called when frames
are popped off the stack, enabling Merlin to scan less of the stack [Cheng et al.
1998]. We did not include the stack barrier in the brute-force generator because
it introduces overhead on each method invocation, and it was beyond the scope
of this work to evaluate it.

3These arguments could also be used to generate coarser-grained traces.
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Fig. 9. The speedup of perfect Merlin trace generation versus brute-force granulated trace gener-
ation. Note the log-log scale.

We generated traces at different granularities across a range of programs.
Because of the time required for brute-force trace generation, we limited
some traces to only the initial 4 or 8 MB of data allocation (which still
required over 34 h in one case). Working with common benchmarks and
identical granularity, trace generation using Merlin achieved speedup fac-
tors of up to 816. In the time needed by the system using the brute-force
method to generate traces with granularities of 16 to 1024 KB, trace gener-
ation with Merlin completed perfect traces. Figure 9 shows the speedup to
the trace generator when using Merlin, generating perfect traces, versus us-
ing the brute-force method at different levels of granularity. Clearly, Merlin
can greatly reduce the time needed to generate a trace. However, as seen
in Figure 9, the speedup is less when granularity increases. The time re-
quired largely depends on the time needed to generate object death records—
the trace granularity. Brute force limits object death time processing to only
those points where the trace is accurate; as the granularity increases, it
performs fewer GCs and the time needed greatly diminishes. Even though
Merlin performs fewer actual collections than brute force with a large gran-
ularity, the cost of enumerating the roots at every allocation and updating
timestamps can become greater than the collection cost at large granularities.

These results are typical. For programs with larger average maximum
live size and total allocation volume, Merlin should provide further speedups
due to the differences between its death time propagation algorithm and
root scanning costs compared to the larger cost of repeatedly tracing the
heap.
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Fig. 10. The cost of Merlin versus trace generation without lifetimes. Merlin imposes a substantial
slowdown when generating a perfect trace. If approximate object lifetimes are desired, generating
a slightly granulated trace can require 1

5 the time.

7.1 Granulated Trace Generation

When generating escape-analysis traces (i.e., small granularities), it is clear
from the above results that Merlin will be much quicker than brute force. An
open question, however, is the fastest way to generate traces with large gran-
ularities. These traces could not, of course, be used for GC simulations, but
could still be used to tune profile-driven feedback optimizations [Ungar and
Jackson 1992; Cheng et al. 1998; Blackburn et al. 2001] or to gain a deeper un-
derstanding of the issues affecting object lifetimes [Hirzel et al. 2002a, 2002b;
Shaham et al. 2000]. While we show in Section 5 how the compounding of these
lifetime errors results in statistically significant distortions for simulation re-
sults, when analyses consider each object’s lifetime independently, the error is
bounded by at most one trace granule, and snowballing cannot occur. Previ-
ously, Hirzel et al. [2002b] showed that their analysis was not altered by the
use of granulated traces.

Even with the improvement Merlin provides to trace generation, the time
required to generate a trace is 70–300 times slower than running the program
without tracing. As shown by Figure 10, granulated traces require much less
time to generate, and they are thus attractive when granulation does not distort
results. Given a heap that actually has a maximum live size of 10 MB, for
example, a trace with a 10 KB granularity will overestimate the maximum live
size by at most 0.1%.

Figure 10 shows that, while introducing some trace granularity allows
Merlin tracing to run faster, there is little gain in generating traces with a
granularity above 4096 B. Since Figure 9 shows that the time needed for trace
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Fig. 11. The speedup of trace generation using Merlin versus brute force. Merlin tracing is faster
for each benchmark at every trace granularity tested. Note the log-log scale.

generation using brute force continues to improve even when the trace granu-
larity is increased from 512 KB to 1 MB, it still is not clear what is the best way
to generate a granulated trace. Figure 11 examines the speedup that generat-
ing a granulated Merlin trace offers versus generating a granulated brute-force
trace.

As seen in Figure 11, Merlin outperforms brute force at all tested granu-
larities and over all of the benchmarks examined. While all the work required
by brute force (performing a GC) is directly related to the granularity of the
trace generated, some of Merlin’s workload (enumerating and scanning the root
pointers) is related to the trace granularity and some work is constant (times-
tamping objects losing incoming references via instrumented pointer stores).
Because of this constant work overhead for Merlin, the improvement in gen-
erating a trace of SPEC 228 jack slowly drops from a speedup factor of 817
for perfect traces to a factor of 5 at a granularity of 64 KB and finally to a
factor of 1.14 at 1-MB granularity. Even at this very high granularity, however,
the speedup of not needing to perform the repeated garbage collections makes
Merlin the winner. When these results are combined with those from Figure 10,
they provide a persuasive argument for using Merlin to compute object lifetimes
even for granulated traces.

