
Unpicking The Knot:
Teasing Apart VM/Application Interdependencies

Yi Lin

Australian National University

Yi.Lin@anu.edu.au

Stephen M. Blackburn

Australian National University

Steve.Blackburn@anu.edu.au

Daniel Frampton

Australian National University

Daniel.Frampton@anu.edu.au

Abstract
Flexible and efficient runtime design requires an understanding of
the dependencies among the components internal to the runtime
and those between the application and the runtime. These depen-
dencies are frequently unclear. This problem exists in all runtime
design, and is most vivid in a metacircular runtime — one that
is implemented in terms of itself. Metacircularity blurs boundaries
between application and runtime implementation, making it harder
to understand and make guarantees about overall system behavior,
affecting isolation, security, and resource management, as well as
reducing opportunities for optimization. Our goal is to shed new
light on VM interdependencies, helping all VM designers under-
stand these dependencies and thereby engineer better runtimes.

We explore these issues in the context of a high-performance
Java-in-Java virtual machine. Our approach is to identify and in-
strument transition points into and within the runtime, which allows
us to establish a dynamic execution context. Our contributions are:
1) implementing and measuring a system that dynamically main-
tains execution context with very low overhead, 2) demonstrat-
ing that such a framework can be used to improve the software
engineering of an existing runtime, and 3) analyzing the behav-
ior and runtime characteristics of our runtime across a wide range
of benchmarks. Our solution provides clarity about execution state
and allowable transitions, making it easier to develop, debug, and
understand managed runtimes.

Categories and Subject Descriptors D.3.4 [Programming Languages]:
Processors—Run-time environments

General Terms Languages, Design, Measurement

Keywords Metacircular, Virtual Machine, Isolation, Dependency

1. Introduction
The engineering of a high performance managed runtime is a ma-
jor undertaking. The competing goals of correctness, completeness,
performance, robustness, agility and flexibility sit in tension. In this
paper we explore the interdependencies among the components in-
ternal to a managed runtime and those between the application and
the runtime. We do so in a metacircular runtime — a context where
these interdependencies are particularly important and particularly
hard to tease out. The challenge of cleanly and correctly identifying
and designing for these dependencies is key to runtime design and
perhaps the greatest impediment to wider use of metacircularity.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

VEE’12, March 3–4, 2012, London, England, UK.
Copyright c© 2012 ACM 978-1-4503-1175-5/12/03. . . $10.00

Metacircular runtimes are implemented in the same language
that they target, an approach which can bring software engineer-
ing and performance benefits, intriguing technical challenges, and
a satisfying sense of closure. The intellectual appeal of metacircular
managed runtimes is therefore unsurprising. We don’t see metacir-
cularity as a meaningful end in runtime design and there are few,
if any examples of the approach being commercially successful.
However, we are convinced of the value of using a high-level lan-
guage to build a high performance runtime [6, 10]. When the tar-
get language is also a good candidate for runtime implementation,
metacircularity is the logical outcome. One outcome of this paper
is a teasing out of the benefits of metacircularity from its shortcom-
ings. Another outcome is that our findings allow us to make signif-
icant improvements to an existing metacircular JVM and shed light
on an element of runtime design relevant to implementers of fu-
ture runtimes, metacircular or not. Because it acutely demonstrates
the problem of identifying runtime interdependencies, the context
throughout the remainder of this paper is a metacircular runtime.

Metacircularity can have three obvious benefits. First, the
strengths of the target language are brought to bear on the imple-
mentation. In the case where the target is a strongly typed high level
language, the software engineering benefits may be clear, particu-
larly where the high level language is capable of efficiently express-
ing low-level semantics [10]. Second, the impedance mismatch
between implementation and target languages is removed. This
problem is most clear at performance-critical boundaries between
the runtime and the application, such as in the hot paths of barri-
ers and allocation sequences [3]. Finally, a metacircular runtime
‘eats its own dogfood’. This means that the implementers are par-
ticularly motivated towards correctness and performance because
their implementation has a circular dependency on those properties.
Successful cases of metacircular runtimes include Singularity in
C# [11], Jikes RVM/Squawk/Maxine/JNode in Java [1, 14, 16, 18],
PyPy in Python [15], Klein VM in Self [19], etc.

Despite this academic success, we know of no commercially
successful metacircular runtimes. One explanation might be the
performance overheads that one associates with high level lan-
guages, due to garbage collection, dynamic compilation, etc. How-
ever, Alpern et al. note that Jikes RVM achieved 95% the per-
formance of its then commercial counterpart, the IBM 1.3.0 DK
JVM, on the SPECjvm98 benchmarks on Linux/IA32 [2]. Indeed,
metacircularity has the attraction of potential performance benefits:

• Aggressive inlining and optimization: Runtime code can be
directly inlined into the application context, and optimizations
applied across the resulting integrated code.

• Seamless library downcalls into runtime: No cross-language
bridge is needed for library downcalls, which provides more
inlining and optimization opportunities.

However, while these benefits flow from addressing the target-host
impedance mismatch, they also blur the relationship between the
application and runtime. The application, language library and run-

time components do not have a crisply defined boundary within
the runtime, and are heavily mixed together. So it is generally not
possible to tell, dynamically, whether a thread is executing code on
behalf of application or the runtime. This absence of runtime/appli-
cation isolation is the metacircular runtime’s dirty laundry, manifest
in issues such as security and resource management.

Resource management is one conspicuous manifestation of the
lack of isolation that comes with metacircularity. In general it is
impossible to know whether an object is allocated by the runtime
or by the application because they both allocate to the same heap. A
single allocation site (within a standard library, for example), may
allocate objects on behalf of the application and the runtime with-
out distinction. Thus class objects, class metadata, code, compiler
detritus, and other generic objects used by the runtime are inter-
mixed with application allocations. As a consequence, it is hard to
know what the real footprint of the application is, and it is hard to
know what the adverse locality effect is of this intermingling. Ogata
et al. reported that in the IBM J9 JVM, a conventional JVM written
in C/C++, non-Java memory usage can account for more than the
Java heap in over half of the DaCapo benchmarks [12]. We use our
framework to conduct a similar experiment with Jikes RVM, and
find that the runtime/application breakdown in our system is simi-
lar. As an average of ten DaCapo benchmarks, 56.6% of memory
is used by runtime allocated objects, with only 43.4% of memory
consumed by application objects. Thus the Java heap footprint of a
benchmark running on a runtime such as Jikes RVM is significantly
overstated.

Security can also suffer when isolation is diminished and
boundaries are blurred. Consider, by contrast, the boundary be-
tween the system and user spaces in an operating system, which
are crisply and rigorously defined. Generally within a runtime there
are many instances of code that should be considered as privileged.
When the execution context of such privileged code is ill-defined
security is compromised. This downside to metacircular runtimes
is a significant inhibitor to commercial uptake. During the develop-
ment of the Moxie project, leading developers were polled, and the
issue of application/runtime isolation was rated as one of the most
pressing issues confronting metacircular runtime design [8].

