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ABSTRACT
Garbage collectors provide memory safety, an important step to-
ward program correctness. However, correctness of the collector
itself can be challenging to establish, given both the style in which
such systems are written and the weakly-ordered memory accesses
of modern hardware. One way to maximize benefits is to use a
framework in which effort can be focused on the correctness of
small, modular critical components from which various collectors
may be composed. Full proof of correctness is likely impractical, so
we propose to gain a degree of confidence in collector correctness
by applying model checking to critical kernels within a garbage
collection framework. We further envisage a model framework, par-
alleling the framework nature of the collector, in hope that it will
be easy to create new models for new collectors. We describe here
a prototype model structure, and present results of model check-
ing both stop-the-world and snapshot-at-the-beginning concurrent
marking. We found useful regularities of model structure, and that
models could be checked within possible time and space budgets on
capable servers. This suggests that collectors built in amodular style
might be model checked, and further that it may be worthwhile
to develop a model checking framework with a domain-specific
language from which to generate those models.

CCS CONCEPTS
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1 INTRODUCTION
The Chromium Project found that of 912 serious security bugs
they analyzed since 2015, about 70% were due to memory safety
violations, half of those due to use-after-free errors [4]. Garbage
collected languages avoid this source of security bugs, but depend
on correctness of their garbage collector. Given the complexity of
production garbage collectors, reasoning about their correctness
can be extremely challenging. This sometimes leads to real security
bugs, such as use-after-free errors [19].

Here we explore a two-pronged approach to increasing confi-
dence in the correctness of garbage collectors. We start by using
MMTk, which has modularity and code reuse as first order design
goals [2], and more recently has developed a system of generic
work units and work scheduling which further modularizes the
most frequently executed kernels within a collector [18]. Second,
we develop models of certain kernels and their scheduling, and for
the snapshot-at-the-beginning (SATB) write barrier [24] used by
some concurrent collectors.

MMTk’s work packet framework uses a pool of packets of work
units of various kinds and a number of worker threads. Any worker
can process any packet, but certain kinds of packets are legal to
process only at certain times. The overall system is controlled by a
releaser process that turns on permission to process kinds of work
as related guard predicates become satisfied. The implementer of
a specific collector designs the kinds of packets, guard predicates,
etc., according to the needs of that collector. Thus, the framework is
highly generic and customizable, and emphasizes a well-engineered
highly concurrent work pool approach.

This approach may be great for performance, but concurrent
collectors are error-prone due to interactions between the collector
and other components of the system, such as mutators and the
memory allocator. Further, writing the releaser in event-driven
style also makes it tricky: guard predicates must be just right for
correctness (as we experienced in developing our models!) An ad-
ditional challenge is the weak memory access ordering of modern
hardware, where operations performed by one thread in a given
order may be perceived by other threads in other orders, unless
special ordering instructions are used.

It would substantially assist collector developers if we could
provide tools to build confidence in the correctness of their de-
signs that target the MMTk framework. Since full machine-checked
proofs of correctness appear impractical for everyday development,
we propose to apply model checking. Model checking has been
successful in building confidence in the correctness of concurrent
systems, including some concurrent garbage collectors ([21, 22], for
example). Our goal here is to develop a structure or framework of
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model checking that parallels the structure of theMMTk framework.
We have done so for two sample collectors and believe it feasible
to design a domain specific language for MMTk for mechanically
generating models for checking.

Our primary contributions are that we: (i) derive recurring model
checking patterns from the MMTk work packet framework; (ii) de-
velopmodels that check the critical parts of GC algorithms; (iii) illus-
trate our approach with models for stop-the-world and concurrent
SATB mark sweep collection; (iv) exhibit that the models work
under three different weak memory protocols; and (v) demonstrate
that such models are feasible to check in reasonable time and space.

What this paper is and is not: This paper is not primarily
about any existing or new GC algorithm, though we use two algo-
rithms as examples. In contrast, it is about a new style for writing
collectors. Second, this paper is not primarily about introducing or
defending that style, though we describe it as necessary, but about
how to gain confidence, via model checking, in collectors written
using the style. While it points to the feasibility of a model checking
framework, it does not propose a concrete framework. This paper
is about the feasibility of writing checkable models in a stylized
way that matches this new style of writing collectors.

2 RELATEDWORK
Most prior work applies formal verification tools and techniques to
specific GC algorithms, while we focus on checking the correctness
of a GC framework, which is applicable to various GC algorithms.
The closest previous work is that of Ugawa et al. [21], which applied
model checking to critical parts of the copy phases of at least five
specific concurrent copying collectors under six different memory
models. We demonstrate that we can straightforwardly generalize
ourmemory module to three memory models. The main distinc-
tion is that we target a GC framework, not particular algorithms.

Abe et al. [1] explored optimizations to mitigate the state ex-
plosion problem when model checking GC under weak memory
models. Their focus was on the weak memory aspect, and their
approach is rather different from ours, working from constraints
on execution traces expressed as first-order predicates. Our weak-
memory model is operational rather than predicate based.

Ugawa et al. [22] extended the JikesRVMMMTkwith support for
on-the-fly GC algorithms, providing thread-by-thread stack scan-
ning and ragged phase changes. They further implemented Trans-
actional Sapphire, a transactional memory version of Sapphire [13],
over this library and model-checked it. While they generalized the
JikesRVM MMTk, the MMTk we aim to model check is a much
more general and more loosely controlled framework. They also
check a single GC algorithm, albeit a complex one.

Vechev et al. [23] describe a framework to automatically explore
new GC algorithms based on “building blocks.” This differs from
the framework with which we work, because our framework de-
sign emphasizes the implementation of GC algorithms rather than
generation of them. The algorithm found by Vechev et al. [23] is
also model-checked, but under fewer scenarios than ours.

Bowman et al. [3] showed how to model correctness properties
of GC algorithms with temporal logic. They presented examples
of CSS specifications of two simple GC algorithms and a more
complex one (cyclic reference counting). We use much simpler LTL

formulas to express correctness properties, because the transitive
closure operator is not supported in Promela, and because we check
specific small graphs. Bowman et al. [3] did not do actual model
checking of their formulas.

For reasons of space we omit other, less related, work on model
checking GC.

There has also been work on machine-checked proofs of GC
correctness. Ericsson et al. [6, 7] verified the correctness of a gener-
ational GC algorithm for CakeML [8, 15–17] with HOL4 [11]. Gam-
mie et al. [9] verified an on-the-fly concurrent mark-sweep GC algo-
rithm under a weak memory model (TSO), with Isabelle/HOL [20].
Zakowski et al. [25] verified a concurrent GC algorithm with Coq
[5]. These all checked a single algorithm, but more notably, full for-
mal verification continues to be very difficult and time-consuming.
The MMTk framework is intended to help construct GC implemen-
tations quickly, so rapid model checking is a better fit for most cases
in practice. Perhaps at some future time researchers will discover
a way to leverage model checking results toward more rapid full
formal verification.