8. PROGRAM HEAP VISUALIZATION

Whether creating new GC optimizations, explaining the performance of an ex-
isting algorithm, or developing a set of benchmarks to test GC, researchers
need to understand the lifetimes of objects in the heap and how they inter-
act. Researchers have used program heap graphs, visualizations showing the
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composition of the heap, identifying the locations of unreachable objects over
the entire program run, to develop and share this knowledge (e.g., Runciman
and Wakeling [1992]; Runciman and Röjemo [1995]; Sansom [1994]; Sansom
and Jones [1994]; Rojemo and Runciman [1996]; Stefanović [1999]; Shaham
et al. [2000]). The resolution of a visualization is dependent on the granularity
of the trace used; granulated traces can generate the powerfully simple graphs
(such as those in Shaham et al. [2000]), while precise graphs capable of zooming
in to show very fine details (such as the graphs in [Stefanović 1999] and the
figures in this section) require perfect traces.

This section presents several program heap visualizations from Jikes RVM
produced with Merlin, which reveal object lifetimes and lifetime patterns. Sec-
tion 8.1 analyzes a few of these graphs to show how they provide insight into
potential GC optimizations and Section 8.2 illustrates how these visualizations
can help evaluate benchmark programs.

8.1 Program Heap Behavior Insights

The simplest heap profile visualizations show the composition of the heap over
a program run, providing a means of seeing where, in an age-ordered heap, the
reachable objects exist. Figure 12(a) shows a heap profile of SPEC 202 jess
when run with the Jikes RVM Opt (optimizing) compiler. The y-axis of this
graph represents the position of reachable objects in an age-ordered heap, while
the x-axis represents time (measured as the total number of bytes allocated into
the heap so far). At the start of each program “segment” (some set number of
bytes of allocation), we introduce a new line along the x-axis. Lasting until
program termination, the line shows, at each moment, the position in the heap
of the boundary between the objects allocated before and after this point. In
this graph, we can see the program run through three distinct phases: startup,
stable running, and finishing. The startup phase, lasting the first 50,000,000
words of allocation, shows the variable live sizes and object lifetimes arising
from compilation. The second phase of this profile shows a regular pattern
of very short lived objects—the actual running of the jess benchmark—and
the last phase shows a brief return of compilation as the program reaches
the SpecApplication termination code. Given this complex behavior, a garbage
collector could benefit from using phase detection to moderate any dynamic
optimizations. During the long stable (middle) phase of the run, optimizations
may yield little or no benefit as most collectors would already perform well.
Rather than spend time working for little benefit, a system would be better
served saving that time and using the default behavior.

Figure 12(b) also shows a heap profile of SPEC 202 jess run with the Jikes
RVM optimizing compiler. This heap profile differs from Figure 12(a), by show-
ing the oldest objects of the age-ordered heap along the y-axis and adding newly
allocated objects to the top of the graph. Long-lived objects appear as a horizon-
tal line of constant live amounts in these figures. When some objects die at some
point, the line segments get closer together. Figure 12(b) shows many immortal
objects that are created during the first (compilation) phase of the program.
As shown in Blackburn et al. [2001], these immortal objects present inviting
targets for optimizations such as pretenuring. The second phase of the trace
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Fig. 12. Three different heap visualizations for SPEC 202 jess using the optimizing compiler at
run time. While each of these graphs summarizes the composition of the heap over the run, the
different ways of expressing this composition can highlight different information. Using all three
graphs in combination is an easy way to gain a good understanding of the object lifetime behavior
of the program.

(when most compilation is complete and the benchmark is actually running)
shows new program segments barely rising from the graph and then rapidly
disappearing, that is, allocation of many very short-lived objects. The last phase
of the program shows the system compiles the methods corresponding to the
final code for the program. The optimizing compiler uses short-lived objects and
outputs the long-lived blocks of machine code causing the behavior seen during
this final phase. The very different lifetime behaviors at different points of the
program suggests that a garbage collector that could detect these phases and
change its behavior accordingly could perform well on this benchmark.