In this paper we first propose an efficient framework for cre-
ating efficient and clean runtime/application isolation and extend
it to distinguish among multiple runtime sub-components such as
the compiler, garbage collector, classloader, etc. We examine the
Jikes RVM code base and identify 41 calls into the runtime. We
take the model further by introducing a well-defined concept of
runtime services code; statically identifiable code that is executed
by the application on behalf of the runtime, and is typically inlined
and optimized by the compiler. This approach minimizes points
where execution context cannot be inferred statically. We have im-
plemented this framework in Jikes RVM, and present preliminary
performance numbers that show that it can be implemented at vir-
tually no overhead. We give examples of the mechanism we use
to analyze allocation patterns across the application and runtime
components. Finally, we argue that the isolation and clarity from
using this framework carries with it software engineering benefits,
including enhanced modularity within the runtime.

The contributions of this paper are: 1) a critique of metacir-
cularity that identifies lack of isolation and blurred boundaries as
blockers to more widespread uptake of metacircularity, 2) a con-
crete implementation of a new very low overhead framework that
reintroduces isolation without forsaking the benefits of metacircu-
larity, 3) a quantitative analysis of Jikes RVM’s behavior that was
not possible without our framework, and 4) insight into how these
lessons can be applied to existing and future runtime implementa-
tions, whether they are metacircular or not.

2. Tracking Execution Context
Our goal is to better understand the dependencies and dynamic ex-
ecution behavior of a managed runtime. In particular we want to
remove contextual ambiguity, which arises because of the inter-
actions and dependencies between components. This problem is
particularly acute in a metacircular setting, because metacircular
runtimes are reentrant: while servicing a request from the appli-
cation the runtime may need to re-enter itself. For example, while
performing a classloading operation, the runtime may need sup-
port from the memory manager to allocate objects. In that exam-
ple, what the memory manager sees as the ‘application’ is in fact
the classloader, another part of the runtime. In the absence of dy-
namic context to inform it, the memory manager is not aware of the
fact that it is being called by another part of the runtime.

We attack the issue of contextual ambiguity directly by dynam-
ically maintaining an explicit execution context for each thread in
the runtime. We define execution contexts as holding the current
runtime request being executed (e.g., classloading or compilation).
This state allows us to:

1. Realize context-specific policies, such as using different heaps
according to the dynamic context of the allocation. For example,
the compiler could use a separate, dedicated, memory manage-
ment policy.

2. Explicitly assert that certain code may only be executed from
within certain dynamic context(s), improving isolation and se-
curity, and making it easier to understand the code.

3. Relate behavior to contexts. For example, establishing how of-
ten a given library function is dynamically called from within
different runtime components or by the user application. Such
information could guide optimizations or structural improve-
ments to the runtime design.

Transition Points In order to track execution context, we identify
and annotate transition points. These points are comprised of run-
time downcalls (DCs): transitions from the ‘application’ to the run-
time; and runtime service calls (SCs): intra-runtime requests where
the responsibility for execution is transferred to another service. In
a metacircular runtime, the ‘application’ may in fact be the runtime
itself, so intra-runtime transitions may be due to either downcalls or
service calls. We analyzed the Jikes RVM code base and annotated
all calls that constitute a transition. A simplified depiction of the
context transition graph for Jikes RVM is illustrated in Figure 1(a).

Limiting Interdependencies While dependencies between run-
time components are an essential property of a managed runtime
(in particular in the metacircular case), infinite regress is not. It fol-
lows that certain transitions are permissible whilst others are not.
As an example, it is fine for the compiler to trigger a garbage col-
lection, but it is not correct for the garbage collector to recursively
trigger a garbage collection. So while intra-runtime transitions are
permissible, we require that the graph of these context transitions
be acyclic. This helps to curtail dependencies within the runtime,
and is of particular value in dealing with metacircularity. In gen-
eral, this corresponds to disallowing individual features or services
from (transitively) requiring access to the feature or service they
implement.

Selecting Contexts We broaden the definition of execution con-
texts from the binary application/runtime divide, to include a num-
ber of key components of the runtime as discrete contexts, such
as memory management, class loading, etc. This refinement allows
us to differentiate an acyclic downcall from the classloader to the
memory manager from a cyclic call from the classloader to itself or
from the memory manager to itself. Figure 1(b) exposes the intra-
runtime dependencies that were elided from Figure 1(a). Only sub-

(a) Transitions from the application

(b) All context transitions, including metacircular edges. Moving from left
to right, subsystems exhibit fewer and fewer dependencies.

Figure 1. A simplified depiction of dynamic context transitions in
Jikes RVM.

stantive transitions are tracked. There also exist ‘lightweight’, su-
perficial, transitions which are not tracked for pragmatic reasons
and therefore do not register as transitions, as we discuss below.

Upcalls Managed runtimes often require upcalls from the runtime
back to the application. For example, a downcall to the classloader
may eventually lead to an upcall to the application to execute a class
initializer (illustrated in Figure 1 as a dashed line). The upcall may
in turn lead to a downcall, creating a cycle. The possibility of gen-
erating cycles this way is a property of the runtime specification,
independent of the runtime implementation, and is therefore out-
side the scope of this paper. However, our approach must accom-
modate upcalls. To achieve this, we include an explicit transition of
execution context when an upcall is made, and we discount upcall
edges when checking for cycles in the graph of context transitions.
Upcalls in effect amount to a break in the graph of metacircular
context transitions.

Lightweight Transitions In addition to the ‘substantive’ transi-
tions discussed above, there also exist lightweight transitions which
we pragmatically do not track. Examples of these may include SCs
such as accessor methods within the classloader which are used by

the compiler or garbage collector to identify field offsets, or DCs
such as the fast path of an allocation sequence or write barrier. In
the absence of a context transition, the dynamic context remains
that of the calling context (e.g. the compiler) although the code
falls within the static domain of the callee context (e.g. the class-
loader). In a non-metacircular case, the code for a lightweight DC
is easy to identify because it will be written in the target language
(e.g. Java) or perhaps in inlined assembler. However in a metacir-
cular case there is no language transition so the transition point for
the lightweight DC is ambiguous. To remove this ambiguity, we ex-
plicitly identify and annotate such code with a @RuntimeService
annotation, which facilitates static checking whilst still supporting
this common optimization.

Precise Transition Placement In practice, a transition between
components, in particular from the application to the runtime, may
manifest as a relatively lengthy call chain, inviting the question of
where to draw the line and declare the transition point. For exam-
ple, a request for memory when allocating a new object will typi-
cally start with a frequently taken fast path, and only fall through
to a slow path in the uncommon case. In both metacircular and
non-metacircular runtimes, the fast path is typically inlined into the
application code by the compiler, while the call to the slow path is
kept out of line. In this case we can argue that the fast-path consti-
tutes a lightweight DC with the substantive DC only beginning at
the call to the slow path. In a non-metacircular runtime, a natural
choice may be the inevitable language boundary between the sup-
ported language (Java) and implementation language (C++), which
most likely occurs at the call to the slow path. In a metacircular
runtime the language transition does not exist, forcing the imple-
menter to make a decision in each case. Our approach, when given
a choice, was to select the first out-of-line call as the point of the
DC. We reason that this allows us to trigger transitions as close to
the application as possible whilst ensuring transitions do not occur
too frequently, which would lead to unacceptable overheads.

3. Implementation
We now describe an implementation of our framework for effi-
ciently tracking execution context. Concretely, the implementation
involves two steps: 1) additions to the runtime that provide the
mechanisms for efficiently identifying and tracking context tran-
sitions, and 2) modifications to the runtime to identify all transition
points (DCs and SCs).

3.1 Supporting Mechanisms
We create two annotations, @RuntimeDownCall and
@RuntimeServiceCall, to allow us to cleanly identify and dif-
ferentiate DCs and SCs within the runtime. Figure 2(a) illus-
trates how @RuntimeDownCall annotation is used to identify
Object.wait() as a downcall. The compiler then expands the
annotated method to include context switching calls, as illustrated
in Figure 2(b). Figure 3 illustrates context switch methods that
track the execution context for each thread, and may optionally
implement assertions to ensure only legal context transitions occur.

Assertion of execution context. We use two basic techniques to
assert the current execution state, helping with both finding transi-
tion points and making runtime development easier. First, we im-
plement an @AssertExecutionState annotation that may be ap-
plied at the granularity of a class or method, which asserts that the
code covered by the scope of the assertion is only executed within a
specified set of execution contexts. Thus, if there exists a class that
may only ever be called within the context of garbage collection,
such an assertion will ensure that this restriction is enforced. Sec-
ond, we automatically inject assertions into user code at run time to
ensure that such code is only executed in an ‘application’ context.

1 @RuntimeDownCall(Context.Scheduler)
2 public void Object.wait() {
3

4 /* Original code */
5

6 }

(a) Annotating Object.wait() as a DC

1 public void Object.wait() {
2 int old = switchContextTo(Context.Scheduler);
3 try {
4

5 /* Original code */
6

7 } finally {
8 switchContextBack(old);
9 }

10 }
(b) The same code after expansion by the compiler

Figure 2. An example transition point, Java’s Object.wait().

1 class VMThread {
2

3 /* Current execution context */
4 int executionContext;
5

6 /* Change context and return previous context */
7 int switchContextTo(int newContext) {
8 int oldContext = executionContext;
9

10 /* Assert that transition is valid */
11

12 executionContext = newContext;
13 return oldContext;
14 }
15

16 /* Change back the context */
17 void switchContextBack(int oldContext) {
18 executionContext = oldContext;
19 }
20

21 ...

Figure 3. VMThread support for dynamic execution context.

Newly created threads are assigned an initial execution context
based on the type of thread being created. For threads that exist
within the runtime, such as the compiler thread, we set their initial
execution context appropriately.

3.2 Finding Transition Points
We identified transition points iteratively. First we identified major
runtime contexts such as the garbage collector, scheduler, etc, and
found all transitions into each context. We resolved whether a
transition was a DC (from the ‘application’ to the runtime) or
an SC (intra-runtime requests), and marked it with corresponding
annotation. For example, Figure 2(a) illustrates a downcall to the
Scheduler context. We then enforced the acyclic limitation on
interdependencies, and further refined context selection. We chose
the set of contexts to reflect the structure of the runtime and to
maintain the invariant that no transition point is called from within
the context it targets.

We also made extensive use of assertions, which we added to
code whose context we knew unambiguously. For example, an as-
sertion of garbage collection state that is placed unambiguously
within the garbage collector would fail if a transition point into
the garbage collector had been overlooked. By following the stack

Transition Point Class Count

MemoryManager 8
Scheduler 8
Classloader 6
StackTrace 6
Compiler 4
Exception 3
Locking 2
Reflection 2
YieldPoint 1
NewArrayArray 1

Total 41

Table 1. Transition Point classes and counts for Jikes RVM.

trace from the failed assertion we were able to identify the missing
transition point. We repeated this process until we found all tran-
sition points. During this process we identified small sections of
code within the gray area where execution context is ambiguous.
Our identification of these ambiguous areas led to us refactoring
the runtime to remove such ambiguities, as we discuss in Section 4.

Table 1 summarizes the transition points we found in Jikes
RVM, and their groupings. In all, we identified 41 transition points
grouped into 10 classes. We implemented a simple tool that gener-
ates a state transition diagram, which allows us to visualize all state
transitions. This tool was used to automatically generate Figure 1.
Note from this figure that the memory manager can be reached di-
rectly from the application, and also via a chain through the class-
loader, exceptions, and locking, but never from itself. This graph
highlights the fact that the memory manager is written in a re-
stricted style which ensures that it does not generate downcalls to
any of the other subsystems of the runtime.

4. Design Implications and Lessons
The act of making context and context transitions crisp and explicit
encouraged us to rethink elements of the runtime design. In our
case this resulted in some minor refactoring and explicit annota-
tions with the consequence that the static code context more closely
matches the dynamic execution context. Such changes improved
the VM we target and we imagine that the patterns we applied will
be relevant to other VMs, whether or not they are metacircular.

In Section 2 we introduced an annotation, @RuntimeService,
to statically identify contexts where lightweight service calls are
executed by the caller on behalf of the callee’s context. When
we systematically applied this annotation throughout Jikes RVM,
it highlighted the fact that ambiguity between contexts, including
those between the application and runtime code are re-enforced
by the structure and software engineering of the runtime. We now
describe how we refactored code to better reflect execution context
boundaries.

Inter-class refactoring. Where possible, we moved all lightweight
SCs out of their original context into distinctly named packages.
By better reflecting the dynamic contexts in the structure of the
runtime, this restructuring avoided a large number of unnecessary
transition points. It also became straightforward to assert the cor-
rect context in the majority of the codebase, since it was largely
cleansed of ambiguous code, making the static to dynamic context
mapping straightforward in many cases.

Figure 4 illustrates our refactoring with the example of a bump
pointer allocator. Figure 4(a) shows the fast path of the allocator,
which is executed by the application on behalf of the memory
manager. The code is in a distinct package for runtime services and

1 package org.jikesrvm.runtime.services.mm
2

3 @RuntimeService
4 public class BumpPointer {
5 Address cursor;
6 Address limit;
7 BumpPointerSpace global;
8

9 @Inline
10 public Address alloc(int bytes) {
11 Address start = cursor;
12 Address end = start.plus(bytes);
13 if (end.GT(limit))
14 return global.allocSlow(this, bytes);
15 cursor = end;
16 return start;
17 }
18 }

(a) Fast path of bump pointer allocator; an example of a
runtime service.

1 package org.mmtk.util.alloc
2

3 public class BumpPointerSpace {
4

5 @NoInline
6 @RuntimeDownCall(Context.MemoryManager)
7 public Address allocSlow(BumpPointer allocator,
8 int bytes) {
9 Extent blockSize = getBlockSize(bytes);

10 Address start = acquire(blocksize);
11 if (start.isZero()) {
12 return Address.zero();
13 }
14 allocator.cursor = start;
15 allocator.limit = start.plus(blockSize);
16 return allocator.alloc(bytes);
17 }
18

19 ...
20 }

(b) Slow path of bump pointer allocator in the memory manager.

Figure 4. Refactored bump pointer allocation code.

the class is annotated with @RuntimeService. When a local pool
of memory is exhausted (in line 14), the fast path falls through to
a slow path. This call is a transition point, a fact reflected by the
call into the memory manager proper to a method annotated with a
@RuntimeDownCall annotation (Figure 4(b)).

Our refactoring also brings the metacircular runtime closer to a
non-metacircular runtime, where the impedance matching service
code is explicitly identified and exposed. The change also makes it
easier to consider hosting another language.

Intra-class refactoring. We found that it was not always practi-
cal or desirable to factor runtime services into separate classes and
packages. Figure 5 contains an example of the intra-class refactor-
ing that was applied to the classloader. The classloader we use rep-
resents classes with RVMClass instances. These contain metadata
and simple methods to inspect that data in addition to heavy-weight
operations such as those to support loading and resolving classes.
A number of services, such as isResolved(), are typically in-
lined by the compiler into the application code. These cases are
lightweight DCs because they are executed by the application on
behalf of the runtime. In this circumstance, insisting on separating
them into separate classes would not achieve our software engineer-
ing goals, and would only serve to complicate the structure of the
runtime. Instead we place @RuntimeService annotations on these
inspection methods. This solution does not provide all the benefits
of separate classes, but allows stronger isolation and clarity.

1 public class RVMClass {
2 private byte state; //current class-loading stage
3

4 ...
5

6 @RuntimeService
7 @Inline
8 public boolean isResolved() {
9 return state >= CLASS_RESOLVED;

10 }
11

12 @RuntimeService
13 @Inline
14 public synchronized void resolve() {
15 if (isResolved()) return;
16 if (superClass != null) superClass.resolve();
17 for (RVMClass interface : declaredInterfaces)
18 interface.resolve();
19

20 resolveInternal();
21 }
22

23 @RuntimeDownCall(Context.Classloader)
24 public synchronized void resolveInternal() {
25 /* heavyweight resolving code */
26

27 state = CLASS_RESOLVED;
28 }
29 }

Figure 5. Intra-class refactoring of runtime services: RVMClass.

5. Results
We now present results for several experiments we conducted using
our framework. In the first experiment we measure the performance
impact of our refactoring and our framework for tracking dynamic
execution context, showing that the overhead of each is negligible.
In the second experiment we use the framework to analyze the
behavior of Jikes RVM, measuring the distribution of transitions, as
well as a break-down of the time spent in each execution context. In
the third experiment we analyze Jikes RVM’s memory management
behavior, showing that different contexts exhibit different behavior,
and that on average around half the memory footprint is due to the
runtime.

5.1 Methodology
Our implementation is based on Jikes RVM [1] release 3.1.1 +hg
r10393. All experiments use a production build: the default high-
performance configuration which has debugging assertions turned
off, builds code with an aggressive optimizing compiler, and uti-
lizes a high-performance generational Immix garbage collector [5].
For performance measurements we run each benchmark 10 times
(10 invocations) and report the average time for the 5th iteration
(steady state performance). We also report 95% confidence inter-
vals for the average using Student’s t-distribution.

We draw our benchmarks from the DaCapo [7] and SPEC-
jvm98 [17] benchmark suites. We use benchmarks from both the
2006-10-MR2 and 9.12 Bach releases of DaCapo to enlarge our
suite and because some 9.12 benchmarks do not run on Jikes RVM.

Performance measurements were conducted using a six-core
AMD Phenom II X6 1055T with 3MB of L2 cache running at
2.8GHz, and 4GB of RAM. The machine was running the Ubuntu
10.04.01 LTS server distribution with a 64-bit (x86 64) 2.6.32-24
Linux kernel.

5.2 Framework and Refactoring Overhead
We start by examining the performance overhead of the design
changes we made to support the framework (as described in Sec-
tion 4) and the overhead of dynamically tracking execution con-

 0.9
 0.92
 0.94
 0.96
 0.98

 1
 1.02
 1.04
 1.06
 1.08

compress

jess
db javac

mpegaudio

mtrt
jack

avrora
bloat

chart
fop hsqldb

luindex
lusearch

pmd
sunflow

xalan
min max

mean
geomean

N
or

m
al

iz
ed

 T
im

e

Base Refactor TrackContext

Figure 6. Performance overhead of our refactoring and the mechanism for tracking dynamic execution context.

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

compress

jess
db javac

mpegaudio

mtrt
jack

avrora
bloat

chart
fop hsqldb

luindex
lusearch

pmd
sunflow

xalan
mean

C
on

te
xt

 T
ra

ns
iti

on
s/

m
s

Figure 7. Dynamic transition frequency (transitions per millisec-
ond).

text in a moderate (4× minimum) heap. Figure 6 shows the perfor-
mance impact due to the refactoring (red) and then the refactoring
with dynamic context tracing (green), both relative to an unmodi-
fied Jikes RVM configuration (blue).

RuntimeServices refactoring. We did not anticipate any signifi-
cant overhead due to our refactoring, and Figure 6 shows that this
is generally true, with an average overhead of 0.1%, which is well
within the noise. Individual benchmarks range from 2.4% speedup
to a 1.6% slowdown.

Tracking execution context. Our TrackContext configuration per-
forms on average 0.6% worse than the Base system. Again, these
values are very small compared to the noise, suggesting that on
average tracking context incurs a negligible overhead. There are
two benchmarks, bloat and xalan, that exhibit slightly higher over-
heads (4.5 and 3.2% respectively) although it is worth noting that
the confidence intervals for these benchmarks are also among the
largest. In summary, these results show that across a wide selec-
tion of benchmarks our execution context tracking incurs minimal
overhead.

5.3 Context Transition Analysis
We now use our framework to analyze dynamic context transitions
using instrumented versions of our framework. We count both
the overall frequency of transitions, and the distribution across
individual transition points for each benchmark. We also count the
CPU time executing each context to help understand where time is
spent during execution.

Execution frequency The frequency of transitions will have a di-
rect impact on the overhead of our system. Figure 7 shows the tran-
sition frequency for each benchmark, measured in invocations per
millisecond. We see a wide range of values, from 850 calls per
millisecond for bloat, to less than 10 per millisecond for compress,

mpegaudio and sunflow. Note that these low-frequency bench-
marks are kernel-based benchmarks, and that two of the three are
from the older SPECjvm98 benchmark suite. On average, the fre-
quency is 205 transitions/ms.

In general, we expect benchmarks with more frequent transi-
tions to incur a greater overhead. However, comparing Figures 7
and 6 shows no clear relationship. As an example, avrora has an
invocation frequency more than 30× that of db, but avrora speeds
up, while db slows down. This indicates that the overhead of chang-
ing execution state is small, and being obscured by other factors.
We believe these effects are due to interactions with the optimiz-
ing compiler. Injecting code may affect inlining decisions, and may
more significantly affect methods which have greater register pres-
sure.

Distribution of executed transition points. Table 2 shows the
most frequently executed transition points, both on average and
for individual benchmarks. By far the most frequently executed
transitions occur at Lock.lock and Lock.unlock, which support
the implementation of Java’s synchronized keyword. Note that
the frequency of lock and unlock calls in Table 2 do not match. This
is primarily due to the use of a biased locking protocol. When an
object is first locked, a DC is required for the first thread to obtain
the bias for the lock, which then allows that thread to continue to
lock and unlock that object within a lightweight DC, assuming no
contention occurs.

Although allocations and generational write barrier invocations
are very frequent, heavyweight DCs related to these operations
are uncommon because they only occur during (rarer) slow path
invocations. This shows the benefit of using lightweight DCs for
the fast path. If heavyweight DCs were used on the write barrier
fast path, they would account for over a third of all transitions on
average.

Time spent in execution contexts. Table 3 shows the CPU cycles
spent in each execution context when running a single iteration for
each benchmark (i.e. startup, rather than steady state). Each result
is the fraction of total CPU time spent in each context (including
the application context and runtime contexts). We measure cycles
for all threads in the system, which includes applications threads
as well as runtime threads (e.g, garbage collection and adaptive
compilation threads) which never directly run application code but
still contribute to overall execution time.

Table 3 shows that for most benchmarks the vast majority of
time is spent performing application work. However, for some
benchmarks, time spent in the runtime can be significant, in par-
ticular for avrora which spends more than half of all of its cycles
executing slow paths for synchronization primitives (e.g., wait, no-
tify, lock, and unlock). On average, nearly 13% of cycles are spent
performing compilation, and nearly 10% of cycles can be attributed
to synchronization/scheduling operations. Garbage collection and

ra
nk

transition point m
ea

n
cu

mulat
ive

m
ea

n

co
m

pre
ss

jes
s

db jav
ac

m
peg

au
dio

m
trt

jac
k

av
ro

ra

blo
at

ch
ar

t
fo

p
hsq

ld
b

lu
in

dex

lu
se

ar
ch

pm
d

su
nflow

xa
lan

1 Lock.lock 44.09 44.09 37.20 42.31 55.02 61.29 37.86 15.50 64.38 44.96 84.59 7.41 69.03 50.35 42.31 38.51 30.33 18.56 50.02
2 Lock.unlock 21.06 65.15 21.89 21.32 30.97 29.39 22.14 8.16 6.79 26.74 0.65 3.97 12.22 44.04 33.32 21.07 27.94 12.01 35.39
3 Scheduler.yieldpoint 5.75 70.90 18.45 6.18 4.26 1.14 20.75 6.67 0.67 2.16 0.68 2.04 1.29 1.64 3.08 1.92 1.90 22.38 2.56
4 MM.addFinalizer 5.74 76.64 2.32 3.33 0.34 0.62 2.02 28.56 0.13 0.22 4.28 41.19 3.35 0.06 7.01 0.25 1.35 0.16 2.42
5 UPCALL.invokeFinalize 5.64 82.28 1.73 3.25 0.25 0.46 1.87 28.49 0.12 0.21 4.27 41.14 3.11 0.04 6.90 0.20 1.33 0.11 2.38
6 MM.allocSlowInline 4.27 86.55 2.33 13.40 2.73 1.04 3.69 6.39 1.09 0.51 0.93 1.95 1.14 1.39 1.74 5.99 2.10 23.15 3.02
7 Exception.deliverException 3.95 90.50 0.28 0.39 0.06 2.51 0.30 0.11 26.09 0.01 0.01 0.10 1.92 0.05 0.06 15.20 19.87 0.07 0.15
8 MM.addReferenceCandidate 2.18 92.68 8.03 4.41 2.41 0.43 5.06 2.48 0.34 0.28 0.12 1.16 3.91 0.89 2.89 0.36 1.88 1.67 0.71
9 StackTrace.<init> 1.73 94.40 0.14 0.20 0.03 2.49 0.15 0.05 0.02 0.01 0.09 1.70 0.03 0.04 15.44 8.26 0.05 0.64
10 Runtime.newArrayArray 1.10 95.50 0.17 0.04 0.02 18.40
11 Scheduler.wait 1.08 96.58 1.00 0.14 0.17 0.03 0.58 0.16 0.01 15.53 0.01 0.02 0.02 0.04 0.07 0.05 0.04 0.51 0.06
12 Reflection.invoke 1.07 97.65 2.37 1.73 2.50 0.15 1.77 1.69 0.08 0.10 4.29 0.20 0.47 0.22 0.33 0.29 0.26 0.48 1.19
13 Scheduler.notifyAll 0.82 98.47 1.17 0.26 0.19 0.13 1.13 0.31 0.02 8.77 0.01 0.04 0.03 0.07 0.55 0.07 0.07 1.02 0.11
14 Compiler.compile 0.39 98.86 0.98 0.84 0.32 0.11 0.93 0.44 0.06 0.08 0.04 0.16 0.78 0.18 0.54 0.06 0.43 0.50 0.22
15 StackTrace.getClassFromStack 0.20 99.06 0.01 0.06 0.01 0.04 0.01 2.96 0.35
16 MM.allocSlowOOL 0.17 99.24 0.69 0.32 0.21 0.04 0.48 0.32 0.03 0.02 0.01 0.04 0.14 0.08 0.19 0.03 0.11 0.17 0.06
17 WriteBarrier.DequeAlloc 0.17 99.41 0.20 0.38 0.09 0.05 0.13 0.15 0.06 0.16 0.04 0.10 0.05 0.38 0.14 0.22 0.38 0.18 0.20
18 WriteBarrier.DequeEnqueue 0.17 99.58 0.20 0.38 0.08 0.05 0.12 0.14 0.06 0.16 0.04 0.10 0.05 0.38 0.14 0.22 0.38 0.18 0.20
19 Classloader.resolve 0.11 99.69 0.26 0.27 0.10 0.02 0.26 0.10 0.02 0.02 0.01 0.06 0.24 0.04 0.19 0.03 0.13 0.10 0.05
20 Classloader.instantiate 0.10 99.79 0.26 0.27 0.10 0.02 0.26 0.10 0.02 0.02 0.01 0.04 0.23 0.04 0.11 0.01 0.10 0.10 0.05

Table 2. Distribution across individual transition points, showing the 20 most frequently executed on average. Each number indicates the
percentage of total transitions for that benchmark that were of the given type.

Benchmark Application (%) Runtime (%)
Classloader Compiler Garbage

Collector
Memory

Manager
Scheduler

/Lock
Other

compress 91.78 0.15 0.99 2.14 1.29 2.39 1.27
jess 58.51 0.93 18.73 8.34 6.31 4.64 2.53
db 85.65 0.17 5.23 3.56 1.21 2.98 1.19
javac 56.75 0.62 15.49 10.86 2.66 9.81 3.27
mpegaudio 84.16 0.32 8.28 1.76 0.74 3.30 1.43
mtrt 74.56 0.38 8.31 6.60 3.67 3.79 2.68
jack 56.01 0.41 12.78 7.62 4.05 10.90 1.88
avrora 30.78 0.27 8.83 1.76 0.85 57.08 0.43
bloat 43.93 0.34 30.51 7.75 3.37 11.93 2.16
chart 63.31 0.90 14.84 8.82 4.96 3.99 3.17
fop 65.46 3.76 10.10 7.09 3.12 7.41 2.82
hsqldb 41.94 1.14 26.54 13.29 3.04 12.65 1.40
luindex 69.17 1.50 14.09 5.32 2.59 5.56 1.75
lusearch 55.42 0.31 10.54 7.02 12.81 7.66 4.90
pmd 56.93 2.65 9.86 6.63 3.56 9.62 7.93
sunflow 88.53 0.25 2.35 1.34 2.73 3.88 0.91
xalan 63.99 0.87 17.49 5.74 3.67 6.59 1.62

min 30.78 0.15 0.99 1.34 0.74 2.39 0.43
max 91.78 3.76 30.51 13.29 12.81 57.08 7.93
mean 63.93 0.88 12.65 6.21 3.57 9.66 2.43

Table 3. CPU cycles spent in each execution context.

other memory management operations (such as slow path alloca-
tion) account for a further 10% of execution on average.

5.4 Memory Management Behavior
One of the motivations for this work was isolating application and
runtime behaviors, allowing new analyses and optimizations. The
behavior of different contexts are typically conflated, in particular
when analyzing a metacircular runtime such as Jikes RVM. In
this experiment we examine the memory management behavior of
the runtime and applications separately. Specifically, we explore
allocation volume, nursery survival rate, and heap footprint. These
experiments were run using a 2.5× minimum heap size.

Object Allocation To understand object allocation patterns, we
collect allocation information by instrumenting the allocation fast
path and tagging each object as it is allocated. Because many ex-
ecution contexts allocate very little (or not at all) we use a loga-
rithmic scale, and only show those contexts that make a significant
contribution, aggregating the rest into an ‘Other Runtime’ category.

Figure 8 shows the fraction of total allocation attributed to each
execution context. It is clear that application allocation dominates,
although it does vary significantly between benchmarks (not shown
in the figure). The most active context is the compiler, followed
by booting and classloader. In all the benchmarks, the compiler
allocates more than all other runtime contexts combined, and in 13
of the 17 benchmarks, more than 10× that of the rest of the runtime.

Survival Ratios Object lifetime patterns help guide memory man-
agement policies. If different runtime contexts exhibit significantly
different lifetime patterns, there may be an opportunity to ap-
ply context-specific memory management optimizations. Here we
measure the fraction of data that survives the first nursery collec-
tion after allocation. To measure survival rate for each context, we
tag the current execution context in the header of each object at al-
location time and count the total number of bytes allocated in each
context. Then during collection we count the bytes that survive the
collection, and express this as a ratio of the total bytes allocated
in that context. The experiment is imperfect because a nursery col-

 0.001

 0.01

 0.1

 1

A
llo

ca
tio

n
F

ra
ct

io
n

(lo
g)

Application
Compiler

Booting
Classloader

Other Runtime

(a) Average

 0.001

 0.01

 0.1

 1

compress

jess
db javac

mpegaudio

mtrt
jack

avrora
bloat

chart
fop hsqldb

luindex
lusearch

pmd
sunflow

xalan

A
llo

ca
tio

n
F

ra
ct

io
n

(lo
g)

(b) Application

 0.001

 0.01

 0.1

 1

compress

jess
db javac

mpegaudio

mtrt
jack

avrora
bloat

chart
fop hsqldb

luindex
lusearch

pmd
sunflow

xalan

A
llo

ca
tio

n
F

ra
ct

io
n

(lo
g)

(c) Compiler

 0.001

 0.01

 0.1

 1

compress

jess
db javac

mpegaudio

mtrt
jack

avrora
bloat

chart
fop hsqldb

luindex
lusearch

pmd
sunflow

xalan

A
llo

ca
tio

n
F

ra
ct

io
n

(lo
g)

(d) Booting

 0.001

 0.01

 0.1

 1

compress

jess
db javac

mpegaudio

mtrt
jack

avrora
bloat

chart
fop hsqldb

luindex
lusearch

pmd
sunflow

xalan

A
llo

ca
tio

n
F

ra
ct

io
n

(lo
g)

(e) Classloader

 0.001

 0.01

 0.1

 1

compress

jess
db javac

mpegaudio

mtrt
jack

avrora
bloat

chart
fop hsqldb

luindex
lusearch

pmd
sunflow

xalan

A
llo

ca
tio

n
F

ra
ct

io
n

(lo
g)

(f) Other Runtime

Figure 8. Fraction of total allocation attributed to execution contexts.

 0

 0.2

 0.4

 0.6

 0.8

 1

S
ur

vi
va

l R
at

io

Application
Compiler

Booting
Classloader

Other Runtime

(a) Average

 0

 0.2

 0.4

 0.6

 0.8

 1

compress

jess
db javac

mpegaudio

mtrt
jack

avrora
bloat

chart
fop hsqldb

luindex
lusearch

pmd
sunflow

xalan

S
ur

vi
va

l R
at

io

(b) Application

 0

 0.2

 0.4

 0.6

 0.8

 1

compress

jess
db javac

mpegaudio

mtrt
jack

avrora
bloat

chart
fop hsqldb

luindex
lusearch

pmd
sunflow

xalan

S
ur

vi
va

l R
at

io

(c) Compiler

 0

 0.2

 0.4

 0.6

 0.8

 1

compress

jess
db javac

mpegaudio

mtrt
jack

avrora
bloat

chart
fop hsqldb

luindex
lusearch

pmd
sunflow

xalan

S
ur

vi
va

l R
at

io

(d) Booting

 0

 0.2

 0.4

 0.6

 0.8

 1

compress

jess
db javac

mpegaudio

mtrt
jack

avrora
bloat

chart
fop hsqldb

luindex
lusearch

pmd
sunflow

xalan

S
ur

vi
va

l R
at

io

(e) Classloader

 0

 0.2

 0.4

 0.6

 0.8

 1

compress

jess
db javac

mpegaudio

mtrt
jack

avrora
bloat

chart
fop hsqldb

luindex
lusearch

pmd
sunflow

xalan

S
ur

vi
va

l R
at

io

(f) Other Runtime

Figure 9. Nursery survival characteristics for objects allocated by execution contexts.

lection is triggered based on total allocation, not allocation per con-
text, but the results still provide interesting insights. Figure 9 shows
the result of this experiment. The booting and classloader contexts
show consistently high survival rates. In comparsion, the survival
rate for the compiler is consistently low, with less than 20% of data
surviving the first nursery collection in 12 of the 17 benchmarks.

These experiments show that while allocation behavior between
applications varies, allocation in runtime contexts follows a more
regular pattern. The compiler context allocates more memory than
all other runtime contexts combined for every benchmark, and also
shows a consistently low survival rate, averaging just 16.4%. The
other allocation-intensive contexts are the classloader and runtime
booting procedure, which have stable and high survival ratios.

Heap Footprint Our framework allows us to easily determine
the objects allocated by the runtime. This is generally difficult in
a metacircular runtime because application and runtime objects

are mixed together in a single heap. In our preliminary study we
allocate runtime objects into a different region of memory based on
the dynamic execution state. Then at garbage collection time, we
can measure the live size of the respective heaps to determine the
memory footprint for the application and the runtime separately.

Figure 10 shows that in more than half of the benchmarks
the memory footprint of the runtime is larger than that of the
application. Ogata et al. make a similar observation for the IBM
J9 runtime, which is not metacircular [12].

5.5 Summary
These results show that a framework such as ours can disambiguate
dynamic execution context at very low overhead, and can also
be used to both understand and improve the implementation of
managed runtimes.

 0

 20

 40

 60

 80

 100

 120

compress

jess
db javac

mpegaudio

mtrt
jack

avrora
bloat

chart
fop hsqldb

luindex
lusearch

pmd
sunflow

xalan

H
ea

p
F

oo
tp

rin
t (

M
B

)

Application Runtime

Figure 10. Memory footprint for application and runtime allocated
objects.

6. Related work
We categorize related work in two parts: 1) the state of the art
for metacircular runtimes, for which ambiguous context is one of
the major problems, and 2) approaches to improve isolation within
runtimes more broadly.

6.1 Metacircular VMs
There is a long history of metacircular runtimes, tracing back to
LISP in the 1960s. In some languages, metacircular implementa-
tions are in the mainstream (e.g., LISP and Smalltalk). For others,
in particular Java, metacircular implementations have been more
of a sideshow to commonly used production runtimes, despite a
long thread of interest: the first Java-in-Java runtime was created
not long after Java’s initial introduction.

Jikes RVM (formerly known as Jalapeño) was the first high-
performance metacircular runtime written in Java [1]. Besides a
small amount of C code used to boot the runtime and act as an
OS interface layer, Jikes RVM is entirely implemented in Java,
and once built can execute without the support of a host JVM.
Jikes RVM largely ignores matters of application/runtime isolation
in its design. While Jikes RVM generally identifies methods that
have calls injected by the compiler (one type of downcall from
the application into runtime) this convention is not enforced by the
runtime. Our implementation is based on the most recent release of
Jikes RVM.

Moxie was designed to be a platform for developing production-
quality JVMs and performing research into new JVM designs and
technologies [8]. Moxie is metacircular, and targets portability,
clean bootstrap, debugging and systems programming. The im-
portance of VM/application isolation was recognized early in the
Moxie design process. Moxie set a goal of having all transitions
from application to JVM services explicit (similar to an oper-
ating system trap). As part of this process, Moxie developed a
quite different bootstrap model to that used in Jikes RVM, and
its hosted-target execution model was an important step towards
strong VM/Application isolation [8]. Unfortunately, the Moxie VM
was never publicly released.

Maxine is, like Moxie, a research platform for next generation
Java runtimes [18]. Maxine is metacircular, and is built on princi-
ples of modularity and configurability. Maxine provides dedicated
replacement mechanisms for important components, including the
compiler, garbage collector, and object model. To our knowledge,
Maxine does not particularly address the issue of application/run-
time ambiguity that arises due to metacircularity and which is the
focus of our work.

Ovm is a research JVM that particularly targets realtime appli-
cations. [13]. Ovm provides the basic components of a managed
runtime, each of which is written almost entirely in Java. Ovm is

designed as a general framework to support different object models.
Ovm’s intermediate intermediate representation, OvmIR reduces
some of the ambiguity between the runtime and target language.
However, this approach does not serve as a common solution to the
context ambiguity and isolation problem that arises from metacir-
cularity, which is our focus in this paper.

6.2 Prior Work in VM Isolation
Other work has focused on the issue of isolation in the context of
managed runtimes more broadly, motivated by other concerns such
as security and inter-application isolation.

KaffeOS [4] is a Java runtime system designed to implement
isolation and resource management boundaries between different
applications in a single runtime based on the Kaffe VM. KaffeOS
is not metacircular, but is closely related to our work because iso-
lation between different contexts is a primary goal of KaffeOS. In
KaffeOS, to support application isolation, limited VM/application
isolation is also required. KaffeOS uses a red line metaphor [9]
to divide ‘user mode’ and ‘kernel mode’ contexts. This ‘red line’
metaphor is similar to our dynamic switching, but there are also
some important differences, due to the non-metacircular nature of
KaffeOS. First, the kernel in KaffeOS is written in C while the other
parts are written in Java, thus a clear cross-language boundary in-
dicates parts of the ‘red line’ between the runtime and application.
Also, the metaphor does not translate well to the metacircular set-
ting, because the metacircular runtime is reentrant: during execu-
tion a ‘red line’ could be crossed multiple times. We analyze this
problem in detail and propose a clean approach for maintaining a
more appropriate runtime state for a metacircular runtime. In addi-
tion, our approach to maintaining context has a low overhead, while
the isolation used by KaffeOS is more heavyweight, with an 11%
overhead.

7. Conclusion
The dependencies between the application and the runtime that sup-
ports it–and between the components of the runtime itself–are crit-
ical elements of runtime design, yet are often unclear. We examine
the problem of these dependencies in the context of a metacircular
runtime, where the boundaries between the application and individ-
ual runtime components are particularly unclear. We demonstrate a
low overhead framework that allows us to clearly identify the dy-
namic execution context within the runtime, and show how this has
led to software engineering improvements in the JVM we use.

Our approach is to restructure and annotate the runtime to trans-
parently reflect context transitions. To do this, we: 1) introduce
transition point annotations that allow the runtime to maintain a
clear dynamic execution context within the metacircular runtime
with very low overhead, 2) use the explicit identification of tran-
sition points to drive a restructuring of an existing runtime to sub-
stantially reduce structural context ambiguity, and 3) use our frame-
work to analyze behavior and runtime characteristics of a metacir-
cular runtime across a wide range of benchmarks.

Although our implementation is developed in the context of a
particular runtime, the principles we apply are more general. In
particular, we hope that our insights and analysis may help runtime
developers think more clearly about the various contexts that con-
stitute a VM and their relationship. We hope that by substantially
reducing ambiguity, this work will make metacircular designs more
tenable for the next generation of managed runtimes.

References
[1] B. Alpern, C. R. Attanasio, A. Cocchi, D. Lieber, S. Smith, T. Ngo,

J. J. Barton, S. F. Hummel, J. C. Sheperd, and M. Mergen. Imple-
menting Jalapeño in Java. In Proceedings of the 14th ACM SIGPLAN

Conference on Object-Oriented Programming, Systems, Languages,
and Applications, OOPSLA ’99, pages 314–324. ACM, 1999.

[2] B. Alpern, M. Butrico, A. Cocchi, J. Dolby, S. Fink, D. Grove, and
T. Ngo. Experiences Porting the Jikes RVM to Linux/IA32. In Pro-
ceedings of the 2nd Java(TM) Virtual Machine Research and Technol-
ogy Symposium, JVM ’02, pages 51–64. USENIX Association, 2002.

[3] Apache. DRLVM – Dynamic Runtime Layer Virtual Machine. http:
//harmony.apache.org/subcomponents/drlvm/.

[4] G. Back, W. C. Hsieh, and J. Lepreau. Processes in KaffeOS: Isolation,
Resource Management, and Sharing in Java. In In Proceedings of
the 4th Symposium on Operating Systems Design and Implementation,
OSDI 2000, pages 333–346, 2000.

[5] S. M. Blackburn and K. S. McKinley. Immix: A Mark-Region
Garbage Collector with Space Efficiency, Fast Collection, and Mutator
Performance. In Proceedings of the 2008 ACM SIGPLAN conference
on Programming Language Design and Implementation, PLDI ’08,
pages 22–32. ACM, 2008.

[6] S. M. Blackburn, P. Cheng, and K. S. McKinley. Oil and Water? High
Performance Garbage Collection in Java with MMTk. In Proceedings
of the 26th International Conference on Software Engineering, ICSE
’04, pages 137–146. IEEE Computer Society, 2004.

[7] S. M. Blackburn, R. Garner, C. Hoffmann, A. M. Khang, K. S. McKin-
ley, R. Bentzur, A. Diwan, D. Feinberg, D. Frampton, S. Z. Guyer,
M. Hirzel, A. Hosking, M. Jump, H. Lee, J. E. B. Moss, A. Phansalkar,
D. Stefanović, T. VanDrunen, D. von Dincklage, and B. Wieder-
mann. The DaCapo Benchmarks: Java Benchmarking Development
and Analysis. In Proceedings of the 21st annual ACM SIGPLAN Con-
ference on Object-Oriented Programming Systems, Languages, and
Applications, OOPSLA ’06, pages 169–190. ACM, 2006.

[8] S. M. Blackburn, S. I. Salishev, M. Danilov, O. A. Mokhovikov,
A. A. Nashatyrev, P. A. Novodvorsky, V. I. Bogdanov, X. F. Li, and
D. Ushakov. The Moxie JVM experience. Technical Report TR-
CS-08-01, Australian National University, Department of Computer
Science, May 2008.

[9] D. R. Cheriton and K. J. Duda. A Caching Model of Operating Sys-
tem Kernel Functionality. In In Proceedings of the First Symposium
on Operating Systems Design and Implementation, pages 179–193.
USENIX Association, 1994.

[10] D. Frampton, S. M. Blackburn, P. Cheng, R. J. Garner, D. Grove,
J. E. B. Moss, and S. I. Salishev. Demystifying Magic: High-level
Low-level Programming. In Proceedings of the 2009 ACM SIG-
PLAN/SIGOPS international conference on Virtual execution environ-
ments, VEE ’09, pages 81–90. ACM, 2009.

[11] G. Hunt, J. Larus, M. Abadi, M. Aiken, P. Barham, M. Fähndrich,
C. Hawblitzel, O. Hodson, S. Levi, N. Murphy, B. Steensgaard,
D. Tarditi, T. Wobber, and B. Zill. An overview of the Singularity
project. Technical Report MSR-TR-2005-135, Microsoft Research,
2005.

[12] K. Ogata, D. Mikurube, K. Kawachiya, S. Trent, and T. Onodera.
A Study of Java’s non-Java Memory. In Proceedings of the ACM
International Conference on Object Oriented Programming Systems
Languages and Applications, OOPSLA ’10, pages 191–204. ACM,
2010.

[13] K. Palacz, J. Baker, C. Flack, C. Grothoff, H. Yamauchi, and
J. Vitek. Engineering a Common Intermediate Representation for the
Ovm Framework. Science of Computer Programming, 57:357–378,
September 2005.

[14] E. Prangsma. Why Java is practical for modern operating systems,
2005. Presentation only. See http://www.jnode.org.

[15] A. Rigo and S. Pedroni. PyPy’s Approach to Virtual Machine Con-
struction. In Companion to the 21st ACM SIGPLAN Symposium on
Object-Oriented Programming Systems, Languages, and Applications,
OOPSLA ’06, pages 944–953. ACM, 2006.

[16] D. Simon, C. Cifuentes, D. Cleal, J. Daniels, and D. White. Java on
the Bare Metal of Wireless Sensor Devices: The Squawk Java Virtual
Machine. In Proceedings of the 2nd International Conference on
Virtual Execution Environments, VEE ’06, pages 78–88. ACM, 2006.

[17] Standard Performance Evaluation Corporation. Specjvm98. http:
//www.spec.org/jvm98/.

[18] Sun Microsystems. Maxine Research Project. http://research.
sun.com/projects/maxine/.

[19] D. Ungar, A. Spitz, and A. Ausch. Constructing a Metacircular Virtual
Machine in an Exploratory Programming Environment. In Companion
to the 20th annual ACM SIGPLAN Conference on Object-Oriented
Programming, Systems, Languages, and Applications, OOPSLA ’05,
pages 11–20. ACM, 2005.