3 THE MMTKWORK PACKET FRAMEWORK
We now explain the various concepts and components of the MMTk
work packet framework.

The framework was motivated by a number of goals, including
maximizing: (i) scalability through concurrency among GC tasks
while maintaining correct ordering among them; (ii) code reuse
by providing a single, well-engineered task-processing framework
within which most GC work could be performed; and (iii) perfor-
mance from using highly optimized kernels.

The framework centers on work units, each of which is a discrete
entity (as small as a pointer or as large as a stack) to be processed,
and work packets, each of which contains multiple work units and
code to perform the processing over them. GC worker threads
simply consume and process work packets, agnostic to their pur-
pose. Some work packets may generate additional work. The GC
designer will prescribe rules that govern the scheduling of work
in order to ensure the correctness of the algorithm. Depending
on the algorithm, GC work may be performed concurrently or in
mutual exclusion to mutator work. For example, a work packet
might perform a simple mark of each of its work units. When a GC
thread claims such a packet, it iterates through each of the work
units in the packet, performing a mark operation and if the target
is not already marked, creates a scan work unit for the object. A
collector’s scheduling rules dictate when packets may be processed.
For example, finalizer packets might be allowed to run only after
all tracing packets have been processed, and packets that move
objects may be allowed to run only after all mutator threads have
yielded. The framework assumes that work units of a given kind
can be processed in any order, and unless otherwise indicated, can
be processed concurrently.

Although motivated by performance and software engineering
considerations, the design appears to lend itself to assurances of
correctness. In practice, most work packet kernels tend to be just
a few lines of code, and the guards that dictate their scheduling
are often straightforward. We now describe the elements of the
framework in more detail.
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Work units: Awork unit is the smallest piece of work that a given
collector will create and process, e.g., “mark an object” or
“scan a mutator stack.”

Work kinds: A collector defines whatever kinds of work units it
needs. Again, “mark an object” and “scan a thread stack” are
typical examples. The key property of a work kind is that
processing of a kind can be turned on and off as a collector
moves through different parts of a collection cycle.

Worker (thread): A collector has one or more worker threads.
Any worker can perform any work unit since work units
have object-oriented dispatch to the code for processing
them.

Packets: For efficiency, work units of the same kind are grouped
into packets. A packet is what a worker thread can claim,
and then process the work units within it.

Buckets: A bucket consists of one or more work kinds. A bucket
may be open, meaning its kinds of work may be processed,
or closed, meaning they may not be. A packet of a given kind
can be processed if there is any open bucket that includes
that kind. A collector may place restrictions on how many
packets of a given kind may be processed concurrently. In
particular, it can require that certain kinds of work be pro-
cessed sequentially, which is useful when the work is coded
in a way that does not support concurrent processing of
work of that kind.

Guards: Each bucket has a guard, which is a condition underwhich
the bucket may be opened. For example, in our sample col-
lectors, we require that all mutator stacks be scanned before
further marking proceeds.1 A guard may also specify when
to close a bucket.

Releaser: The releaser is a unique thread that watches for guards
to be come true and triggers opening and closing of buckets.

Work pool: The overall pool of packets, of various kinds, that have
been generated and can be claimed by workers, according
to whether appropriate buckets are open. We model the
pool as a set of buckets holding disjoint sets of packets. The
pool and workers collaborate to provide a high performance
concurrent work stealing collector.

As a concrete example of collector designs for this framework,
we summarize in Table 1 the kinds, buckets, etc., of the example
collectors we model checked. The table indicates how work units
of one kind may create units of another kind. Marking completes
when there are no unprocessedmarkObj and scanObjwork units.
The difference between the stop-the-world (STW) collector and
snapshot-at-the-beginning (SATB) is only that mutators run during
marking in SATB, employing a write barrier and marking newly
allocated objects.

We believe the novelty of the MMTk work packet framework
is its: (i) organization with event-triggered movement through the
“phases” of collection, using guards and buckets, and (ii) emphasis
on and provision of a highly concurrent work pool. While one
can definitely express a sequential or incremental collector in the
framework, it really comes into its own in supporting parallel and
concurrent collection.

1This is not logically necessary. We did it to explore how to set up appropriate guards,
etc.

4 EXAMPLE GC ALGORITHMS MODELED
To explore the possibility of model checking for the MMTk frame-
work, we desired well-known example algorithms that are, on the
one hand not overly complicated, but on the other hand, concurrent
enough to be interesting. We settled on parallel stop-the-world
(STW) marking and snapshot-at-the-beginning (SATB) concurrent
marking [24]. Both use the same mark-sweep collector design. They
differ in that SATB allows mutators to run during collection and
thus employs a suitable write barrier and must also deal with allo-
cation during marking.

We express these collectors in the MMTk framework using these
work unit / packet kinds, with the indicated work:

• startGC: Sent once by a mutator to start the marking cycle.
We model a single collection cycle at present.

• scanStack: One of these is sent by the startGC worker for
each mutator. The work unit requires asking the mutator
to yield to the collector. While a mutator is yielded it will
do no work. Once the mutator yields, the worker scans the
mutator’s stack entries creating markObj work units for
each non-null pointer it finds. It then drops the yield request
and the mutator can resume its own work.

• markObj: One of these is sent for each pointer discovered,
whether it be in stack scanning, object scanning, or by a
write barrier. The work unit involves doing a fetch-and-or
operation on the mark bit of the object. If the bit was not
previously set, the worker creates a scanObj work unit for
the object. Using an atomic fetch-and-or guarantees that
there will be at most one scanObj request for the object.
Allowing multiple markObj requests insures that model
checking will explore a race betweenmarkObj workers.

• scanObj: One of these is sent for each object discovered
to be reachable. The work is to examine each pointer of
the object, and for non-null ones, request markObj for the
target.

Actual collectors might fold markObj and scanObj together, or
have the thread that discovers a pointer check the mark status
of its referent, mark the object if necessary and request scanning.
Instead, we chose this approach to explore more deeply how the
different work is coordinated in the framework. Note also that a
given object can have more than one markObj work unit queued
for it, while it will have at most one scanObj work unit. This is
another intentional variation to see how each might be modeled.

The releaser triggering is as follows. Initially, the startGC bucket
is open. Once a startGC worker has entered the scanStack re-
quests, it indicates that it is done. The releaser then opens the
scanStack bucket. Once all stacks are scanned, the releaser opens
themark bucket, which include bothmarkObj and scanObjwork
units. Marking completes when there is no remaining markObj
or scanObj work unit.

