
Stop and Go: Understanding Yieldpoint Behavior

Yi Lin† Kunshan Wang† Stephen M. Blackurn† Antony L. Hosking∗ Michael Norrish‡

†Australian National University ∗Purdue University, USA ‡NICTA, Australia
†{yi.lin,kunshan.wang,steve.blackburn}@anu.edu.au ∗hosking@purdue.edu

‡michael.norrish@nicta.com.au

Abstract
Yieldpoints are critical to the implementation of high per-
formance garbage collected languages, yet the design space
is not well understood. Yieldpoints allow a running program
to be interrupted at well-defined points in its execution, fa-
cilitating exact garbage collection, biased locking, on-stack
replacement, profiling, and other important virtual machine
behaviors. In this paper we identify and evaluate yieldpoint
design choices, including previously undocumented designs
and optimizations. One of the designs we identify opens new
opportunities for very low overhead profiling. We measure
the frequency with which yieldpoints are executed and es-
tablish a methodology for evaluating the common case ex-
ecution time overhead. We also measure the median and
worst case time-to-yield. We find that Java benchmarks ex-
ecute about 100 M yieldpoints per second, of which about
1/20000 are taken. The average execution time overhead for
untaken yieldpoints on the VM we use ranges from 2.5 % to
close to zero on modern hardware, depending on the design,
and we find that the designs trade off total overhead with
worst case time-to-yield. This analysis gives new insight into
a critical but overlooked aspect of garbage collector imple-
mentation, and identifies a new optimization and new oppor-
tunities for very low overhead profiling.

Categories and Subject Descriptors D.3.4 [Programming
Languages]: Processors—Memory management (garbage
collection), Run-time environments

General Terms Experimentation, Languages, Performance,
Measurement

Keywords yieldpoints, safe points, code patching, man-
aged code, managed run-time

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.
ISMM’15, June 14, 2015, Portland, OR, USA
Copyright 2015 ACM. ISBN 978-1-4503-3589-8/15/06. . . $15.00.
http://dx.doi.org/10.1145/10.1145/2754169.2754187

1. Introduction
A yieldpoint is a frequently executed check by managed ap-
plication code in high performance managed run-time sys-
tems, used to determine when a thread must yield. Reasons
to yield include exact garbage collection, user-level thread
preemption, on-stack replacement of unoptimized code with
optimized code, biased locking, and profiling for feedback
directed optimization. Yieldpoints ensure that each thread is
in a state that is coherent for the purposes of the yield, such
as knowing the precise location of all references in the regis-
ters and stacks for exact garbage collection, and that relevant
operations such as write barriers and allocation have com-
pleted (i.e., are not in some inconsistent partial state). These
properties are less easily assured if threads suspend at arbi-
trary points in their execution. Coherence is essential when
the virtual machine needs to introspect the application thread
or reason about interactions between the thread and the vir-
tual machine or among multiple application threads. In the
case of exact garbage collection, yieldpoints are known as
GC-safe points [11]. Compilers generate a GC map for each
yieldpoint, allowing the run-time system to identify heap
pointers precisely within the stacks and registers of a yielded
thread.

To avoid unbounded waits, yieldpoints typically occur on
loop back edges and on method prologs or epilogs of the ap-
plication, either in the interpreter or in code placed there by
the compiler. Consequently, yieldpoints are prolific through-
out managed code. Yieldpoints may also be performed ex-
plicitly at other points during execution, such as at transi-
tions between managed and unmanaged code.

Despite their important role, to our knowledge there has
been no detailed analysis of the design space for yieldpoints
nor analysis of their performance. This paper examines both.

We conduct a thorough evaluation of yieldpoints, ex-
ploring how they are used, their design space, and perfor-
mance. We include designs that to our knowledge have not
been evaluated before, as well as two designs that are well
known. We start by measuring the static and dynamic prop-
erties of yieldpoints across a suite of Java benchmarks. We
measure their static effect on code size as well as the dy-
namic rate at which yieldpoints are executed and the rate at
which a yieldpoint’s slow path is taken (making the thread
yield). Statically, yieldpoints account for about 5 % of in-

structions. The Java benchmarks we evaluate perform about
100 M yieldpoints per second, of which about 1/20000 are
taken. We show that, in our system, among the different uses
of yieldpoints, by far the most common reason for yield-
ing is to perform profiling for feedback directed optimization
(FDO), which in our Java run-time system occurs once every
4 ms. By comparison, garbage collection occurs far less fre-
quently, and in most benchmarks lock revocation in support
of biased locking is very rare.

We examine the design space, including two major di-
mensions. The first dimension is the mechanism for decid-
ing whether to yield, which may be implemented as: (i) a
conditional guarded by a state variable, (ii) as an uncondi-
tional load or store from/to a guard page, or (iii) via code
patching. The conditional yields when the state variable is
set and a branch is taken, the unconditional load or store
yields when the guard page is protected and the thread is
forced to handle the resulting exception, while code patching
can implement a branch or a trap (both unconditional). The
second design dimension is the scope of the signal, which
may be global or per-thread. A global yieldpoint applies to
all threads (or none), while a per-thread yieldpoint can target
individual threads to yield.

We identify a new opportunity for yieldpoint optimiza-
tion. Rather than using code patching to turn uncondi-
tional yields on or off (which requires that all yieldpoints
be patched) as Agesen [1] did, we can use code patching
to selectively replace frequently executed yieldpoints with
noops. We also show that a yieldpoint implemented as an
unconditional store can serve double-duty as a very low
overhead profiling mechanism. If the unconditional store
writes a constant that identifies characteristics of the par-
ticular yieldpoint (e.g., location or yielding thread), then a
separate profiling thread can sample the stores and thus ob-
serve the yieldpoints as they are traversed. We make use of
this yieldpoint in separately published work [19].