Another type of heap visualization is the demise map, an example of which
can be seen in Figure 12(c). Like the previous visualizations, a demise map’s
x-axis is the number of bytes allocated and its y-axis is the heap position in
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the age-ordered heap. However, points on the demise map indicate an object’s
becoming unreachable. We represent the density of objects becoming unreach-
able at the same location (in an age-ordered heap) by the darkness of the point
on the map. The demise map in Figure 12(c) is also for the runs of 202 jess
using the Jikes RVM optimizing compiler. The graph again shows the program
running through several phases of object lifetime behavior over the run. Exam-
ining the demise map provides some useful information. At several places in
the trace, we can see a number of objects become unreachable at the same time
(as dark vertical bands in the demise map). By grouping these objects together
and delaying their collection until they all become unreachable, a collector could
greatly improve its performance.

8.2 Evaluation

Heap visualizations help reveal how demanding a benchmark is with respect to
its memory management needs. We present heap profiles for the SPECjvm98
benchmarks and pseudoJBB, a version of SPECjbb modified to run for a spec-
ified number of transactions rather then a specified length of time. Figure 13
shows heap profiles with the youngest objects at the bottom of the y-axis; and
Figure 14 shows heap profiles with the youngest objects at the top of the y-axis.

The figures indicate a range of challenges for garbage collection.
201 compress and 222 mpegaudio, for instance, do not stress garbage col-

lectors much, whereas 209 db, pseudoJBB, and 213 javac demonstrate richer
memory management behavior. We analyze each of these programs below.

Consider Figure 13(a), which presents a run of 201 compress. While the
irregular allocation peaks in Figure 13(a) suggest that it could be useful for
analyzing phase change optimizations or comparing algorithms that dynami-
cally select heap sizes, this benchmark would not be useful for comparing stat-
ically sized heaps. While a statically chosen heap size must be sufficient to
hold the initial peak (approximately 2 MB), this space is larger than the rest of
the program needs. 201 compress thus exercises the garbage collector only at
the smallest heap sizes.

The heap profile of 222 mpegaudio, Figure 13(f), shows that it has a low
ratio of bytes allocated to maximum live size (a ratio of only 2.1:1). The heap
profile also shows that objects allocated by this program are either immortal or
immediately become unreachable. However, it shows two phases. The program
allocates so little that it can steadily increase its live size for the entire duration
of the program.

While 209 db, shown in Figure 13(d), maintains a constant live size, the
heap profile indicates that it allocates 10 times as much data as this live size,
which limits how much stress it places on the garbage collector. After 209 db
populates its database with “immortal” objects (roughly the first 3 MB of allo-
cation), the program allocates objects which immediately become unreachable.
Combining these two behaviors, the heap profile in Figure 13(d) shows that,
with a large enough nursery, a generational garbage collector should perform
well on 209 db and whole heap collections are a waste of time. However, this
behavior is not the whole story for 209 db, because its choice of allocator and

ACM Transactions on Programming Languages and Systems, Vol. 28, No. 3, May 2006.



508 • M. Hertz et al.

Fig. 13. Heap profile graphs for the SPECjvm 98 benchmarks and pseudoJBB. Newly allocated
objects are added at the bottom of these heap profiles. To limit the influence the host JVM has on
these graphs, they were generated from runs using the Jikes RVM baseline JIT compiler.
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Fig. 13. (Continued)

collector radically affect its performance through the locality behavior they in-
duce [Blackburn et al. 2004a; Huang et al. 2004; Hertz and Berger 2004].

PseudoJBB only allocates about 10 times as many bytes as its maximum
live size, as does 209 db. The allocated objects, however, have more complex
lifetime patterns. After initially allocating and building a large structure (at
1.4 MB), the program makes the majority of this unreachable. The program
again allocates a large amount of immortal objects. It then allocates short-lived
objects and periodically causes these to become unreachable. Unlike 209 db,
however, these short-lived objects do not immediately become unreachable but
must remain in the heap for a time. Figure 14(i) shows pseudoJBB begins
allocating the next period of short-lived objects before it has made all objects
from the previous period unreachable. This behavior guarantees that some
objects will survive simple nursery collections in generational collectors, and
need a more expensive collection to reclaim them.
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Fig. 14. Inverted heap profile graphs for the SPECjvm 98 benchmarks and pseudoJBB. Newly
allocated objects are drawn at the top of these heap profiles. To limit the influence the host JVM
has on these graphs, they were generated from runs using the Jikes RVM baseline JIT compiler.
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Fig. 14. (Continued)

The heap profile of 213 javac shows this program periodically building and
then making large structures unreachable; few generational algorithms would
normally size their nursery or Eden space large enough to hold these structures.
This behavior ensures that some objects will be promoted into the mature space
and need full heap collections to be reclaimed. Especially when combined with
213 javac’s high ratio of allocation to maximum live size, it is clear this bench-

mark will highlight garbage collector performance differences.

9. RELATED WORK

We now discuss the prior research on which this study builds. There are three
areas of research that are most relevant: reference counting, approximating
object lifetimes, and generating perfect (accurate) traces.
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9.1 Reference Counting

While the Merlin algorithm does not do reference counting (RC), issues that
arise from its time stamping are similar to those from counting references. As
a result of these similar issues, RC collectors are often closely related to the
Merlin algorithm and we describe them here.

Reference counting associates a count of incoming references with each ob-
ject; when the count is 0, it frees the object [Collins 1960]. To improve efficiency,
modern deferred reference counters do not count the numerous updates to stack
variables and registers [Deutsch and Bobrow 1976], but instead compute correct
counts periodically. As with other algorithms, RC must enumerate the stacks
and registers when it collects the heap. Since reference counting cannot find
dead cycles [Weizenbaum 1962], modern implementations add periodic tracing
collection or perform trial deletion [Vestal 1987; Bacon and Rajan 2001]. Trial
deletion keeps objects that lost a pointer, but whose count did not reach zero, in
a “candidate set.” It then recursively performs trial deletions on the objects in
this set and those objects reachable from them. When all the reference counts
go to zero, the objects form a dead cycle and can be reclaimed.

At first glance, adding time stamps to RC might seem faster than piggy-
backing on a tracing collector, but cycles complicate this argument. To compute
a perfect trace using an RC (and ignoring cycles), we could extend the object
headers to include a time stamp, update the time stamp with each decrement,
update the reference counts at every allocation, and record and propagate time
stamps when the object’s reference count goes to zero. Since cycles must be un-
reachable at program termination, we could then propagate these time stamps
to accurately compute the remaining death times. However, never collecting
cycles might cause the program to fail by running out of memory. Adding RC
tracing or trial deletion reverts trace generation to the cost of the brute-force
method plus additional reference counting overheads. To add Merlin to an ex-
isting RC system is thus likely to yield similar or worse performance than using
Merlin with a tracing collector.

Unlike RC, the Merlin algorithm is not a garbage collector, but merely com-
putes object lifetimes. While there are similarities between Merlin and RC (de-
ferred reference counting is similar to Merlin’s time stamping), Merlin relies
upon an underlying collector to actually reclaim objects whereas RC performs
this reclamation. While RC can use an additional tracing collector to detect
dead cycles, the Merlin algorithm needs a garbage collector to compute which
objects are unreachable.

9.2 Lifetime Approximation

To cope with the cost of producing GC traces, there has been previous research
into approximating the lifetimes of objects. These approximations model the
object allocation and object death behavior of actual programs. One article de-
scribed mathematical functions that model object lifetime characteristics based
upon the actual lifetime characteristics of 58 Smalltalk and Java programs
[Stefanović et al. 2000]. Zorn and Grunwald [1992] compared several different
models one can use to approximate object allocation and object death records
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of actual programs. Neither study attempted to generate actual traces, nor did
either study consider pointer updates; rather, these studies attempted to find
ways other than trace generation to produce input for memory management
simulations.

9.3 Perfect Tracing

Our previous work [Hertz et al. 2002a] presented the effects of trace granu-
larity on GC simulator fidelity. Additionally, it described how Merlin can be
used to generate the perfect traces needed for GC simulation, and presented a
preliminary comparison between generating perfect Merlin traces and perfect
and granulated brute-force traces. Because of this work, others have begun to
reexamine their analyses to see if their results were affected by trace gran-
ulation [Hirzel et al. 2002b]. We presented additional work proving that the
Merlin algorithm runs in asymptotically optimal time [Hertz et al. 2002b]. Our
previous work did not demonstrate how to use Merlin to generate granulated
traces, nor did it include the more detailed timing results we present here. The
current work also discusses additional uses of Merlin and presents program
heap visualizations that are only possible due to Merlin’s reduced processing
time.

10. APPLICABILITY TO OTHER COLLECTION ALGORITHMS

We built these and other copying algorithms in GCTk [Blackburn et al. 2001,
2002; Stefanović et al. 2003], a freely available memory management toolkit,
for use with Jikes RVM. Although our results are for copying collectors, there
is no reason to believe they will not hold for mark-sweep (MS) collectors and
hybrid copying and MS collectors, such as the popular copying nursery/Eden
space and MS old space. Product VMs often use this later variation due to its
high performance.4 MS offers significant space efficiency over copying [Hertz
and Berger 2004], which is especially important in the old space. MS collectors
thus trigger collections less often than copying. However, if collecting the same
region as a copying collector, MS finds exactly the same objects as live since
it computes reachability the same way. Therefore, given sufficient collections,
the accuracy of MS collectors should be similarly distorted by a poor choice of
collection point with respect to a granulated trace.

We can make no conclusions about the sensitivity to trace granulation of
reference counting collectors since their liveness test is different from copying.
However, our traces contain sufficient information to simulate these algorithms
as well.

11. SUMMARY

The use of granulated traces for GC simulation is problematic. We first develop
a method that can statistically test if a variable affects GC simulation. We

4A more recent toolkit MMTk [Blackburn et al. 2004a, 2004b] contains MS, reference counting,
and their generational variants. Experimental comparisons of copying versus MS collection of the
mature space show neither is clearly best [Blackburn et al. 2004a].
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then use this method to show that, over a wide range of variables, granulated
traces produce results that are significantly different from those produced by
perfect traces. While we show that there are ways of simulating granulated
traces that are better at minimizing these issues, we find none of these methods
can eliminate all the problems. With these results, we propose standard trace
formats should include additional information.

We then introduce and describe the Merlin algorithm. We show how trace
generation using the Merlin algorithm can produce perfect traces more than
800 times faster than the common (brute force) method of trace generation.
We also describe how, for new analyses, Merlin makes it possible to gener-
ate traces at even finer granularities, and when it may be permissible to use
coarser traces. Finally, we show that given the Merlin algorithm there is never
a reason to generate traces coarser than a 4 KB granularity. Thus, the Merlin
algorithm makes trace generation quick and easy, and eliminates the need for
using granulated traces in simulation.

Finally, we present several examples of program heap visualizations, power-
ful tools that, with traces like those generated by Merlin, are easy to generate.
With graphs of several well-known, commonly used benchmark programs, we
show how they provide insights that can be used to design future GC optimiza-
tions and evaluate a program’s memory management needs.
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RUNCIMAN, C. AND WAKELING, D. 1992. Heap profiling of lazy functional programs. Tech. rep. 172.
Department of Computer Science, University of York, Heslington, York, U.K.

SANSOM, P. M. 1994. Execution profiling for non-strict functional languages. Ph.D. dissertation.
University of Glasgow, Glasgow, Scotland.

SANSOM, P. M. AND JONES, S. L. P. 1994. Time and space profiling for non-strict, higher-order
functional languages. Tech. rep. FP-1994-10. Department of Computing Science, University of
Glasgow, Glasgow, Scotland.

SHAHAM, R., KOLODNER, E. K., AND SAGIV, M. 2000. On the effectiveness of GC in Java. In ISMM
2000 Proceedings of the Second International Symposium on Memory Management. ACM SIG-
PLAN Not. 36, 1, 12–17.

SHAHAM, R., KOLODNER, E. K., AND SAGIV, M. 2002. Estimating the impact of heap liveness infor-
mation on space consumption in Java. In ISMM 2002 Proceedings of the Third International
Symposium on Memory Management. ACM SIGPLAN Not. 37, 1, 64–75.

SPECjvm98. 1998. Standard Performance Evaluation Corporation (SPEC). Available online at
http://www.spec.org/osg/jvm98.
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STEFANOVIĆ, D., HERTZ, M., BLACKBURN, S. M., MCKINLEY, K. S., AND MOSS, J. E. B. 2003. Older-first
garbage collection in practice: Evaluation in a Java virtual machine. In MSP 2002 Proceedings of
the ACM SIGPLAN Workshop on Memory System Performance. ACM SIGPLAN Not. 38, 2(suppl.),
25–36.
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