To this collector organization, SATB adds the following. Each
update to a field of an object includes a field remembering barrier.2
This barrier, whose intent is to insure that the old referent of the field
(if any) is made “at least gray” according to the tri-color marking

2MMTk enables this barrier at all times for performance reasons. We checked both
enabling it all the time and enabling it only during marking.
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Table 1: MMTk setup for parallel stop-the-world marking

Bucket Kind Work Guard Generates
start startGC request stack scans initially open scanStack
stack scan scanStack request mutator yield; upon yield, scan stack, release yield start complete markObj
mark markObj insure object marked; if not marked before, request object scan stack scan scanObj

scanObj examine object’s pointers and request target objects be marked complete markObj

invariant, creates a markObj work unit for the old referent.3 This
guarantees that the object will be marked if it is not already. This
write barrier insures that, if the pointer being deleted is the last
one pointing to its target, the target is still marked. This meets the
criterion of snapshot-at-the-beginning, namely that every object
reachable when marking began (which for this algorithm is when it
starts scanning stacks) will be marked [24]. The second difference
between the SATB and STW collectors is that if an object is allocated
during or after stack scanning and marking in SATB, it is allocated
“black,” according to the tri-color invariant. To accomplish this, the
allocating thread directly sets the mark bit of the object.

5 MODEL CHECKINGWITH SPIN
We use the well-known model checker SPIN [12]. To use SPIN,
one writes the desired models in the Promela modeling language.
Promela provides concurrent processes that can communicate using
channels, in the manner of communicating sequential processes [10].
The channel semantics include the ability not only to (try to) send or
receive the next message, but to receive the next message that meets
a particular pattern of values and wildcards, to test whether such a
message is in the channel without receiving it, and to iterate over
the messages in a channel without removing them. Processes can
execute assignments similar to those of C, and control constructs
include: guarded commands, where a statement guarded by a side-
effect-free boolean expression can be executed only if the guard is
true; conditionals; general iteration; counted iteration; break; and
goto. Conditionals and general iteration allow guarded statements
whose guards overlap, leading to non-determinism. Another source
of non-determinism is the select statement, which chooses a num-
ber from a given range of integers. To control non-determinism
and allow atomic operations in this concurrent setting, Promela
provides d_step which groups a sequence of deterministic oper-
ations into one larger step (state transition), and atomic, which
guarantees that no other process takes a step while its sequence
of statements are carried out. (These differ in that atomic can be
non-deterministic and may consist of multiple steps.) Data types in
Promela include bool, byte, and some others that we did not use,
as well as arrays of these things and an analog of C structure types.
Notably Promela does not provide functions or procedures, though
it is easy to use C macros since SPIN uses the C preprocessor, and
Promela provides inline, which is essentially a C macro definition
with slightly nicer syntax.

While it is possible to do one or more, possibly non-deterministic,
simulation runs of a Promela model, SPIN can also do verification
by generating an executable that can explore all possible paths.

3Note that an object is black if it has been scanned, gray if it is marked or has been
requested to be marked, but is not yet scanned, and white otherwise.

Further, Promela gives the model writer the ability to include one
or more linear temporal logic (LTL) formulas that the executable can
check. These formulas can refer to any global variables of the model.
For example, one can use the LTL modal operator [], often read
“always,” to express an invariant, and <>, often read “eventually,” to
express a goal that must be achieved. Further, to show that some
property P can happen, but need not happen always, one can test
both [] P and [] !P—both should fail. When checking of an LTL
formula fails, SPIN can provide a trace, which is a history of the
steps of the various processes of the model that led to violation of
the LTL formula. This is helpful in model debugging.

For model checking generally, it is important to keep the overall
program state, size of the programs, number of processes, number
of steps needed, etc., as small as possible. While SPIN performs
a number of sophisticated optimizations of the search, and offers
various ways to compress states, it requires care to avoid combi-
natorial explosion and some thought about how best to represent
the system state, where one can use d_step and atomic without
undermining the intended model semantics, etc. Nevertheless, some
of our models require hundreds of gigabytes of memory and hours
to run.

We chose SPIN for this work because we were somewhat fa-
miliar with it. However, it does have particular advantages. One
is that it is not committed toward any particular programming
language, though it bears closest resemblance to C. Another is that
its select statement allows arbitrary choice among alternatives,
thus exploring the possible choices made by any policy rather than
checking correctness of only a single concrete policy. In contrast,
model checkers for C programs cannot check all possible policies
for choosing the order in which to do work.

For reference, we used SPIN version 6.5.1, dated 2021/06/03. We
used weak fairness, which requires that if a process continuously is
able to take a step, then eventually it will. Thus, other processes can
run arbitrarily far ahead of an enabled process, but not infinitely
far. Like any system, SPIN has it idiosyncrasies, vices, and virtues,
but we found it suited our purposes and the learning curve was not
too steep.

6 WEAK MEMORY MODEL
The title of this section is intentionally ambiguous: we will explain
which model of weak memory we assume for our model check-
ing, and we will explain how we model it in Promela code. We
begin with weak memory. We support these memory operations:
load, store, load-acquire, store-release, fence, (atomic) swap,
(atomic) compare-and-swap, and (atomic) fetch-and-XXX for
XXX being add, and, and or. It would be relatively easy to add
lfence and sfence operations if need be. Since we do not model
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1 byte memory[HEAP_SIZE] = 0;
2 typedef mem_request {
3 byte op; byte cpu; byte addr; byte newval; byte oldval;
4 };
5 chan hostToMemory = [HM_Q_LEN] of {mem_request};
6 typedef mem_response {
7 byte op; byte addr; byte val;
8 bool success; byte newval; byte oldval;
9 };
10 chan memoryToHost[CPUS] = [MH_Q_LEN] of {mem_response};
11 typedef SBEntry {byte cpu; byte address; byte value;};
12 chan storeBuffer = [SB_Q_LEN] of {SBEntry};

Algorithm 1.Memory request and channel declarations

writing or updating of instructions, we omit synchronization with
instruction fetch. From the standpoint of the issuing thread, each
of these operations has a beginning, those with a response have
an end, and operations on the same memory location occur in the
order they are issued, except that loads of the same location can
pass one another. However, operations on different locations can
be processed out of order at the memory, subject to these ordering
constraints:

• A load-acquire must be processed before any operations
that follow it from the same thread.

• A store-releasemust be processed after any operations that
precede it from the same thread.

• A fence must be processed after preceding operations from
the same thread and before following operations from the
same thread.

• If a thread perceives the end of operation 𝑋 before it issues
operation 𝑌 , then𝑋 was definitely processed by the memory
before 𝑌 .

These semantics correspond roughly with the relaxed and acquire-
release semantics of the C/C++11 memory model. For stronger
sequencing one can either wait for completion or use fence in-
structions. To be clear, our compare-and-swap is strong, meaning
that it does not have spurious failures, since such failures can be
gotten around by putting the compare-and-swap in a loop. Using
build-time options,the memory module can also be configured to
follow a sequentially consistent memory model (SC) or a total store
order one (TSO).