We evaluate each of the design points and explore the
potenital for code patching as an optimization. Among these
designs, the most important tradeoff is due to the choice of
mechanism, with explicit checks incurring the highest over-
head in the common untaken case, around 2 %, but deliv-
ering the fastest time-to-yield, while the unconditional load
or store has a lower overhead in the common case, 1.2 %
at best, but has worse time-to-yield performance. The code
patching yieldpoint is slightly different than the other yield-
point designs. Code patching yieldpoints have superior com-
mon case overhead when implemented as noops, but the cost
of patching all yieldpoints outweighs any benefit on mon-
dern hardware. We also evaluate the tradeoffs inherent to us-
ing code patching as an optimization.

Our analysis gives new insight into a critical but over-
looked aspect of garbage collector implementation, identi-
fies a new yieldpoint optimization, and new opportunities for
very low overhead profiling.

2. Background, Analysis, and Related Work
We now describe yieldpoints in more detail and quantita-
tively evaluate how yieldpoints are used in Java workloads.

2.1 Background
In principle, language run-times are concurrent. This is clear
in the case of languages such as Java that support concur-
rency, but even in the case where the supported language
offers no application-level concurrency, such as JavaScript,
the relationship between the application code and the un-
derlying run-time system is fundamentally concurrent. The
concurrency may be explicit, with run-time services execut-
ing in discrete threads or it may be implied, with the un-
derlying run-time services and the application interleaving
their execution by time-slicing a single thread. Yieldpoints
are a critical mechanism for coordinating among application
threads and the run-time system.

Yieldpoints serve two complementary goals. First, they
provide precise code points at which the execution state
of each application thread is observably coherent, allow-
ing the possibility of unobserved incoherent states between
yieldpoints. For example, by ensuring that garbage collec-
tion only occurs at yieldpoints, we are assured that a multi-
instruction write barrier will be observed in its entirety or
not at all. Second, yieldpoints reduce the cost of maintaining
metadata with which the thread’s state may be introspected.
In general, introspection of an application thread depends on
metadata (e.g., stack maps) to give meaning to the machine
state of the application at any point in time. For example,
the type of a value held by a machine register at a given mo-
ment will determine whether the value should be interpreted
as a pointer, in which case its referent must be retained by
the garbage collector, or a floating point number, in which
case the value must not be altered. Because such metadata
is expensive both in terms of space and in the engineering
overhead of coherently generating and maintaining it, lan-
guage run-times typically only maintain such metadata for a
limited set of code locations.

When yieldpoints are used to coordinate garbage collec-
tion it is typically adequate for the yield to have global scope
— when activated, all application threads yield to the collec-
tor. However, when yieldpoints are used for one-to-one inter-
actions between threads, such as for lock revocation in sup-
port of biased locking [14], or to support work-stealing [12],
a per-thread scope is necessary for good performance. These
considerations affect the yieldpoint design space, which is
discussed in Section 3.

Yieldpoints are either injected into the application execu-
tion by the interpreter or compiler, or they are explicit, called
by the underlying run-time at key points such as transitions
into and out of native code. The focus of our study is injected
yieldpoints, which are prolific.

 1e-05
 0.0001

 0.001
 0.01

 0.1
 1

 10
 100

 1000
 10000

 100000
 1e+06

jess javac
mtrt

compress

db mpegaudio

jack avrora
bloat

fop hsqldb
luindex

lusearch
pmd sunflow

xalan
pjbb2005

min max mean
geomean

Yi
el

dp
oi

nt
s/

m
s

Taken for GC
Taken for GC/Sampling

Taken for GC/Sampling/BiasedLocking
Total Executed

Figure 1. Dynamic yieldpoint rates per millisecond for Java benchmarks, showing those taken due to GC (yellow), those
taken due to GC or sampling for FDO (orange), all taken yieldpoints (red), and all yieldpoint executions, whether taken or not
(green). Counts are per thread, so multi-threaded benchmarks such as lusearch and xalan show noticeably higher take rates,
reflecting their higher thread count.

2.2 Analysis
We now present an analysis of the prevalence of yieldpoints,
dynamically and statically, and the rate at which yieldpoints
are taken. We use a suite of Java benchmarks and instrument
a virtual machine to count yieldpoints. Because the instru-
mentation slows the virtual machine significantly, we use ex-
ecution times for the uninstrumented virtual machine as our
baseline when measuring rates. The details of our methodol-
ogy are presented in Section 4.

To measure the static impact of yieldpoints on code size,
we compiled a large body of Java code using our virtual
machine’s optimizing compiler (with O2 optimization level)
and found that the resulting machine code increased in size
from 13.6 MB to 14.6 MB (i.e., by 7.2 %) when a basic
conditional yieldpoint was injected on each loop back edge,
method prolog and epilog.

We measure the dynamic impact of yieldpoints by in-
strumenting the injected code to count the number of times
injected yieldpoints are executed, and the number of times
yieldpoints are taken for FDO profiling, lock revocation, and
garbage collection. We used the execution time for uninstru-
mented code to determine yieldpoint rates.

Figure 1 shows the rate at which yieldpoints are executed
and taken across the suite of Java benchmarks per millisec-
ond. The green bars indicate the rate at which yieldpoints are
executed, taken or not. On average about 100 M yieldpoints
are executed per second; about one every 10 ns, which is
roughly one every 40 cycles on our 3.4 GHz machine. Of
these, around 1/20000 yieldpoints are taken. Sampling for
FDO (orange and red bars) dominates the reasons for yield-
points to be taken. Our virtual machine uses bursty sam-
pling [4], initiating sampling on each thread once every 4 ms.
Once initiated, samples are taken at the next N method pro-
logs, where N is 8. The degree of simplicity and longevity of
the benchmarks affects the precise number of samples taken.
Our counts are totals across all threads, so the multi-threaded
benchmarks such as lusearch, sunflow, xalan and pjbb2005
have their counts inflated in proportion to the number of

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 100 200 300 400 500 600 700 800 900 1000
Yieldpoint Count

jess
javac
mtrt
compress
db
mpegaudio
jack
avrora
bloat

fop
hsqldb
luindex
lusearch
pmd
sunflow
xalan
pjbb2005
mean

Figure 2. Cumulative frequency distribution of dynamic
yieldpoint execution rates for each of our benchmarks.

threads they are running. The yellow bar indicates the num-
ber of yieldpoints due to garbage collection, and reveals that
only a small fraction of taken yieldpoints are due to garbage
collection. The difference between red and orange bars re-
flects the number of yieldpoints taken due to lock revocation,
revealing that this is very rare among our benchmarks.

We further identify every single yieldpoint inserted by the
compiler and maintain an execution count for each, and Fig-
ure 2 shows the cumulative frequency of yieldpoint execu-
tion across different benchmarks. The figure suggests that
among more than 35 k yieldpoints inserted by the compiler
for each benchmark, just a few hundred account for most ex-
ecutions. On average, just 315 yieldpoints (∼1 %) account
for 99 % of all the yieldpoint executions, dynamically, and
681 yieldpoints (∼2 %) account for 99.9 % of all executions.
In the worst case (xalan), the same percentile is 849, which
is still a tiny fraction of the static yieldpoint count. This re-
sult is interesting because it suggests that, despite the perva-
siveness of yieldpoint insertion and execution, less than 1 %
of yieldpoints dominate the behavior. This can possibly be
exploited for a more optimized yieldpoint design as will be
discussed in Section 3.3.

Summarizing, Figure 1 shows that: (a) yieldpoints are ex-
ecuted at a very high frequency, (b) they are relatively rarely
taken, and (c) that sampling for FDO dominates garbage col-
lection and lock revocation as a reason for yieldpoints to be
taken, while Figure 2 shows that a tiny fraction of yieldpoints
dominate execution.

2.3 Related Work
To the best of our knowledge, despite their importance to
language behavior and performance, no prior work has con-
ducted a detailed study of yieldpoint design and implemen-
tation.

Agesen [1] focuses purely on mechansism for GC-safe
points, comparing an unconditional store to a guard page
(‘polling’) with a code patching mechanism on SPARC ma-
chines. His code patching mechanism injects noop instruc-
tions to replace all yieldpoints. To trigger the yield, the run-
time system patches every yieldpoint site, replacing the noop
instructions at each site with a call. Agesen used a set of
benchmarks comprising SPECjvm98, SPECjvm98 candi-
dates, and two non-trival multi-threaded benchmarks. He re-
ported that code patching for SPARC has a 6.6 % higher
space cost than an unconditional store, on average, but deliv-
ers a 4.8 % speedup. We evaluate this design point on mod-
ern hardware and show that code patching costs dominate.

Our work differs from this prior work in multiple ways.
First, we provide a detailed categorization of generalized
yieldpoint mechanisms suited to a variety of purposes in
modern run-time systems. We consider garbage collection
as one use of yieldpoints, among others. The two imple-
mentations of GC-safe points measured by Agesen [1] are
what we call a global store trap-based yieldpoint and global
code patching yieldpoint. Second, our methodology allows
us to evaluate different yieldpoint implementations over a
baseline that has no injected yieldpoints. This allows us to
understand the performance overheads for each configura-
tion. In contrast, the previous work evaluated two imple-
mentations against each other with no baseline. Our selec-
tion of benchmarks is more mature, and contains a set of
real-world multi-threaded applications. Since yieldpoints are
naturally designed for multi-threaded contexts, our bench-
mark choice enables studies such as per-thread yield latency
and worst-case yield latency, which are important for real-
time and concurrent garbage collection. Third, we identify
code patching as an optimization over other yieldpoint de-
signs. Finally, the previous work was evaluated on venerable
SPARC machines of more than fifteen years ago: what was
true then may not be true now. Our experiments evaluate and
report for contemporary hardware.

Click et al. [9] distinguish GC-safe points and check-
points in their work related to pauseless GC algorithms. GC-
safe points are the managed code locations where there is
precise knowledge about the contents of registers and stacks,
while checkpoints are synchronization locations for all mu-
tator threads to perform some action. Our paper projects a

more detailed categorization of yieldpoints and their imple-
mentations.

Stichnoth et al. [17] proposed an interesting alternative
to the compiler injected yieldpoints discussed here. They
focus on maintaining comprehensive GC maps that cover all
managed code instruction locations so as to allow garbage
collection to occur at any location without the need for
designated yieldpoints. They report significant overhead for
the resulting GC maps (up to 20% of generated code size)
even after efforts to compress the maps. This may not be
desirable in practice, so compiler-injected yieldpoints are
widely used in language implementations.

3. Yieldpoints
In this section we categorize different implementations of
compiler injected yieldpoints and describe the use of code
patching as an optimization. Our focus is the use of yield-
points in managed language implementations, where ap-
plications must yield occasionally to service run-time sys-
tem requests. A given yieldpoint may be associated with
compiler-generated information that records GC stack maps,
variable liveness, etc. As an alternative to compiler injected
yieldpoints, non-cooperative systems that do not rely on
compiler support may use operating system signals to in-
terrupt a native thread to ‘yield’ at arbitrary program loca-
tions [8]. This approach injects no code in the application,
and only requires a signal handler to deal with the inter-
rupt. However, the run-time system can make no assump-
tions about where the yield occurs, and this further prevents
any useful information to be associated with the yielding lo-
cation (such as stack maps for exact GC). For managed run-
time systems it is much more desirable to be able to exploit
such information, so we exclude the non-cooperative tech-
niques from our categorization and focus on discussing com-
piler injected yieldpoints for managed language run-time
systems.

3.1 Mechanisms
Because yieldpoints are frequently executed and seldom
triggered, the common implementation pattern is to use
the fast-path/slow-path idiom. The fast-path is pervasively
inserted into managed application code, and does a quick
check to decide whether there is any incoming request. If
there is, the yieldpoint is taken and control flow goes to the
slow-path which further decodes the request, and reacts ac-
cordingly. If the yieldpoint is not taken then execution con-
tinues at the next application instruction. Control transfer
to the slow-path may be via a direct or indirect conditional
branch, or by having the fast-path trigger a hardware trap
that can be fielded by a matching trap handler.

Conditional Polling Yieldpoints This yieldpoint imple-
mentation involves a condition variable. The compiler in-
jects a constant comparison against the value of the variable
and a conditional jump to the slow path on true. In normal

1 .yieldpoint:
2 cmp 0 [TLS_REG + offset]
3 jne call_yieldpoint
4 .normal_code:
5 ...

(a) Conditional

1 .yieldpoint:
2 test 0 [TLS_REG + offset]
3 .normal_code:
4 ...

(b) Trap-based Load

1 .yieldpoint:
2 mov 0 [TLS_REG + offset]
3 .normal_code:
4 ...

(c) Trap-based Store

Figure 3. Thread-local polling yieldpoints

cases, the condition is not met, and the jump falls through to
the next instruction. When the yieldpoint is enabled the jump
transfers control to the slow path to execute the yield. Fig-
ure 3a shows the fast-path implementation for conditional
polling yieldpoints. Jikes RVM uses this mechanism [2].

One advantage of conditional polling yieldpoints is that
they provide flexibility and allow easy implementations
of yieldpoints for a finer scope. The compiler can gener-
ate different conditional comparison instructions for yield-
points at various locations, and at run time the variable can
be set to different values to allow a subset of the condi-
tional comparisons to be triggered, so that only a subset of
yieldpoints can be taken. For example, the compiler emits
cmp [offset] 0; jne call_yieldpoint; for Group
A and cmp [offset] 0; jgt call_yieldpoint; for
Group B. At run-time, if the conditional variable is set to -1,
then only Group B takes the yieldpoints.

Moreover, the condition variable can be held in a thread-
local variable, allowing yieldpoints to trigger only for par-
ticular threads.

Trap-Based Polling Yieldpoints This yieldpoint imple-
mentation involves a dedicated memory page that can be
protected as appropriate. The compiler injects an access
(read or write) to the page as the yieldpoint fast-path (see
Figures 3b and 3c). In the common case the access succeeds
and will not trigger the yieldpoint. Enabling the yieldpoints
is simply a matter of protecting the page (from read or write
as appropriate) to make the yieldpoint instruction generate a
trap. Here the slow path is the handler used to field the trap.
A load yieldpoint on x86 can be implemented as a cmp, or
test to avoid the use of a scratch register. The store imple-

mentation can be exploited to store useful profiling informa-
tion such as the address of the currently executing method, or
the address of the yieldpoint instruction itself. The Hotspot
VM uses trap-based load yieldpoints on a global protected
page [13].

Once again, the access can be to a page held in a thread-
local variable, allowing yieldpoints to trigger only for par-
ticular threads.

Code Patching Yieldpoints Besides the polling mecha-
nisms described above, code patching is another possible
mechanism to implement yieldpoints. A common use is
NOP patching. The compiler injects several bytes of NOPs
at yieldpoint locations, which makes no meaningful change
in the generated application code. To trigger a yieldpoint the
run-time system simply iterates through the code space or a
stored list of all yieldpoint code addresses, and patches code
by replacing the NOPs with other instructions that cause con-
trol to flow to the yieldpoint slow path. Intuitively, this ap-
proach imposes the lowest fast-path overhead (both in terms
of space and time), but enabling yieldpoints is costly. Age-
sen [1] reported the use of this approach in 1998, and found
it faster than conditional polling on a SPARC machine of
that era. Our evaluation on modern hardware shows that the
cost of patching the instructions dominates any potential ad-
vantage. A similar mechanism is often used for watchpoints,
which we consider a finer-grained subtype of yieldpoints —
watchpoints can be turned on and off per group, as will be
discussed below.

3.2 Scope
Besides categorizing yieldpoints from the perspective of im-
plementing mechanisms, we also categorize yieldpoints by
different levels of scope. From coarser to finer levels, we
discuss three scopes: global, thread-local, and group-based.

Global Yieldpoints These are turned on and off all at once
to trigger a global synchronization of all application threads.
Global yieldpoints are useful for global events such as stop-
the-world GC. Yieldpoints of this scope can be implemented
with different mechanisms: using a global conditional vari-
able, a single global protected page, or an indiscriminate
pass of patching through the whole code space.

Thread-Local Yieldpoints These can be turned on and off
for a single thread or a group of threads. They can be used
for global synchronization if the targeted threads include all
the running threads. Yieldpoints of this scope are useful for
targeted per-thread events, such as pair handshakes between
two threads. Yet it provides flexibility as they can also be
used for global events. As noted above, using a thread-local
condition variable or thread-local protected page enables
thread-local conditional polling or trap-based polling, re-
spectively. However, there is no straight-forward implemen-
tation of a thread-local unconditional code patching yield-
point [1], since there is no easy guarantee of the patched
code being executed only by certain threads.

Group-based Yieldpoints These are grouped, and can be
turned on and off by group. They are also known as ‘watch-
points’ [3]. This type is useful as guards for speculative ex-
ecution. For example, in places where the compiler makes
an assumption regarding type specialization or an inlining
decision, it inserts a group-based yieldpoint before the spe-
cialized or inlined code. Whenever the run-time system no-
tices that the assumption breaks, it enables that group of
yieldpoints to prohibit further execution of the code un-
der false assumption. Code that reaches the enabled yield-
points will take a slow-path, where the run-time compiler
can make amends and generate new valid code. Code patch-
ing is the most straight-forward mechanism to implement
group-based yieldpoints, since it naturally needs to know the
offset of each yieldpoint. To adapt to group-based scope, it
simply records and patches yieldpoint addresses by group.
Conditional polling also fits well in group-based scope by
using different conditional variables or different conditions
per group. Trap-based polling only works for a limited num-
ber of groups as there are limited trap signals and protected
pages.

3.3 Code Patching As An Optimization
We note that the unconditional code patching yieldpoint
presents a severe tradeoff. The common case cost of a noop-
patched yieldpoint is very close to zero. However, we mea-
sured the cost of patching and found that when patching is
performed at every timer tick, it adds on average 13.4 %
overhead when all yieldpoints are patched. We then mea-
sured the effect as we reduced the number of yieldpoints
patched, and found that it fell to 0.6 % when 681 (∼99.9 %
in Figure 2) are patched and just 0.3 % when 315 (∼99 %)
are patched. This observation led us to consider code patch-
ing as a possible optimization over conditional or trap-based
yieldpoints.

When used as an optimization, code patching selectively
overwrites only the most frequently executed yieldpoints
with no-ops. When a yieldpoint is triggered, the optimized
yieldpoints are rewritten to their original state (or to un-
conditional yields). Once the yield is complete, the most
frequently executed yieldpoints are once again elided. The
choice of which yieldpoints to optimize will depend on the
cost-benefit tradeoff between the patching cost and the cost
of executing the unoptimized yieldpoint. If the 300 or so
most heavily executed yieldpoints could be sucessfully iden-
tified and patched, it seems possible that the optimization
would be almost entirely effective and yet introduce only a
tiny overhead due to patching. Possible refinements to this
optimization include parallelizing the code patching (also
applicable to the code patching yieldpoint), aborting patch-
ing if the yield succeeds before all are patched, and order-
ing the patching so that the most frequently executed yield-
points are patched first. We conduct a preliminary evaluation
of code patching as an optimization. Although at the time
of publication we had not succesfully demonstrated code

patching as an optimization, we believe that the analysis we
present here is encouraging.

Summary In this paper, we evaluate global and thread-
local versions of polling yieldpoints: i.e.,

[
Global, Thread-

Local
]
×
[
Conditional, Trap-based Load, Trap-based Store

]
as they are most relevant to global run-time synchronization
events such as garbage collection. We also include the cost
of the the fast-path of code patching yieldpoints in our eval-
uation, which is several bytes of noop.

4. Methodology
In this section, we present the software, hardware and mea-
surement methodologies we use. We base our methodology
on similar work introduced by Yang et al. [18], adapting it
to the task of measuring yieldpoints. The principal method-
ological contribution of this paper is an omitted yieldpoint
methodology, which allows us to use a system with no in-
jected yieldpoints as a baseline. We describe the omitted
yieldpoint methodology below.

Measurement Methodology We implement all yieldpoints
in version 3.13 of Jikes RVM [2], with a production con-
figuration that uses a stop-the-world generational Immix [5]
collector. We hold heap size constant for each benchmark,
but because our focus is not the performance of the garbage
collector itself, we use a generous 6× minimal heap size for
each benchmark with a fixed 32 MB nursery.

We use Jikes RVM’s warmup replay methodology to re-
move the non-determinism from the adaptive optimization
system. Note that the use of replay compilation has the im-
portant benefit of obviating the need for the adaptive opti-
mization system to perform profiling, which would other-
wise make our omitted yieldpoints methodology impossi-
ble. Before running any experiment, we first gather com-
piler optimization profiles from the best performance run
from a set of runs for each benchmark. Then, when we
run the experiments, every benchmark first goes through
a complete run to warm up the run-time (allowing all the
classloading and method resolving work to be done), and
then the compiler uses the pre-collected optimization pro-
files to compile benchmarks and disallows further recompi-
lation. This methodology greatly reduces non-determinism
from the adaptive optimizing compiler. Note that we use the
replay advice from the status quo build. However, since our
different builds impose little change in the run-time system,
we expect the bias introduced by using the same advice to
be minimal as well.

Omitted Yieldpoint Methodology To evaluate the over-
head of various yieldpoint implementations, we developed a
methodology with no injected yieldpoints, which served as
a baseline against which each of the yieldpoint implemen-
tations could be compared. The methodology depends on
two insights. First, we can disable two of the three systems
that depend on yieldpoints: sampling for feedback-directed

optimization, and lock revocation for biased locking. As
mentioned above, the warmup replay methodology provides
a sound basis for empirical analysis such as this, and hap-
pens to have the side effect of not requiring sampling for
FDO. Biased locking is an optimization that we can readily
disable, removing the need for lock revocation at the cost of
modest performance losses on some multi-threaded bench-
marks. Second, explicit yieldpoints remain in place, even
when we disable injected yieldpoints. Empirically, explicit
yieldpoints are sufficiently frequent that garbage collection
— the one remaining component dependent on yieldpoints
— can occur in a timely manner. We quantify the slop that
removal of injected yieldpoints adds to reaching explicit GC-
safe points by measuring the time taken for threads to yield
and comparing it with total mutator time. The average effect
on mutator time due to slower latency to reach explicit GC-
safe points is 0.9 %, which is mostly due to one benchmark
which triggers GC very frequently (lusearch, 9.1 %). For a
fair comparison, in our measurements, injected yieldpoints
have an empty slow path and will not bring the thread to
a GC-safe point so that GC always relies on explicit yield-
points, and the slightly longer GC-safe point latency per-
sists for all the experiments. The obvious alternative to our
approach would be to remove the need for garbage collec-
tion altogether by using a sufficiently large heap. However,
this would be impractical for benchmarks such as lusearch
which allocate prolifically, and would measurably degrade
benchmark locality [10].

Hardware and Software Environment Our principal ex-
periments are conducted on a recent 22 nm Intel Core i7
4770 processor (Haswell, 3.4 GHz) with 8 GB of 1600 MHz
DDR3 RAM. To evaluate the impact of microarchitecture,
we also use a 32 nm Intel 2600 Core i7 2600 processor
(Sandy Bridge, 3.4 GHz) with 8 GB of 1333 MHz DDR3
RAM. Aside from the difference in Haswell and Sandy
Bridge microarchitectures and memory speeds, the machines
are extremely similar in their specifications and configura-
tion. We use Ubuntu 14.04.1 LTS server distribution running
a 64 bit (x86 64) 3.13.0-32 Linux kernel on both machines.

Benchmarks We draw the benchmarks from the DaCapo
suite [7], the SPECjvm98 suite [15], and pjbb2005 [6] (a
fixed workload version of SPECjbb2005 [16] with 8 ware-
houses that executes 10000 transactions per warehouse). We
use benchmarks from both 2006-10-MR2 and 9.12 Bach re-
leases of DaCapo to enlarge our suite and because a few
9.12 benchmarks do not execute on Jikes RVM. We exclude
eclipse from the suite since our thread-local trap-based im-
plementation requires larger space for thread-local storage,
which makes eclipse run out of metadata space under the
default configuration.

5. Results
We report the performance of each of the yieldpoint de-
signs. We start by evaluating the overhead of the common

untaken case of each of the yieldpoints. Next we evaluate
the yieldpoints when they are taken with normal frequency.
Finally, we measure the time-to-yield (latency) for the dif-
ferent yieldpoints.

5.1 Overhead of Untaken Yieldpoints
We use the omitted yieldpoint methodology of Section 4 to
measure the impact of each yieldpoint design on mutator
performance in the case where the yieldpoint is never taken.
This reflects the common case, since as Section 2.2 showed,
only about 1/20000 yieldpoints are actually taken. We first
evaluate the overheads for thread-local yieldpoints before
considering global yieldpoint designs.

Thread-Local Yieldpoints Figure 3 shows the code for
three thread-local yieldpoint designs. Figure 4a shows the
overheads on the Haswell microarchitecture. The geometric
mean overheads are 1.9 % for the conditional, 1.2 % for the
load trap, 1.5 % for the store trap.

Our evaluation on the Sandy Bridge hardware reveals
some interesting differences between microarchitectures.
The geometric means for Sandy Bridge are 2.3 % for the
conditional, 2.1 % for the load trap, 1.6 % for the store trap.
Thus the conditional and trap-based yieldpoints are notice-
ably higher and more homogenous on the older machine.
Interestingly, the load trap yieldpoint is significantly lower
on the new machine, from 2.1 % down to 1.2 %, while the
improvements brought by the newer microarchitecture on
other implementations are marginal. This result highlights
the sensitivity of these mechanisms to the underlying mi-
croarchitecture, and the consequent need to reevalaute and
rethink such designs in contemporary settings.

Global Yieldpoints Global yieldpoints are very similar to
the thread-local yieldpoints shown in Figure 3, only rather
than referring to thread-local storage (via the TLS_REG in
Figure 3), they refer to a single global value for the con-
ditional yieldpoint and a single global guard page for the
trap yieldpoint. Figure 4b shows the overheads for the global
yieldpoints on the Haswell microarchitecture. The geometric
mean overheads are 2.5 % for the conditional, 2.0 % for the
load trap, 36 % for the store trap! Each of these are higher
than their thread-local counterpart. The difference between
the local and global yieldpoints is moderate for the condi-
tional and the load trap (respectively 0.6 % and 0.8 %). But
for the store trap, the slowdown is extreme. The reason is
obvious. It is clear from Figure 4b that all multi-threaded
benchmarks account for much of the increase in store trap
overhead. This is due to write contention on the guard page
caused by multiple user threads trying to write to the same
cache line. These results make it clear that aside from the ad-
ditional flexibility offered by thread-local yieldpoints, they
also offer substantially lower overheads.

We also measured the six-byte noop overhead, which
acts as the fast-path of one implementation of code patch-
ing yieldpoint. The noops can be patched into an absolute

 0.94
 0.96
 0.98

 1
 1.02
 1.04
 1.06
 1.08
 1.1

 1.12

jess
javac

mtrt
compress

db mpegaudio

jack
avrora

bloat
fop hsqldb

luindex

lusearch

pmd
sunflow

xalan
pjbb2005

min
max

mean
geomean

M
u
ta

to
r

T
im

e

Conditional Load Trap-based Store Trap-based

(a) Thread-local

 0.94
 0.96
 0.98

 1
 1.02
 1.04
 1.06
 1.08
 1.1

 1.12

jess
javac

mtrt
compress

db mpegaudio

jack
avrora

bloat
fop hsqldb

luindex

lusearch

pmd
sunflow

xalan
pjbb2005

min
max

mean
geomean

M
u
ta

to
r

T
im

e

1.366 1.166 3.144 1.922 3.410 3.126 1.541 3.410 1.520 1.360

Global Conditional

Global Load Trap-based

Global Store Trap-based

CALL Patching (6 Bytes NOP)

(b) Global

Figure 4. Mutator overhead of untaken thread-local and global yieldpoints on the Haswell microarchitecture. The graph shows
times normalized to the no yieldpoint baseline. The geometric mean overheads for the thread-local yieldpoints are 1.9 % for
the conditional, 1.2 % for the load trap, 1.5 % for the store trap. The global yieldpoints suffer systematically higher overheads
due to cache contention while the six-byte noop as code patching fast-path imposes minimal overheads (0.3 %).

call instruction on demand. The six-byte noop has the least
overhead among all the yieldpoints we measured, (0.3 %) on
Haswell, and zero measurable overhead on Sandy Bridge.
This only reflects the common case fast-path, it does not in-
clude the cost of performing code patching.

These results indicate a number of interesting findings.
First, the conditional yieldpoint does have a reasonably low
overhead but nonetheless is the worst performing among
untaken thread-local yieldpoints. Second, the overhead of
the code patching yieldpoint in the untaken case is (perhaps
unsurprisingly) very low.

5.2 The Overhead of Taken Yieldpoints
In the previous section we looked at the overheads due to
yieldpoints when they are never taken. In practice, of course,
yieldpoints are taken, even if rarely. We now extend the same
methodology as above, only that we allow yieldpoints to be
triggered normally by the underlying profiling system that
dominates yieldpoint activity (Figure 1). However, we im-
plement an empty slow path activity: when the yieldpoint
takes its slow path, we simply turn off the yieldpoint and re-
turn to the mutator rather than actually undertake profiling
or any other task. Notice that in the case of the conditional
yieldpoint, this means that there is very little additional over-
head, whereas in the trap-based yieldpoints, the trap must
still be taken and serviced before returning.

Figure 5 shows the results for the Haswell microarchi-
tecture. The geometric mean overheads for the yieldpoints
are 1.9 % for the conditional, 2.7 % for the load trap, 3.0 %
for the store trap. Notice that the total overheads are now
dramatically evened out compared to the untaken results
seen in Figure 4. The conditional has non-measurable ex-
tra overhead for taking yieldpoints. However, though clearly
faster than conditional yieldpoints in untaken cases, trap-
based yieldpoints are now slower due to the overhead as-
sociated with servicing the traps. These results undermine
the advantage of load and store trap-based yieldpoints when
yieldpoints are required to be taken frequently.

5.3 Time-To-Yield Latency for GC
A third performance dimension for yieldpoint implementa-
tions is the time it takes for all mutator threads to reach a
yieldpoint. This is of course dominated by the last thread to
come to a yieldpoint. Intuitively, a trap-based yieldpoint will
perform worse on this metric than a conditionally polling
yieldpoint because it is subject to the vagaries of the operat-
ing system’s servicing the trap and any scheduling perturba-
tions that may induce. We measure the time-to-yield latency

 0.96
 0.98

 1
 1.02
 1.04
 1.06
 1.08
 1.1

 1.12
 1.14
 1.16

jess
javac

mtrt
compress

db mpegaudio

jack
avrora

bloat
fop hsqldb

luindex

lusearch

pmd
sunflow

xalan
pjbb2005

min
max

mean
geomean

M
u
ta

to
r

T
im

e

Conditional Load Trap-based Store Trap-based

Figure 5. Mutator overhead of sometimes taken yieldpoints (thread-local) on the Haswell microarchitecture. The graph shows
times normalized to the no yieldpoints baseline. The geometric mean overheads for the yieldpoints are 1.9 % for the conditional,
2.7 % for the load trap, 3.0 % for the store trap.

for each GC by using thread-local polling yieldpoints with
multi-threaded benchmarks.1

Figure 6 shows the thread yield latency (in cycles) for
each GC. Every point in the figure shows the latency from
when the collector initiates the yield to when each thread
reaches a yieldpoint. The horizontal line indicates the 95th
percentile among the data points (278 k cycles, 665 k cycles
and 659 k cycles, respectively, for the three implementations
on Haswell). Conditional polling has a substantially lower
average time-to-yield, but is also more tightly grouped. This
is unsurprising, since trap-based implementations require a
system call to protect the polling page, and require signal
handling to take yieldpoints, while conditional polling in-
volves a simple change on the value of the polling flag, and
a call.

Figure 7 shows the distribution of worst-case thread yield
latency across all of our multi-threaded benchmarks. Worst-
case thread yield latency is the time from when the collector
initiates the yield to when the last thread reaches a yield-
point. We can see that on both machines, conditional polling
has a much tighter distribution and lower latency. We ex-
amined the worst (rightmost) results in each scenario and
found that the majority are from two benchmarks sunflow
and lusearch. 15 out of the worst 30 results are from sun-
flow and 10 out of 30 are from lusearch. For the best-case
time-to-yield latency (i.e., the fastest time from GC initia-
tion to all threads yielding) there is a clear distinction be-
tween conditional and trap-based polling. On Haswell, con-
ditional polling has the lowest yield latency of 109 k cycles
while trap-based polling is 174 k cycles for both load and
store.

From these measurements, we see that conditional polling
yieldpoints have a markedly better time-to-yield latency than
trap-based yieldpoints on average and at the 95th percentile.
However, the worst-case time-to-yield latency is not well

1 For single-threaded benchmarks the only application thread yields imme-
diately on a failed allocation, so latency is not affecetd by the particular
yieldpoint implementation, so we exclude the single-threaded benchmarks.

correlated with yieldpoint implementation, but rather af-
fected by the operating system and the benchmarks.

6. Conclusion
Yieldpoints are a principal mechanism for determining when
a managed language thread must yield. They are used for
GC-safe points at which the collector can safely sample mu-
tator state, for revocation of biased locks, on-stack replace-
ment, and for lightweight profiling used by feedback di-
rected optimizations. Because application threads must be
responsive to such requests, it is important that the period
between yieldpoint executions be well bounded and that they
execute with low overhead in the common fast-path case
when there is no request to service.

We have identified and evaluated a range of yieldpoint
mechanisms. We find that the tradeoff between common-
case fast path execution and overheads in the uncommon
case can be severe. While an unconditional trap-based poll
has low overhead in the common case, it is costly when the
yield occurs, resulting in slightly worse performance than a
simple conditional test, on average. An unconditional code
patching yieldpoint presents an even move extreme tradeoff,
with near zero common case overhead but substantial patch-
ing overheads at every yield. We highlight the microarchitec-
tural sensitivity of these mechanisms, indicating the need for
virtual machine implementors to reassess their performance
assumptions periodically. We also identify that code patch-
ing presents an interesting opportunity for an optimization,
replacing a few of the most frequently executed yieldpoints
with noops at times when yields are not required.

Overall we found that conditional polling has the most
desirable characteristics: low overhead, fast time-to-yield,
and implementation simplicity.

Acknowledgments
This work is supported by the Australian Research Coun-
cil under grant ARC DP140103878, and the National Sci-
ence Foundation under grants nos. CNS-1161237 and CCF-
1408896. NICTA is funded by the Australian Government

1e+05

1e+06

mtrt
avrora

lusearch
pmd sunflow

xalan
pjbb

Th
re

ad
 Y

ie
ld

 L
at

en
cy

 (c
yc

le
s)

(a) Conditional

1e+05

1e+06

mtrt
avrora

lusearch
pmd sunflow

xalan
pjbb

Th
re

ad
 Y

ie
ld

 L
at

en
cy

 (c
yc

le
s)

(b) Trap-based Load

1e+05

1e+06

mtrt
avrora

lusearch
pmd sunflow

xalan
pjbb

Th
re

ad
 Y

ie
ld

 L
at

en
cy

 (c
yc

le
s)

(c) Trap-based Store

Figure 6. Time-to-yield latency for polling yieldpoints, measured in cycles (log-scale y-axis), for each of the multi-threaded
benchmarks.

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

 0 1e+06
 2e+06

 3e+06
 4e+06

 5e+06
 6e+06

 7e+06

Pe
rc

en
ta

ge

Worst-case Yield Latency for each GC (cycles)

(a) Conditional (Haswell)

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

 0 1e+06
 2e+06

 3e+06
 4e+06

 5e+06
 6e+06

 7e+06

Pe
rc

en
ta

ge

Worst-case Yield Latency for each GC (cycles)

(b) Trap-based Load (Haswell)

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

 0 1e+06
 2e+06

 3e+06
 4e+06

 5e+06
 6e+06

 7e+06

Pe
rc

en
ta

ge

Worst-case Yield Latency for each GC (cycles)

(c) Trap-based Store (Haswell)

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

 0 1e+06
 2e+06

 3e+06
 4e+06

 5e+06
 6e+06

 7e+06

Pe
rc

en
ta

ge

Worst-case Yield Latency for each GC (cycles)

(d) Conditional (Sandy Bridge)

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

 0 1e+06
 2e+06

 3e+06
 4e+06

 5e+06
 6e+06

 7e+06

Pe
rc

en
ta

ge

Worst-case Yield Latency for each GC (cycles)

(e) Trap-based Load (Sandy Bridge)

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

 0 1e+06
 2e+06

 3e+06
 4e+06

 5e+06
 6e+06

 7e+06

Pe
rc

en
ta

ge

Worst-case Yield Latency for each GC (cycles)

(f) Trap-based Store (Sandy Bridge)

Figure 7. Time-to-yield worst-case latency distribution for each GC. The conditional yieldpoint has a much tighter distribution,
and the newer Haswell microarchitecture produces tighter distributions than its older Sandy Bridge counterpart.

through the Department of Communications and the Aus-
tralian Research Council through the ICT Centre of Excel-
lence Program.

References
[1] O. Agesen. GC points in a threaded environment. Techni-

cal report, Sun Microsystems Laboratories, Palo Alto, Cali-
fornia, 1998. URL http://dl.acm.org/citation.
cfm?id=974974.

[2] B. Alpern, C. R. Attanasio, A. Cocchi, D. