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Abstract
The past 10 years have delivered two significant revolu-
tions. (1) Microprocessor design has been transformed by 
the limits of chip power, wire latency, and Dennard scal-
ing—leading to multicore processors and heterogeneity. (2) 
Managed languages and an entirely new software landscape 
emerged—revolutionizing how software is deployed, is sold, 
and interacts with hardware. Researchers most often exam-
ine these changes in isolation. Architects mostly grapple 
with microarchitecture design through the narrow software 
context of native sequential SPEC CPU benchmarks, while 
language researchers mostly consider microarchitecture in 
terms of performance alone. This work explores the clash 
of these two revolutions over the past decade by measur-
ing power, performance, energy, and scaling, and considers 
what the results may mean for the future. Our diverse find-
ings include the following: (a) native sequential workloads 
do not approximate managed workloads or even native 
 parallel workloads; (b) diverse application power profiles 
suggest that future applications and system software will 
need to participate in power optimization and management; 
and (c) software and hardware researchers need access to 
real measurements to optimize for power and energy.

1. INTRODUCTION
Quantitative performance analysis is the foundation for 
computer system design and innovation. In their classic 
paper, Emer and Clark noted that “A lack of detailed tim-
ing information impairs efforts to improve performance.”5 
They pioneered the quantitative approach by characterizing 
instruction mix and cycles per instruction on time-sharing 
workloads. They surprised expert reviewers by demonstrating a 
gap between the theoretical 1 MIPS peak of the VAX-11/780 
and the 0.5 MIPS it delivered on real workloads. Industry and 
academic researchers in software and hardware all use and 
extend this principled performance analysis methodology. 
Our research applies this quantitative approach to measured 
power. This work is timely because the past decade heralded 
the era of power- and energy-constrained hardware design.a 
Furthermore, demand for energy efficiency has intensified 
in large-scale systems, in which energy began to dominate 
costs, and in mobile systems, which are limited by battery 
life. A lack of detailed energy measurements is impairing 
efforts to reduce energy consumption on modern workloads.
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a Energy = power × execution time.

Society has benefited enormously from exponential 
 hardware performance improvements. Moore observed that 
transistors will be smaller and more numerous in each new 
generation.15 For a long time, this simple rule of integrated 
circuit fabrication came with an exponential and transpar-
ent performance dividend. Shrinking a transistor lowers 
its gate delay, which raises the processor’s theoretical clock 
speed (Dennard scaling3). Until recently, shrinking transis-
tors  delivered corresponding clock speed increases and more 
 transistors in the same chip area. Architects used the transis-
tor bounty to add memory, prefetching, branch prediction, 
multiple instruction issue, and deeper pipelines. The result 
was exponential single-threaded performance improvements.

Unfortunately, physical power and wire-delay limits 
will derail the clock speed bounty of Moore’s law in cur-
rent and future technologies. Power is now a first-order 
hardware design constraint in all market segments. 
Power constraints now severely limit clock scaling and 
prevent using all transistors simultaneously.6, 8, 16 In addi-
tion, the physical limitations of wires prevent single cycle 
access to a growing number of the transistors on a chip.9 
To effectively use more transistors at smaller technologies, 
these limits forced manufacturers to turn to chip multi-
processors (CMPs) and recently to heterogeneous parallel 
systems that seek power efficiency through specializa-
tion. Parallel heterogeneous hardware requires parallel 
software and exposes software developers to ongoing 
hardware upheaval. Unfortunately, most software today 
is not parallel, nor is it designed to modularly decompose 
onto a heterogeneous substrate.

Moore’s transistor bounty also drove orthogonal and 
disruptive changes in how software is deployed, is sold, and 
interacts with hardware over this same decade. Demands for 
correctness, complexity management, programmer pro-
ductivity, time-to-market, reliability, security, and portability 
pushed developers away from low-level compiled ahead-of-time 
(native) programming languages. Developers increasingly 
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choose high-level managed programming languages with 
a selection of safe pointer disciplines, garbage collection 
(automatic memory management), extensive standard librar-
ies, and dynamic just-in-time compilation for hardware porta-
bility. For example, modern Web services combine managed 
languages, such as PHP on the server side and JavaScript on 
the client side. In markets as diverse as financial software 
and cell phone applications, Java and .NET are the domi-
nant choices. The exponential performance improvements 
provided by hardware hid many of the costs of high-level 
languages and helped create a virtuous cycle with ever more 
capable and high-level software. This ecosystem is result-
ing in an explosion of developers, software, and devices that 
continue to change how we live and learn.

Unfortunately, a lack of power measurements is impair-
ing efforts to reduce energy consumption on traditional and 
modern software.