Here is how we model this memory system in Promela (see
Algorithms 1, 2, and 3). We have a single memory process that han-
dles all memory requests. It models the coherent memory system
of a modern multi-core processor as a single centralized memory
(memory, a simple array of byte), since that is the semantics that
a coherent cached memory system presents to programs. We use a
single hostToMemory channel for all requests; a request indicates
the operation, requesting cpu, address, new value, and (desired) old
value (for compare-and-swap). This channel therefore holds all
the as yet unprocessed memory requests from all cpus. We provide
a separate channel for each cpu for responses from the memory
to that cpu (memoryToHost). Responses indicate the operation,
address, returned value (for loads), success code (for compare-
and-swap), and new and old values (for atomic read-modify-write
operations). The [n] of syntax in a chan declaration indicates the
maximum number of messages the channel can hold. We size our
channels so that sends never block.

1 inline check_store_buffer(addr, found, found_value) {
2 d_step {
3 found = false;
4 for (ent in storeBuffer) {
5 if
6 :: ent.cpu == (CPUID) && ent.address == (addr) →
7 found = true; found_value = ent.value;
8 :: else → skip;
9 fi
10 }
11 }
12 }
13 inline BEGIN_LOAD (addr) {
14 d_step {
15 check_store_buffer(addr, found, val);
16 if
17 :: found → memoryToHost[CPUID] !
18 mr_load( (addr), val, true, 0, 0);
19 :: else →
20 hostToMemory ! m_load( (CPUID), (addr), 0, 0);
21 fi
22 }
23 }
24 inline RECEIVE_LOAD(addr, var) {
25 memoryToHost[CPUID] ?? mr_load(eval(addr), var, _, _, _);
26 }

Algorithm 2. Store buffer implementation

Real hardware includes a component called a store buffer for
each cpu. This buffer holds all the stores from that cpu where the
cpu has not yet received a response from the memory. We model
store buffers with another Promela channel, using a single channel
for the whole system, also shown in Algorithm 1. The store buffers
are not used for messaging but as an associative lookup table. Load
requests from cpus probe the store buffer to find the most recent
store by the same cpu to the same address, and if there is one, the
value stored is immediately sent back to the cpu, bypassing the
memory. Otherwise the request is forwarded to the memory.

This is illustrated in Algorithm 2, which we include to show vari-
ous features of Promela.BEGIN_LOAD calls check_store_buffer
to determine whether there is a store buffer “hit”. If there is (found),
it immediately sends anmr_load (load response) message to the
cpu, bypassing the memory; otherwise it sends an m_load (load
request) to the memory. The syntax chan ! message indicates to
attempt to send message on chan. The syntax if :: guard1 -> body1
... :: guard𝑛 -> body𝑛 fi is a conditional statement. If guard𝑖 is true
in the current state, then body𝑖 may be executed. The special guard
else is true only if all other guards are false. In this case we see a
simple if-then-else.

The check_store_buffer inline loops over all entries in store-
Buffer, finding the last (most recently sent) store from the current
cpu to the same address, if any. This is all done as a single deter-
ministic step so that the check views an atomic snapshot of the
store buffer state. The d_step of BEGIN_LOADworks because the
computation is deterministic in any given state, and the message
sends won’t block because our queues are long enough.

The memory process executes the loop outlined in Algorithm 3.
If the channel is non-empty, then the process atomically: discov-
ers which requests are ready (legal to execute according to the
ordering rules—these are what vary in case of the SC and TSO
models), chooses one non-deterministically (select), and then pro-
cesses it. The first d_step examines messages in the channel, in
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1 do
2 :: nempty(hostToMemory) →
3 atomic {
4 d_step {
5 // clear data structures (not shown)
6 for (req in hostToMemory) {
7 if
8 :: req.op == m_load →
9 if
10 :: writer[req.cpu,req.addr] ||
11 have_fence[req.cpu] → skip;
12 :: else →
13 ready[nready] = req; nready++;
14 reader[req.cpu,req.addr] = true;
15 any_access[req.cpu] = true;
16 :: req.op == m_loadacq →
17 ... // cases for other operations
18 fi
19 }
20 }
21 select (idx : 0 .. nready−1);
22 d_step {
23 hostToMemory ?? eval(ready[idx].op), ...;
24 if
25 :: ready[idx].op == m_load →
26 memoryToHost[ready[idx].cpu] !
27 mr_load, ready[idx].addr,
28 memory[ready[idx].addr], ...
29 :: ... // cases for other operations
30 fi
31 }
32 }
33 :: empty(hostToMemory) && (PROCS_RUNNING == 0) →
34 break;
35 od

Algorithm 3.Memory process outline

the order they were sent. It uses auxiliary local boolean arrays
reader[cpu, addr] and writer[cpu, addr] to record whether it
has seen a request to read (write) a given address by a given cpu,
have_fence[cpu] to record if it has seen a fence from the cpu, and
any_access[cpu] to record if it has seen any access from the given
cpu. These are adequate to determine whether an operation is ready.
The outline shows the handling for load. A more complex example
is load-acquire, which is legal under the same conditions as load,
but when it is ready also sets have_fence[req.cpu] to prevent
later operations from being considered ready. The actual work is
carried out in a final d_step that has a case for each operation.
The ?? operator matches a particular message in the channel and
receives (removes) it. This is non-blocking in this case because we
just saw the message in the channel, and the whole loop iteration
is in an atomic, preventing other processes from modifying the
channel.

This pattern of a d_step to determine what work is available, a
select to choose an available item, and a second d_step to do the
chosen work is one we use repeatedly in our models. Conceivably
the first d_step and the select could be implemented using a truly
random (non-deterministic) message receive operator, but Promela
does not provide that functionality—only receiving the first message
that matches a given pattern.

There is an inline for each operation for a cpu to request that
operation, and another one for it to receive the matching response,
which involves waiting on its memoryToHost channel, as shown
in Algorithm 2 forRECEIVE_LOAD. The store and store-release

1 active proctype releaser() {
2 OPEN_START_GC();
3 do
4 :: MARK_DONE → break;
5 :: else → d_step {
6 if
7 :: !SS_ALLOWED && SS_GUARD() →
8 d_step {OPEN_SS();}
9 :: !MARKING_ALLOWED && MARK_START_GUARD() →
10 d_step {OPEN_MO(); OPEN_SO();}
11 :: MARKING_ALLOWED && MARK_DONE_GUARD() →
12 d_step {NOTE_MARKING_DONE();}
13 vi
14 }
15 CD
16 }

Algorithm 4. Releaser

1 # define SS_GUARD() START_GC_DONE
2 bool MARK_DONE = false;
3 bool MARKING_ALLOWED = false;
4 # define MARK_START_GUARD() \
5 (SS_ALLOWED && ALL_STACKS_SCANNED())
6 inline OPEN_START_GC () {START_GC_ALLOWED = true;}
7 inline OPEN_SS () {SS_ALLOWED = true;}
8 inline OPEN_MO () {
9 MARKING_ALLOWED = true; MO_ALLOWED = true;
10 }
11 inline OPEN_SO () {SO_ALLOWED = true;}
12 # define MARK_DONE_GUARD() \
13 (SO_BUCKET_EMPTY() && MO_BUCKET_EMPTY())
14 inline NOTE_MARKING_DONE() {MARK_DONE = true;}

Algorithm 5. Guard definitions

1 bool MUT_YIELD_REQUESTED[NUM_MUTATORS];
2 bool MUT_YIELDED [NUM_MUTATORS];
3 proctype mutator (byte MUT_ID) {
4 ...
5 do
6 // Special case: start gc
7 :: MUT_ID == 0 &&
8 START_GC_ALLOWED && !START_GC_REQUESTED →
9 REQUEST_START_GC();
10 // Respond to yield request by yielding
11 :: MUT_YIELD_REQUESTED[MUT_ID] && !MUT_YIELDED[MUT_ID] →
12 MUT_YIELDED[MUT_ID] = true;
13 // Respond to drop of yield request by unyielding
14 :: !MUT_YIELD_REQUESTED[MUT_ID] && MUT_YIELDED[MUT_ID] →
15 MUT_YIELDED[MUT_ID] = false;
16 ...
17 od
18 }

Algorithm 6.Mutator handshake

operations do not send responses. See Algorithm 14 in the appendix
for details on how we incorporate TSO and SC into this Promela
model.

7 MODELING THE GC ALGORITHMS IN
PROMELA

We now describe our design of the MMTk work packet framework
in Promela, and our models of the STW marking and SATB concur-
rent marking algorithms.
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7.1 Assumptions
The main challenge we face is state space explosion. To manage
this, we choose abstractions that simplify the original concepts, and
that we hope do not affect correctness. The models follow these
assumptions:

• Weak fairness: If a process is continuously able to take a step,
it eventually will. While real schedulers can starve processes,
we assume they cannot be starved forever.

• Atomicity of guard evaluation: A single instance of the re-
leaser proctype evaluates all guards atomically, in a single
d_step. Checking the actual implementation of a releaser is
beyond the scope of this work.

• Atomicity of work polling: Recall that we are not trying to
model details of the work pool and its synchronization, but
assume that that infrastructure is correct.

• Order of work polling: This is unspecified in MMTk design,
so we model it with non-determinism to check all possible
orders.

The main differences between the model and the MMTk design
are:

• A designated proctype for each kind of work packet: This is
in contrast to the dynamic dispatching of the MMTk frame-
work. Separate proctypes reduce state space explosion in
model checking. Assuming there are at least as many work-
ers as kinds of work, it is always possible that a given worker
thread happens to handle a single kind of work. As explained
in Section 8 we test scenarios with more than one worker of
each given kind.

• One work unit per packet: While grouping work units into
packets is important for performance of MMTk, we model
the limiting case of packets of size one. Since work units
from the same packet are assumed independent from each
other, this change does not impact correctness. In fact, this
actually challenges correctnessmore, since work units in the
same packet cannot be processed concurrently in MMTk but
can in model checking.

• One bucket per kind of work packet: MMTk allows a bucket
to hold more than one kind of work, while our buckets hold a
single kind. This is fully general considering that two buckets
that open and close under certain conditions are equivalent
to a single bucket that opens and closes under the same
conditions. Our approach makes it a little easier to determine
when a given work unit can be processed.

We do not model mutator stacks as part of the shared memory
modeled by thememory module. Even though stack scanning is
done by a separate process, the mutator is stopped when it hap-
pens, so there is no race condition. We also generally implement
computations local to a mutator as atomic steps.

The shared heap of objects is kept in memory locations accessed
via the memory module. Since our current models do not copy
objects, non-pointer fields are ignored by our collectors, so we do
not model them. Further, we believe that objects with two pointer
fields are large enough to test the interesting cases. Therefore, our
objects consist of a metadata field (for the mark bit) and two pointer
fields, each stored in a distinct memory location.

We often abbreviate scan_stack to ss, mark_obj to mo, and
scan_obj to so for brevity.

7.2 STWMarking
As described in Section 4, marking begins when the startGC bucket
opens, followed later by the scanStack and then mark buckets.
The startGC guard starts enabled by the releaser, and mutator 0
can request startGC, which allows the releaser to open that bucket.
The startGC process is simple—it just requests scanStack for each
mutator and then indicates it is done. That allows the releaser to
open the scanStack bucket. This is slightly more interesting, with
the scanStack worker and mutator engaging in a handshake. The
mutator side is illustrated in Algorithm 6. Notice that the STW
mutator does nothing other than respond to handshakes, and for
mutator 0, kick off a collection. The scanStack worker follows the
general worker pattern. Its declarations appear in Algorithm 15 and
a sketch of its body in Algorithm 16 in the appendix. There can be
at most one item for each mutator, so the work items are logically
a set (in the mathematical sense) of mutators. We model this us-
ing a typedef with bool fields requested and claimed indexed
by mutator number. The guard, SS_ALLOWED, starts false, and
the counts of needed (requested and not yet done) and claimed
items start at 0. SS_REQUEST makes the obvious adjustments,
atomically. The bucket is empty when no more scans are needed.

As previously mentioned, themark bucket comprisesmarkObj
and scanObj work units. Their declarations (Algorithm 7, Algo-
rithm 8) are very similar to one another, but with an important
difference: scanObjmodels a set of requests whilemarkObjmod-
els a multiset of them, since there can be more than one request in
process to mark a given object. Thus the requested and claimed
fields of the work units of markObj are of type byte rather than
bool. The relevant parts of the the workers appear in Algorithms 9
and 10. Note that any of scanStack, markObj, or scanObj can
have more than one worker instance running concurrently.

The releaser is quite simple (Algorithm 4) and builds on the
guard definitions (Algorithm 5).

7.3 SATB Marking
For snapshot-at-the-beginning concurrent marking, there are two
extra components: we need the mutator to manipulate pointers
on its stack so the model is interesting to check, and we need a
proper write barrier and support for object allocation. For SATB
we extend the mutator model previously shown so that it can take
steps, except while yielding for stack scanning. This is shown in
Algorithm 11. The variable step serves as a program counter for
mutator work that is defined elsewhere, and steps indicates the
total number of steps possible.4 Algorithm 12 shows the example of
allocating an object and storing the reference into a field of another
object. This uses alloc_obj and update_field, which illustrate
those primitives, including the write barrier (Algorithm 13). Note
that the barrier and allocating marked happen only if the action
occurs during marking (after stack scanning is allowed and before

4It would also be possible to write the mutator more sequentially, inserting allowed
yield points, something we aim to try in the future to see how it affects the size of the
search space.
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1 typedef mo_packet {byte requests; byte claims;}
2 mo_packet MO_BUCKET[NOBJS];
3
4 bool MO_ALLOWED = false;
5 byte num_mo_needed = 0;
6 byte num_mo_unclaimed = 0;
7 ...
8 inline REQUEST_MO (obj) {d_step {
9 MO_BUCKET[obj].requests++;
10 num_mo_needed++;
11 num_mo_unclaimed++;
12 }
13 }
14 # define MO_BUCKET_EMPTY() (num_mo_needed == 0)

Algorithm 7. Mark object declaration

1 typedef so_packet {bool requested; bool claimed;}
2 so_packet SO_BUCKET[NOBJS];
3
4 bool SO_ALLOWED = false;
5 byte num_so_needed = 0;
6 byte num_so_unclaimed = 0;
7 ...
8 inline REQUEST_SO (obj) {d_step {
9 SO_BUCKET[obj].requested = true;
10 num_so_needed++;
11 num_so_unclaimed++;
12 }
13 }
14 # define SO_BUCKET_EMPTY() (num_so_needed == 0)

Algorithm 8. Scan object declaration

1 proctype mo_worker (...) {
2 ...
3 do
4 :: MO_ALLOWED && MO_HAS_UNCLAIMED() → {
5 // poll for a work unit, obj_id, non-deterministically; may do:
6 MO_BUCKET[obj_id].claims++; // claim from multiset
7 num_mo_unclaimed--;
8 if // process work unit
9 :: obj_id == HEAP_NULLPTR → skip;
10 :: else → {
11 ... // mark, may do a REQUEST_SO
12 num_mo_needed--;
13 }
14 fi
15 }
16 :: MARK_DONE → break;
17 od
18 }

Algorithm 9.Mark object worker

1 proctype so_worker (...) {
2 ...
3 do
4 :: SO_ALLOWED && SO_HAS_UNCLAIMED() → {
5 // poll for a work unit, obj_id, non-deterministically; may do:
6 SO_BUCKET[obj_id].claimed = true; // claim from set
7 num_so_unclaimed--;
8 if // process work unit
9 :: obj_id == HEAP_NULLPTR → skip;
10 :: else → {
11 ... // scan, may do one or more REQUEST_MO
12 num_so_needed--;
13 }
14 fi
15 }
16 :: MARK_DONE → break;
17 od
18 }

Algorithm 10. Scan object worker

1 proctype mutator (byte MUT_ID) {
2 byte step = 0; byte steps;
3 mut_steps(MUT_ID, steps);
4 do
5 ... // previous cases
6 // If not yielded, there are more steps,
7 // and stepping is allowed, we can take a step
8 :: !MUT_YIELDED[MUT_ID] && step < steps &&
9 MUT_STEP_ALLOWED() →
10 mut_step(MUT_ID, step);
11 // If not yielded, all steps done, and MARK_DONE, we can stop
12 :: MARK_DONE && !MUT_YIELDED[MUT_ID] && step == steps →
13 break;
14 od
15 }

Algorithm 11. SATB mutator skeleton

marking is done). Some other scenarios, described in Section 8 use
other mutator steps.

In sum, key patterns that emerged from writing the example
collectors in Promela to match the MMTk style are: the atomic
d_step-select-d_step technique for choosing and processing work
items, possibly non-deterministically, and the organization of work
items into set or multisets, appropriately indexed.

8 EXPERIMENTS
We now describe the specific models and LTL formulas that we
checked. It is first worth mentioning that we constructed 19 models

1 inline mut_step (MUT_ID, step) {
2 if
3 :: MUT_ID == 0 && step == 0 → {
4 alloc_obj(1, 1);
5 step++;
6 }
7 :: MUT_ID == 0 && step == 1 → {
8 update_field(DATA_OF(0), STACK_SLOT(MUT_ID, 1));
9 step++;
10 }
11 :: MUT_ID == 0 && step == 2 → d_step {
12 STACK_SLOT(MUT_ID, 1) = HEAP_NULLPTR;
13 step++;
14 }
15 fi
16 }

Algorithm 12. SATB mutator steps: allocation

with a total of 81 LTL formulas to check the semantics of the weakly
ordered memory component. These were also checked under the
TSO and SC models, where a small number of them intentionally
behave differently (to test the TSO and SC models themselves).
These all check in a matter of at most a few milliseconds since they
have the style of small “litmus tests.” The LTL formulas check both
that certain outcomes of concurrent operations are possible and
that certain others are disallowed.

Moving on to marking, we have 6 idle-mutator scenarios to
check stack scanning and marking generally, detailed in Figure 1.
These were designed to check the following conditions, some of
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1 inline insure_at_least_gray (obj) {
2 if
3 :: obj ≠ HEAP_NULLPTR →
4 BEGIN_READ(META_OF(obj));
5 byte meta;
6 RECEIVE_READ(META_OF(obj), meta);
7 if
8 :: meta_is_unmarked(meta) → REQUEST_MARK_OBJ(obj);
9 :: else → skip;
10 fi
11 :: else → skip;
12 fi
13 }
14 inline update_field (addr, newval) {
15 if
16 :: DURING_MARKING →
17 byte oldval;
18 BEGIN_READ(addr);
19 RECEIVE_READ(addr, oldval);
20 insure_at_least_gray(oldval);
21 :: else → skip;
22 fi
23 WRITE(addr, newval);
24 }
25 inline alloc_obj (obj, stack_slot) {
26 if
27 :: DURING_MARKING → WRITE(META_OF(obj), MARKED);
28 :: else → skip;
29 fi
30 update_stack_slot(stack_slot, obj);
31 }

Algorithm 13. Update and allocation primitives

which are checked only when multiple threads of a given kind run
concurrently:

• All stacks and all stack slots are scanned.
• All object fields are scanned.
• An unreachable object is not marked, while all reachable
objects are marked.

• Shared graph structure (more than one incoming pointer) is
handled.

• Multiple levels of objects are handled.
• Cycles with one object (self-loop) and with more than one
are handled.

• Each of scanStack,markObj, and scanObj have occasions
of (a) competition for a work unit, and (b) concurrent pro-
cessing of different work units.

An idle mutator handshakes for stack scanning, but does no other
work. Of the scenarios, 2 have more than one stack, and thus more
than one mutator, the others only one mutator. We ran each sce-
nario with one process each of kinds scanStack, markObj, and
scanObj, and also with two scanStack, or with twomarkObj, or
with two scanObj processes. Together this is 24 configurations of
objects and processes.

All of these configurations test these two LTL formula schemes:
(1) [] ((is_marked(i) -> [] is_marked(i)) && ...) with a con-

junct for each object that might become marked. This says
that once an object is marked, it stays marked.

(2) <> (memory_done && is_marked(i) && ...) with a con-
junct for each object that should become marked. This says
that eventually the memory process should be done (the
memory does not finish until all the processes that might
access it finish) and the indicated objects should be marked.

Additionally, Scenario 1 checks that Object 1 is not marked using
LTL formula [] is_unmarked(1). This claims that Object 1 is never
marked. All of these formulas are ones that should succeed for the
idle-mutator case. We end up with 52 model checking runs (2 LTL
formulas times 24 configurations of numbers of processes, plus
4 tests that Object 1 is never marked) for the idle-mutator case.
However, to this we add runs under the TSO and SC models, giving
156 runs.

Having idle mutators does not distinguish STW and SATB, or
show anything about soundness of collection in the face of mu-
tator activity. Therefore we devised three specific active-mutator
scenarios:

(1) Starting from an initial configuration where the mutator
stack holds references to objects 0 and 1, and object 0 has a
reference to object 2, themutator loads the reference to object
2, overwrites the reference from 0 to 2 with a null pointer,
creates a reference from 1 to 2, and drops its immediate
reference to 2. This is illustrated in Figure 2. We call this the
pointer shuffling scenario, and it can cause SATB collection
to fail in the absence of a write barrier. If object 1 is marked
and scanned, then the mutator does the shuffle, and then
object 0 is marked, the collector fails to mark object 2.

(2) Starting from an initial configuration where the mutator
stack refers to object 0, which refers to object 1, the mutator
deletes the edge from 0 to 1 by storing a null pointer into
that field of object 0. We call this the pointer deletion scenario.
It is problematic for SATB if the deletion happens during
marking but before object 0 is scanned, since object 1 will
not be marked even though it was reachable at the beginning
of marking.

(3) Starting from an initial configuration where the mutator
stack refers to object 0, allocate a new object, number 1, cre-
ate a reference from 0 to 1 and drop the mutator’s immediate
reference to 1. In this case the mutator should itself mark
object 1 if the allocation happens during marking. We call
this the allocate marked scenario.

We use the same three LTL formulas as for STW Scenario 1, ex-
cept we adjust the second one slightly for the pointer deletion
and object allocation scenarios since whether Object 1 should be
marked depends on when a particular mutator step occurred during
marking.

To check STW active mutators, we added a build-time flag that,
if set, prohibits the mutator from taking steps during marking.
To demonstrate the necessity of the write barrier and allocate-
marked behaviors for SATB but not STW, we ran both STW and
SATB scenarios where those behaviors were turned off. We further
checked the scenarios with the write barrier enabled all the time
and with it enabled only during marking. Again, all these were
checked also under the TSO and SC memory models. In sum, the
active mutator cases were run in five different modes: SATB with
write barrier only during marking, SATB with write barrier always
on, SATB with write barrier disable, STW with write barrier, and
STWwithout write barrier. Again, these were all run also with TSO
and SC. This lead to 5 × 3 × 3 × 3 = 135 model checking runs.
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(a) Scenario 1 (b) Scenario 2

(c) Scenario 3 (d) Scenario 4

(e) Scenario 5 (f) Scenario 6

Figure 1: Heap scenarios 1 through 6

Figure 2: Pointer shuffling scenario

Lastly, we were curious to know whether a layered model check-
ing approach might be feasible, where we first check certain opera-
tion in terms of their low-level memory accesses, and then if the
operations are seen to be suitably atomic, switch to atomic versions
of them in the larger algorithms. We introduced a build-time option
that made all accesses to the metadata word of objects (the mark
bit) atomic in Promela. We call this the atomic meta version. We
added tests in the style of the memory module’s “litmus tests” to
verify that the metadata primitives, when written to use the mem-
ory module, are indeed atomic, and then tested the atomic meta
versions of all the 156 + 135 = 291 previous runs, giving a total run
count of 582.

We now offer some summary statistics. The 52 base STW tests
take from under a second to over 5 hours with a geometric mean
of 99 sec (for runs requiring at least 1 sec) and maximum of 19,200
sec; geometric mean of 1.7 million states explored (maximum 655
million); typical exploration rate of 120,000 states/sec without a
huge range; and a geometric mean of 683 Mb of memory required
(maximum 50 Gb). The total time for those runs was 83,334 sec

(about 23 cpu-hrs). The TSO statistics for these were very similar
while the SC ones were around 2/3, reflecting the fact that SC
somewhat reduces the search space. The atomic meta cases were
all noticeably smaller than their counterparts without atomic meta,
but not by a factor of 2. The total time for all variants including
atomic meta was about 93 cpu-hrs, and we were able to achieve
significant parallelism on our larger servers so as to reduce wall
clock time.

Turning to the SATB tests, the pointer shuffling scenario took
particularly long with the third LTL requiring 100,000 sec (nearly
28 hours) to check using somewhat more that 250 Gb of memory.
The second LTL check faster (over 14 hours) but required more
memory (about 340 Gb). Using atomic meta cut this by more than
1/2. TSO reduced by only 10–20% and SC by about 50%. This is
clearly a scenario where it would be good to cut its state space
down if it can be done while preserving its interesting nature. It is
worth mentioning that running it revealed limitation in our initial
LTL formulae when, for example, the only copy of the pointer was
in the Promela channel heading toward the memory—the mutator
had not guaranteed that its write to memory was complete before
it yielded and allowed the collector to scan its stack.

The other two SATB scenarios tested in seconds to a small num-
ber of minutes.

The version that used the write barrier all the time produced
similar statistics, while the one with the write barrier disabled
checked noticeably faster (since it only has to find one bad case to
show the barrier is necessary, rather than showing that all cases
are good).

The STW active mutator cases all completed within a few min-
utes.

In sum, if we neglect the 54 particularly large and slow pointer
shuffling SATB runs, which took about 350 cpu-hrs, the remaining
runs used less that 4 cpu-hrs. We conclude that, especially with
access to servers with significant memory and computing capacity,
most of the model checking can be done within a day, and deeper
analysis of why certain runs took longer may inspire ways to write
the tests to reduce their time and space requirements.

9 RESULTS
Here are the results of our experiments, beyond the statistics, pre-
viously mentioned. First, all LTL formulas checked properly, that
is, all succeeded except those that should not have. SPIN’s lossless
compression mode (COLLAPSE) was adequate for full state space
search to succeed in the memory budget available (250 GB, except
for a handful of runs that required 300–350 GB); we did not need
to resort to probabilistic checking.

Our modeling effort showed that we could exploit common pat-
terns, paralleling those of the MMTk framework, to wit:

• For each work kind, a fairly standard pattern of declarations
for the work units of that kind (as sets or multisets indexed
by object number) and of counters for tracking requested,
claimed, and completed work, that keep the SPIN state small
and enable simple termination checks.

• Guards for each kind of work written along with the decla-
rations for the work units.

• One Promela process kind for each work unit kind.
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• The atomic d_step-select-d_step pattern for checking for
and claiming work from the work pool.

• One memory process modeling the weak memory.
• One releaser process.

We further began to see some ways to structure the code using
standard modules with call backs, as seen with the active mutator
cases, which allows a fixed mutator module to model a range of
mutator behaviors.

Another interesting result is that, even after all team members
agreed that the write barrier looked correct, model checking re-
vealed a flaw: we had turned the write barrier on only after the
mark bucket was open, but it needed to be turned on as soon as
scanStack was open, since scanStack is really part of the overall
marking process. SPIN’s ability to show a failing execution’s trace
was very helpful in tracking this down and fixing it. We had several
other similar experiences in the course of this work.

10 CONCLUSION AND FUTUREWORK
We consider our exploration of a possible model checking frame-
work for the MMTk work packet framework to be a success. We
were able to develop models with a significant degree of repeated
patterns and structures. A key goal for this prototype was to de-
termine whether a domain-specific language (DSL) for writing
collector components for the framework, or at least model com-
ponents, would be a reasonable undertaking. We now believe that
it would be. Considering what such a language and its processor
might be like is a promising direction for future work.

Another key goal was to see if developing and checking models
early might positively influence the design of the MMTk frame-
work. Early reactions from the MMTk developers confirmed helpful
impact of our model checking effort.

It would be good to expand the diversity of GC algorithms within
the modeling framework we have now. We believe there are more
commonalities and patterns we can extract before designing a DSL.
Supporting copying collection is an obvious direction. However, we
think that there are ways the models can be made more modular
using more hooks and callbacks. Read and write barriers are one
example of that. However, there are some instances where hooks
for what we might call instrumentation are also useful because in
model checking we may need information in LTL formulas that is
not readily apparent from the system state. An example of that is
whether a given pointer is over-written and under what conditions
(e.g., during marking or not). The memory process could offer a
callback when it processes an operation that would be helpful with
that.

There also were clear cases where we need to try to control state
space explosion better. Writing the active mutator code more as a
sequence with allowed yield points marked might be better than
our current encoding as a state machine, though whether it would
have much impact is not clear.

Expanding our modeling coverage to multiple full cycles of col-
lection would clearly be interesting. Also, at present we offer a
single (though definitely weakly ordered) memory model. A rather
different, but still very useful, project would be model checking the
MMTk work pool data structures in detail, operating over weakly
ordered memory.

Our final conclusion is that model checking is a good fit with
concurrent GC and should go hand in hand with developing future
concurrent memory managers and garbage collectors. There appear
to be good prospects for an approach that would generate both
models and implementation code fragments from a DSL designed
for that purpose.
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A APPENDIX
We support the TSO (total store order) and SC (sequentially consis-
tent)memorymodels via Cmacro flagsMM_TSO andMM_SEQ_CST
(at most one of which may be set), in addition to the relaxed-plus-
acquire-release model, as shown in Algorithm 14. We mark the
changes with **.

1 do
2 :: nempty(hostToMemory) →
3 atomic {
4 d_step {
5 # if MM_TSO // **
6 bool mem_anywrites[CPUS];
7 # endif
8 // clear data structures (not shown)
9 for (req in hostToMemory) {
10 if
11 :: req.op == m_load →
12 if
13 :: writer[req.cpu,req.addr] ||
14 have_fence[req.cpu] ||
15 (MM_SEQ_CST && mem_anyaccess[req.cpu]) →
16 skip; // **
17 :: else →
18 ready[nready] = req; nready++;
19 reader[req.cpu,req.addr] = true;
20 any_access[req.cpu] = true;
21 :: req.op == m_write →
22 if
23 :: reader[req.cpu,req.addr] ||
24 writer[req.cpu,req.addr] || have_fence[req.cpu] ||
25 # if MM_TSO // **
26 mem_anywrites[req.cpu] ||
27 # endif
28 (MM_SEQ_CST && mem_anyaccess[req.cpu] →
29 skip; // **
30 ... // cases for other operations
31 fi
32 }
33 }
34 ...

Algorithm 14.Memory process outline

The declarations for scanStack follow those for a set (not mul-
tiset) of requests.
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1 typedef ss_item {bool requested; bool claimed;}
2 ss_item SS_BUCKET[NUM_MUTATORS];
3
4 bool SS_ALLOWED = false;
5 byte num_ss_needed = 0;
6 byte num_ss_unclaimed = 0;
7
8 inline REQUEST_SS (mut_id) {d_step {
9 SS_BUCKET[mut_id].requested = true;
10 num_ss_needed++; num_ss_unclaimed++;
11 }
12 }
13 # define ALL_STACKS_SCANNED() (num_ss_needed == 0)

Algorithm 15. Scan stack declarations

The polling for scanStack atomically chooses a requested but
not claimed item, if there is one, putting its mutator number into
m, using the atomic d_step-select-d_step pattern.

1 proctype ss_worker (...) {
2 do
3 :: SS_ALLOWED && SS_HAS_UNCLAIMED() → {
4 atomic {
5 byte ssw_count = 0;
6 byte ssw_mapping[NUM_MUTATORS];
7 d_step {
8 // find all requested but not claimed packets
9 for (ssw_i : 0 .. NUM_MUTATORS−1) {
10 if
11 :: SS_BUCKET[ssw_i].requested &&
12 !SS_BUCKET[ssw_i].claimed →
13 ssw_mapping[ssw_count] = ssw_i;
14 ssw_count++;
15 :: else → skip;
16 fi
17 }
18 }
19 if // choose a packet, if any
20 :: ssw_count > 0 →
21 select(ssw_i : 0 .. ssw_count−1);
22 d_step {
23 m = ssw_mapping[ssw_i];
24 SS_BUCKET[m].claimed = true;
25 num_ss_unclaimed--;
26 }
27 :: else → skip;
28 fi
29 } // end atomic polling
30 if
31 :: m < NUM_MUTATORS →
32 do
33 :: !MUT_YIELD_REQUESTED[m] → // request yield
34 MUT_YIELD_REQUESTED[m] = true;
35 :: MUT_YIELD_REQUESTED[m] && MUT_YIELDED[m] → {
36 ... // do REQUEST_MO for non-null stack entries
37 d_step {
38 MUT_YIELD_REQUESTED[m] = false;
39 num_ss_needed--;
40 }
41 break;
42 }
43 od;
44 :: else → skip;
45 fi
46 }
47 :: SS_ALLOWED && !SS_HAS_UNCLAIMED() → break;
48 od
49 }

Algorithm 16. Scan stack worker
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