2. OVERVIEW
Our work quantitatively examines power, performance, 
and scaling during this period of disruptive software and 
hardware changes (2003–2011). Voluminous research 
explores performance analysis and a growing body of work 
explores power (see Section 6), but our work is the first to 
systematically measure the power, performance, and energy 
characteristics of software and hardware across a range of 
processors, technologies, and workloads.

We execute 61 diverse sequential and parallel bench-
marks written in three native languages and one managed 
language, all widely used: C, C++, Fortran, and Java. We 
choose Java because it has mature virtual machine technol-
ogy and substantial open source benchmarks. We choose 
eight representative Intel IA32 processors from five tech-
nology generations (130 nm to 32 nm). Each processor has 
an isolated processor power supply with stable voltage on 
the motherboard, to which we attach a Hall effect sensor 
that measures power supply current, and hence processor 
power. We calibrate and validate our sensor data. We find 
that power consumption varies widely among benchmarks. 
Furthermore, relative performance, power, and energy are 
not well predicted by core count, clock speed, or reported 
Thermal Design Power (TDP). TDP is the nominal amount 
of power the chip is designed to dissipate (i.e., without 
exceeding the maximum transistor junction temperature).

Using controlled hardware configurations, we explore the 
energy impact of hardware features and workload. We per-
form historical and Pareto analyses that identify the most 
power- and performance-efficient designs in our architecture 
configuration space. We make all of our data publicly avail-
able in the ACM Digital Library as a companion to our origi-
nal ASPLOS 2011 paper. Our data quantifies a large number 
of workload and hardware trends with precision and depth, 
some known and many previously unreported. This paper 
highlights eight findings, which we list in Figure 1. Two 
themes emerge from our analysis: workload and architecture.

Workload. The power, performance, and energy trends of 
native workloads substantially differ from managed and par-
allel native workloads. For example, (a) the SPEC CPU2006 
native benchmarks draw significantly less power than 

 parallel benchmarks and (b) managed runtimes exploit par-
allelism even when executing single-threaded applications. 
The results recommend that systems researchers include 
managed and native, sequential and parallel workloads 
when designing and evaluating energy-efficient systems.

Architecture. Hardware features such as clock scaling, 
gross microarchitecture, simultaneous multithreading, and 
chip multiprocessors each elicit a huge variety of power, 
performance, and energy responses. This variety and the 
difficulty of obtaining power measurements recommend 
exposing on-chip power meters and, when possible, power 
meters for individual structures, such as cores and caches. 
Modern processors include power management techniques 
that monitor power sensors to minimize power usage and 
boost performance. However, only in 2011 (after our origi-
nal paper) did Intel first expose energy counters, in their 
production Sandy Bridge processors. Just as hardware event 
counters provide a quantitative grounding for performance 
innovations, future architectures should include power and/or 
energy meters to drive innovation in the power-constrained 
computer systems era.

Measurement is key to understanding and optimization.

3. METHODOLOGY
This section presents an overview of essential elements of 
our methodology. We refer the reader to the original paper 
for a more detailed treatment.

3.1. Software
We systematically explore workload selection and show that it 
is a critical component for analyzing power and performance.
Native and managed applications embody different trade-offs 
between performance, reliability, portability, and deployment. 
It is impossible to meaningfully separate language from 

Figure 1. Eight findings from an analysis of measured chip power, 
performance, and energy on 61 workloads and eight processors.  
The ASPLOS paper includes more findings and analysis.

Findings
Power consumption is highly application dependent and is poorly correlated 

to TDP.

Power per transistor is relatively consistent within microarchitecture family, 

independent of process technology.

Energy-efficient architecture design is very sensitive to workload. 

Configurations  in the native non-scalable Pareto Frontier substantially differ 

from all the other workloads. 

Comparing one core to two, enabling a core is not consistently energy efficient.

The Java Virtual Machine induces parallelism into the execution of single-

threaded Java benchmarks.

Simultaneous multithreading delivers substantial energy savings for recent 

hardware and for in-order processors.

Two recent die shrinks deliver similar and surprising reductions in energy, 

even when controlling for clock frequency.

Controlling for technology, hardware parallelism, and clock speed, the out-of-

order architectures have similar energy efficiency as the in-order ones.
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workload and we offer no commentary on the virtue of lan-
guage choice. We create four workloads from 61 benchmarks.

Native non-scalable: C, C++, and Fortran single-threaded 
compute-intensive benchmarks from SPEC CPU2006.

Native scalable: Multithreaded C and C++ benchmarks from 
PARSEC.

Java non-scalable: Single and multithreaded benchmarks 
that do not scale well from SPECjvm, DaCapo 06-10-MR2, 
DaCapo 9.12, and pjbb2005.

Java scalable: Multithreaded Java benchmarks from DaCapo 
9.12 that scale in performance similarly to native scalable 
on the i7 (45).

We execute the Java benchmarks on the Oracle HotSpot 1.6.0 
virtual machine because it is a mature high-performance 
 virtual machine. The virtual machine dynamically optimizes 
each benchmark on each architecture. We use best practices for 
virtual machine measurement of steady state performance.2 
We compile the native non-scalable workload with icc at –o3. 
We use gcc at –o3 for the native scalable workload because 
icc did not correctly compile all benchmarks. The icc compiler 
generates better performing code than gcc. We execute the 
same native binaries on all machines. All the parallel native 
benchmarks scale up to eight hardware  contexts. The Java scal-
able workload is the subset of Java benchmarks that scale well.

3.2. Hardware
Table 1 lists our eight Intel IA32 processors which cover four 
process technologies (130 nm, 65 nm, 45 nm, and 32 nm) 
and four microarchitectures (NetBurst, Core, Bonnell, and 
Nehalem). The release price and date give context regarding 
Intel’s market placement. The Atoms and the Core 2Q (65) 
Kentsfield are extreme market points. These processors are 
only examples of many processors in each family. For example, 
Intel sells over 60 Nehalems at 45 nm, ranging in price from 
around $190 to over $3700. We believe that these samples are 
representative because they were sold at similar price points.

To explore the influence of architectural features, we selec-
tively down-clock the processors, disable cores on these chip 
multiprocessors (CMP), disable simultaneous multithread-
ing (SMT), and disable Turbo Boost using BIOS configuration.

3.3. Power, performance, and energy measurement
We isolate the direct current (DC) power supply to the pro-
cessor on the motherboard and measure its current with 
Pololu’s ACS714 current sensor board. The supply voltage 
is very stable, varying by less than 1%, which enables us to 
correctly calculate power. Prior work used a clamp amme-
ter, which can only measure alternating current (AC), and is 
therefore limited to measuring the whole system.10, 12 After 
publishing the original paper, Intel made chip-level and 
core-level energy measurements available on Sandy Bridge 
processors.4 Our methodology should slightly overstate chip 
power because it includes losses due to the motherboard’s 
voltage regulator. Validating against the Sandy Bridge energy 
counter shows that our power measurements consistently 
measure about 5% more current.

We execute each benchmark multiple times on every 
architecture, log its power values, and then compute average 
power consumption. The aggregate 95% confidence inter-
vals of execution time and power range from 0.7% to 4%. The 
measurement error in time and power for all processors and 
benchmarks is low. We compute arithmetic means over the 
four workloads, weighting each workload equally. To avoid 
biasing performance measurements to any one architec-
ture, we compute a reference performance for each bench-
mark by averaging the execution time on four architectures: 
Pentium 4 (130), Core 2D (65), Atom (45), and i5 (32). These 
choices capture four microarchitectures and four technol-
ogy generations. We also normalize energy to a reference, 
since energy = power × time. The reference energy is the aver-
age benchmark power on the four processors multiplied by 
their average execution time.

We measure the 45 processor configurations (8 stock 
and 37 BIOS configurations) and produce power and 

Table 1. Specifications for the eight processors used in the experiments.

Processor mArch Processor sSpec
Release 
date

Price 
(USD)

CMP 
SMT LLC (B)

Clock 
(GHz) nm

Trans 
M

Die 
(mm2)

VID 
Range 

(V)
TDP 
(W)

FSB 
(MHz)

B/W 
(GB/s)

DRAM 
Model

Pentium 4 NetBurst Northwood SL6WF May ‘03 – 1C2T 512K 2.4 130 55 131 – 66 800 – DDR-
400

Core 2 Duo 
E6600

Core Conroe SL9S8 Jul ‘06 316 2C1T 4M 2.4 65 291 143 0.85–
1.50

65 1066 – DDR2-
800

Core 2 Quad 
Q6600

Core Kentsfield SL9UM Jan ‘07 851 4C1T 8M 2.4 65 582 286 0.85–
1.50

105 1066 – DDR2-
800

Core i7  
920

Nehalem Bloomfield SLBCH Nov ‘08 284 4C2T 8M 2.7 45 731 263 0.80–
1.38

130 – 25.6 DDR3-
1066

Atom  
230

Bonnell Diamondville SLB6Z Jun ‘08 29 1C2T 512K 1.7 45 47 26 0.90–
1.16

4 533 – DDR2-
800

Core 2 Duo 
E7600

Core Wolfdale SLGTD May ‘09 133 2C1T 3M 3.1 45 228 82 0.85–
1.36

65 1066 – DDR2-
800

Atom  
D510

Bonnell Pineview SLBLA Dec ‘09 63 2C2T 1M 1.7 45 176 87 0.80–
1.17

13 665 – DDR2-
800

Core i5  
670

Nehalem Clarkdale SLBLT Jan ‘10 284 2C2T 4M 3.4 32 382 81 0.65–
1.40

73 – 21.0 DDR3-
1333
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performance data for each benchmark and processor. 
Figure 2 shows an example of this data, plotting the power 
versus performance characteristics for one of the 45 proces-
sor configurations, the stock i7 (45).

4. PERSPECTIVE
We organize our analysis into eight findings, as summarized 
in Figure 1. The original paper contains additional analyses 
and findings. We begin with broad trends. We show that 
applications exhibit a large range of power and performance 
characteristics that are not well summarized by a single 
number. This section conducts a Pareto energy efficiency 
analysis for all of the 45 nm processor configurations. Even 
with this modest exploration of architectural features, the 
results indicate that each workload prefers a different hard-
ware configuration for energy efficiency.

4.1. Power is application dependent
The nominal thermal design power (TDP) for a processor is 
the amount of power the chip may dissipate without exceed-
ing the maximum transistor junction temperature. Table 1 
lists TDP for each processor. Because measuring real proces-
sor power is difficult and TDP is readily available, TDP is often 
substituted for real measured power. Figure 3 shows that this 
substitution is problematic. It plots measured power on a log-
arithmic scale for each benchmark on each stock processor 
as a function of TDP and indicates TDP with an “!.” TDP is 
strictly higher than actual power. The gap between peak mea-
sured power and TDP varies from processor to processor and 
TDP is up to a factor of four higher than measured power. The 
variation among benchmarks is highest on the i7 (45) and i5 
(32), likely reflecting their advanced power management. For 
example, on the i7 (45), measured power varies between 23 W 
for 471.omnetpp and 89 W for fluidanimate! The smallest 

variation between maximum and minimum is on the Atom 
(45) at 30%. This trend is not new. All the processors exhibit 
a range of benchmark-specific power variation. TDP loosely 
correlates with power consumption, but it does not provide a 
good estimate for (1) maximum power consumption of indi-
vidual processors, (2) comparing among processors, or (3) 
approximating benchmark-specific power consumption.

Finding:  Power consumption is highly application dependent 
and is poorly correlated to TDP.

Figure 2 plots power versus relative performance for each 
benchmark on the i7 (45), which has eight hardware contexts 
and is the most recent of the 45 nm processors. Native (red) and 
managed (green) are differentiated by color, whereas scalable 
(triangle) and non-scalable  (circle) are differentiated by shape. 
Unsurprisingly, the scalable benchmarks (triangles) tend to 
perform the best and consume the most power. More unex-
pected is the range of power and performance characteristics of 
the non-scalable benchmarks. Power is not strongly correlated 
with performance across workload or benchmarks. The points 
would form a straight line if the correlation were strong. For 
example, the point on the bottom right of the figure achieves 
almost the best relative performance and lowest power.

4.2. Historical overview
Figure 4(a) plots the average power and performance for 
each processor in their stock configuration relative to the 
reference  performance, using a log/log scale. For example, 
the i7 (45) points are the average of the workloads derived 
from the points in Figure 2. Both graphs use the same color 
for all of the experimental processors in the same family. 
The shapes encode release age: a square is the oldest, the 
diamond is next, and the triangle is the youngest, smallest 
technology in the family.
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Figure 2. Power/performance distribution on the i7 (45). Each point 
represents one of the 61 benchmarks. Power consumption is highly 
variable among the benchmarks, spanning from 23 W to 89 W. The 
wide spectrum of power responses from different applications 
points to power saving opportunities in software.
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Figure 3. Measured power for each processor running 61 benchmarks. 
Each point represents measured power for one benchmark. The 
“!”s are the reported TDP for each processor. Power is application 
dependent and does not strongly correlate with TDP.
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While historically mobile devices have been extensively 
optimized for power, general-purpose processor design 
has not. Several results stand out that illustrate that power 
is now a first-order design goal and trumps performance in 
some cases. (1) The Atom (45) and Atom D (45) are designed 
as low-power processors for a different market; however, 
they successfully execute all these benchmarks and are the 
most power-efficient processors. Compared to the Pentium 4 
(130), they degrade performance modestly and reduce power 
enormously, consuming as little as one-twentieth the power. 
Device scaling from 130 nm to 45 nm contributes  significantly 
to the power reduction from Pentium to Atom. (2) A compari-
son between 65 nm and 45 nm generations using the Core 2D 
(65) and Core 2D (45) shows only a 25% increase in perfor-
mance, but a 35% drop in power. (3) A comparison of the two 
most recent 45 nm and 32 nm generations using the i7 (45) and 
i5 (32) shows that the i5 (32) delivers about 15% less perfor-
mance, while consuming about 40% less power. This result 
has three root causes: (a) the i7 (45) has four cores instead 
of two on the i5 (32); (b) since half the benchmarks are scal-
able multithreaded benchmarks, the software parallelism 
benefits more from the additional two cores, increasing the 
advantage to the i7 (45); and (c) the i7 (45) has significantly 
better memory performance. Comparing the Core 2D (45) to 
the i5 (32) where the number of processors are matched, we 

find that the i5 (32) delivers 50% better performance, while 
consuming around 25% more power than the Core 2D (45).

Contemporaneous comparisons also reveal the ten-
sion between power and performance. For example, the 
contrast between the Core 2D (45) and i7 (45) shows that 
the i7 (45) delivers 75% more performance than the Core 
2D (45), but this performance is very costly in power, with 
an increase of nearly 100%. These processors thus span a 
wide range of energy trade-offs within and across the gen-
erations. Overall, these results indicate that optimizing for 
both power and performance is proving a lot more chal-
lenging than optimizing for performance alone.

Figure 4(b) explores the effect of transistors on power and 
performance by dividing them by the number of transistors 
in the package for each processor. We include all transistors 
because our power measurements occur at the level of the 
package, not the die. This measure is rough and will downplay 
results for the i5 (32) and Atom D (45), each of which have a 
Graphics Processing Unit (GPU) in their package. Even though 
the benchmarks do not exercise the GPUs, we cannot discount 
them because the GPU transistor counts on the Atom D (45) 
are undocumented. Note the similarity between the Atom (45), 
AtomD (45), Core 2D (45), and i5 (32), which at the bottom right 
of the graph are the most efficient processors by the transistor 
metric. Even though the i5 (32) and Core 2D (45) have five to 
eight times more transistors than the Atom (45), they all eke 
out very similar performance and power per transistor. There 
are likely bigger differences to be found in power efficiency per 
transistor between chips from different manufacturers.

Finding:  Power per transistor is relatively consistent within micro-
architecture family, independent of process technology.

The leftmost processors in the graph yield the smallest 
amount of performance per transistor. Among these proces-
sors, the Core 2Q (65) and i7 (45) yield the least performance 
per transistor and use the largest caches among our set. The 
large 8MB caches are not effective. The Pentium 4 (130) is per-
haps most remarkable—it yields the most performance per 
transistor and consumes the most power per transistor by a 
considerable margin. In summary, performance per transistor 
is inconsistent across microarchitectures, but power per tran-
sistor is more consistent. Power per transistor correlates well 
with microarchitecture, regardless of technology generation.

4.3. Pareto analysis at 45 nm
The Pareto optimal frontier defines a set of choices that are 
most efficient in a trade-off space. Prior research uses the 
Pareto frontier to explore power versus performance using 
models to derive potential architectural designs on the fron-
tier.1 We present a Pareto frontier derived from measured 
performance and power. We hold the process technology con-
stant by using the four 45 nm processors: Atom (45), Atom 
D (45), Core 2D (45), and i7 (45). We expand the number of 
processor configurations from 4 to 29 by configuring the 
number of hardware contexts (SMT and CMP), by clock scal-
ing, and disabling/enabling Turbo Boost. The 25 non-stock 
configurations represent alternative design points. For each 
configuration, we compute the averages for each workload 
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Figure 4. Power/performance trade-off by processor. Each point is  
an average of the four workloads. (a) Power/performance trade-offs  
have changed from Pentium 4 (130) to i5 (32). (b) Power and 
performance per million transistors. Power per million transistors 
is consistent across different microarchitectures regardless of the 
technology node. On average, Intel processors burn around 1 W for 
every 20 million transistors.
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points, the points fall in different places on the curves 
because each workload exhibits a different energy/perfor-
mance trade-off. Compare the scalable and non-scalable 
benchmarks at 0.40 normalized energy on the y-axis. It is 
impressive how well these architectures effectively exploit 
software parallelism, pushing the curves to the right and 
increasing performance from about 3 to 7 while holding 
energy constant. This measured behavior confirms prior 
model-based observations about the role of software parallel-
ism in extending the energy/performance curve to the right.1

Finding:  Energy-efficient architecture design is very sensitive to 
workload. Configurations in the native non-scalable 
Pareto frontier differ substantially from all other 
workloads.

In summary, architects should use a variety of workloads, 
and in particular, should avoid only using native non-scalable 
workloads.

5. FEATURE ANALYSIS
Our original paper evaluates the energy effect of a range of 
hardware features: clock frequency, die shrink, memory 
hierarchy, hardware parallelism, and gross microarchitec-
ture. This analysis resulted in a large number of findings 
and insights. Reader and reviewer feedback yielded a diver-
sity of opinions as to which findings were most surprising 
and interesting. This section presents results exploring chip 
multiprocessing (CMP), simultaneous multithreading (SMT), 
technology scaling with a die shrink, and gross microarchi-
tecture, to give a flavor of our analysis.

5.1. Chip multiprocessors
Figure 7 shows the average power, performance, and energy 
effects of chip multiprocessors (CMPs) by comparing one 
core to two cores for the two most recent processors in our 
study. We disable Turbo Boost in these analyses because 
it adjusts power dynamically based on the number of idle 
cores. We disable Simultaneous Multithreading (SMT) 
to maximally expose thread-level parallelism to the CMP 
hardware feature. Figure 7(a) compares relative power, per-
formance, and energy as a weighted average of the work-
loads. Figure 7(b) shows a break down of the energy as a 
function of workload. While average energy is reduced by 
9% when adding a core to the i5 (32), it is increased by 12% 
when adding a core to the i7 (45). Figure 7(a) shows that the 
source of this difference is that the i7 (45) experiences twice 
the power overhead for enabling a core as the i5 (32), while 
producing roughly the same  performance improvement.

Finding:  Comparing one core to two, enabling a core is not 
consistently energy efficient.

Figure 7(b) shows that native non-scalable and Java non-
scalable suffer the most energy overhead with the addition 
of another core on the i7 (45). As expected, performance 
for native non-scalable is unaffected. However, turning on 
an additional core for native non-scalable leads to a power 
increase of 4% and 14%, respectively, for the i5 (32) and 

and their average to produce an energy/performance scat-
ter plot (not shown here). We next pick off the frontier—the 
points that are not dominated in performance or energy effi-
ciency by any other point—and fit them with a polynomial 
curve. Figure 5 plots these polynomial curves for each work-
load and the average. The rightmost curve delivers the best 
performance for the least energy.

Each row of Figure 6 corresponds to one of the five curves 
in Figure 5. The check marks identify the Pareto-efficient 
configurations that define the bounding curve and include 
15 of 29 configurations. Somewhat surprising is that none of 
the Atom D (45) configurations are Pareto efficient. Notice 
the following: (1) Native non-scalable shares only one choice 
with any other workload. (2) Java scalable and the average 
share all the same choices. (3) Only two of eleven choices 
for Java non-scalable and Java scalable are common to both. 
(4) Native non-scalable does not include the Atom (45) in 
its frontier. This last finding contradicts prior simulation 
work, which concluded that dual-issue in-order cores and 
dual-issue out-of-order cores are Pareto optimal for native 
non-scalable.1 Instead, we find that all of the Pareto-efficient 
points for native non-scalable in this design space are 
quad-issue out-of-order i7 (45) configurations.

Figure 5 starkly shows that each workload deviates sub-
stantially from the average. Even when the workloads share 
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i7 (45), translating to energy overheads.
More interesting is that Java non-scalable does not incur 

energy overhead when enabling another core on the i5 (32). 
In fact, we were surprised to find that the reason for this is 
that the single-threaded Java non-scalable workload runs 
faster with two processors! Figure 8 shows the scalability 
of the single-threaded subset of Java non-scalable on the 
i7 (45), with SMT disabled, comparing one and two cores. 
Although these Java benchmarks are single-threaded, the 
JVMs on which they execute are not.

Finding:  The JVM induces parallelism into the execution of sin-
gle-threaded Java benchmarks.

Since virtual machine runtime services for managed lan-
guages, such as just-in-time (JIT) compilation, profiling, and 
garbage collection, are often concurrent and parallel, they 
provide substantial scope for parallelization, even within 
ostensibly sequential applications. We instrumented the 
HotSpot JVM and found that its JIT compilation and gar-
bage collection are parallel. Detailed performance counter 
measurements revealed that the garbage collector induced 
memory system improvements with more cores by reducing 
the collector’s  displacement effect on the application thread.

5.2. Simultaneous multithreading
Figure 9 shows the effect of disabling simultaneous multi-
threading (SMT)19 on the Pentium 4 (130), Atom (45), i5 (32), 

and i7 (45). Each processor supports two-way SMT. SMT pro-
vides fine-grain parallelism to distinct threads in the proces-
sors’ issue logic and in modern implementations; threads 
share all processor components (e.g., execution units and 
caches). Singhal states that the small amount of logic exclu-
sive to SMT consumes very little power.18 Nonetheless, this 
logic is integrated, so SMT contributes a small amount to 
total power even when disabled. Our results therefore slightly 
underestimate the power cost of SMT. We use only one core, 
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Counterintuitively, some single-threaded Java benchmarks scale 
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ensuring that SMT is the sole opportunity for thread-level 
parallelism. Figure 9(a) shows that the performance advan-
tage of SMT is significant. Notably, on the i5 (32) and Atom 
(45), SMT improves average performance significantly with-
out much cost in power, leading to net energy savings.

Finding:  SMT delivers substantial energy savings for recent 
hardware and for in-order processors.

Given that SMT was and continues to be motivated by the 
challenge of filling issue slots and hiding latency in wide 
issue superscalars, it may appear counterintuitive that 
performance on the dual-issue in-order Atom (45) should 
benefit so much more from SMT than the quad-issue i7 
(45) and i5 (32) benefit. One explanation is that the in-order 
pipelined Atom (45) is more restricted in its capacity to fill 
issue slots. Compared to other processors in this study, the 
Atom (45) has much smaller caches. These features accen-
tuate the need to hide latency, and therefore the value of 
SMT. The performance improvements on the Pentium 4 
(130) due to SMT are half to one-third that of more recent 
processors, and consequently, there is no net energy advan-
tage. This result is not so surprising given that the Pentium 
4 (130) is the first commercial implementation of SMT.

Figure 9(b) shows that, as expected, the native non-scal-
able workload experiences very little energy overhead due 
to enabling SMT, whereas Figure 7(b) shows that enabling a 
core incurs a significant power and thus energy penalty. The 
scalable workloads unsurprisingly benefit most from SMT.

The excellent energy efficiency of SMT is impressive on 
recent processors as compared to CMP, particularly given 
its very low die footprint. Compare Figures 7 and 9. SMT 
provides less performance improvement than CMP—SMT 
adds about half as much performance as CMP on average 
but incurs much less power cost. The results on the modern 
processors show that SMT in a much more favorable light 
than in Sasanka et al.’s model-based comparative study of 
the energy efficiency of SMT and CMP.17

5.3. Die shrink
We use processor pairs from the Core (Core 2D (65)/Core 
2D (45) ) and Nehalem (i7 (45)/i5 (32) ) microarchitectures to 
explore die shrink effects. These hardware comparisons are 
imperfect because they are not straightforward die shrinks. 
To limit the differences, we control for hardware parallelism 
by limiting the i7 (45) to two cores. The tools and processors 
at our disposal do not let us control the cache size, nor do 
they let us control for other microarchitecture changes that 
accompany a die shrink. We compare at stock clock speeds 
and control for clock speed by running both Cores at 2.4 GHz 
and both Nehalems at 2.66 GHz. We do not directly control 
for core voltage, which differs across technology nodes 
for the same frequency. Although imperfect, these are the 
first published comparisons of measured energy efficiency 
across technology nodes.

Finding:  Two recent die shrinks deliver similar and surprising 
reductions in energy, even when controlling for clock 
frequency.

Figure 10(a) shows the power and performance effects of 
the die shrinks with the stock clock speeds for all the pro-
cessors. Figure 10(b) shows the same comparison with 
matched clock speeds, and Figure 10(c) breaks down the 
workloads for the matched clock speeds. The newer proces-
sors are significantly faster at their higher stock clock speeds 
and significantly more power efficient. Figure 10(b) shows 
the same experiment, but down-clocking the newer pro-
cessors to match the frequency of their older peers. Down-
clocking the new processors improves their relative power 
and energy advantage even further. Note that as expected, 
the die-shrunk processors offer no performance advantage 
once the clocks are matched; indeed, the i5 (32) performs 
10% slower than the i7 (45). However, power consumption 
is reduced by 47%. This result is consistent with expecta-
tions, given the lower voltage and reduced capacitance at the 
smaller feature size.

Figure 10. Die shrink: microarchitectures compared across technology 
nodes. “Core” shows Core 2D (65)/Core 2D (45) while “Nehalem” 
shows i7 (45)/i5 (32) when two cores are enabled. (a) Each processor 
uses its native clock speed. (b) Clock speeds are matched in each 
comparison. (c) Energy impact with matched clocks, as a function of 
workload. Both die shrinks deliver substantial energy reductions.
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Figures 10(a) and (b) reveal a striking similarity in power 
and energy savings between the Core (65 nm/45 nm) and 
Nehalem (45 nm/32 nm) die shrinks. This data suggests that 
Intel maintained the same rate of energy reduction across the 
two most recent generations. As a point of comparison, the 
models used by the International Technology Roadmap for 
Semiconductors (ITRS) predicted a 9% increase in frequency 
and a 34% reduction in power from 45 nm to 32 nm.11 Figure 
10(a) is both more and less encouraging. Clock speed increased 
by 26% in the stock configurations of the i7 (45) to the i5 (32) 
with an accompanying 14% increase in performance, but power 
reduced by 23%, less than the 34% predicted. To more deeply 
understand die shrink efficiency on modern processors, one 
requires measuring more processors in each technology node.

5.4. Gross microarchitecture change
This section explores the power and performance effect of 
gross microarchitectural change by comparing microarchitec-
tures while matching features such as processor clock, degree 
of hardware parallelism, process technology, and cache size.

Figure 11 compares the Nehalem i7 (45) with the NetBurst 
Pentium 4 (130), Bonnell Atom D (45), and Core 2D (45) micro-
architectures, and it compares the Nehalem i5 (32) with the 
Core 2D (65). Each comparison configures the Nehalems to 
match the clock speed, number of cores, and hardware threads 
of the other architecture. Both the i7 (45) and i5 (32) compari-
sons to the Core show that the move from Core to Nehalem 

yields a small 14% performance improvement. This finding is 
not inconsistent with Nehalem’s stated primary design goals, 
that is, delivering scalability and memory performance.

Finding:  Controlling for technology, hardware parallelism, 
and clock speed, the out-of-order architectures have 
similar energy efficiency as the in-order ones.

The comparisons between the i7 (45) and Atom D (45) and 
Core 2D (45) hold process technology constant at 45 nm. All 
three processors are remarkably similar in energy consump-
tion. This outcome is all the more interesting because the i7 
(45) is disadvantaged since it uses fewer hardware contexts 
here than in its stock configuration. Furthermore, the i7 (45) 
integrates more services on-die, such as the memory control-
ler, that are off-die on the other processors, and thus outside 
the scope of the power meters. The i7 (45) improves upon 
the Core 2D (45) and Atom D (45) with a more scalable, much 
higher bandwidth on-chip interconnect, which is not exer-
cised heavily by our workloads. It is impressive that, despite 
all of these factors, the i7 (45) delivers similar energy effi-
ciency to its two 45 nm peers, particularly when compared to 
the low-power in-order Atom D (45). It is unsurprising that 
the i7 (45) performs 2.6× faster than the Pentium 4 (130), 
while consuming one-third the power, when controlling for 
clock speed and hardware parallelism (but not for factors 
such as memory speed). Much of the 50% power improve-
ment is attributable to process technology advances. This 
speedup of 2.6 over 7 years is however substantially less than 
the historical factor of 8 improvement experienced in every 
prior 7-year time interval between 1970 through the early 
2000s. This difference in improvements marks the begin-
ning of the power-constrained architecture design era.

6. RELATED WORK
The processor design literature is full of performance mea-
surement and analysis. Despite power’s growing impor-
tance, power measurements are still relatively rare.7,10,12 Here, 
we summarize related power measurement and  simulation 
work. Our original paper contains a fuller treatment.

Power measurement. Isci and Martonosi combine a clamp 
ammeter with performance counters for per unit power esti-
mation of the Intel Pentium 4 on SPEC CPU2000.10 Fan et al. 
estimate whole system power for large-scale data centers.7 
They find that even the most power-consuming workloads 
draw less than 60% of peak possible power consumption. 
We measure chip power and support their results by show-
ing that TDP does not predict measured chip power. Our 
work is the first to compare microarchitectures, technology 
generations, individual benchmarks, and workloads in the 
context of power and performance.

Power modeling. Power modeling is necessary to thor-
oughly explore architecture design.1, 13, 14 Measurement 
complements simulation by providing validation. For exam-
ple, some prior simulators used TDP, but our measure-
ments show that it is not accurate. As we look to the future, 
we believe that programmers will need to tune their appli-
cations for power and energy, not only performance. Just 
as hardware performance counters provide insight into 

Figure 11. Gross microarchitecture: a comparison of Nehalem with 
four other microarchitectures. In each comparison, the Nehalem 
is configured to match the other processor as closely as possible. 
(a) Impact of microarchitecture change with respect to performance, 
power, and energy, averaged over all four workloads. (b) Energy 
impact of microarchitecture for each workload. The most recent 
microarchitecture, Nehalem, is more energy efficient than the 
others, including the low-power Bonnell (Atom).
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applications, so will power and energy measurements.
Methodology. Although the results show conclusively that 

managed and native workloads have different responses 
to architectural variations, perhaps this result should not 
be surprising. Unfortunately, few architecture or operating 
system publications with processor measurements or sim-
ulated designs use Java or any other managed workloads, 
even though the evaluation methodologies we use here for 
real processors and those for simulators are well developed.2

7. CONCLUSION
These extensive experiments and analyses yield a wide 
range of findings. On this basis, we offer the following rec-
ommendations in this critical time period of hardware and 
software upheaval. Manufacturers should expose on-chip 
power meters to the community. System software and appli-
cation developers should understand and optimize power. 
Researchers should use both managed and native workloads 
to quantitatively examine their innovations. Researchers 
should measure power and performance to understand and 
optimize power, performance, and energy.
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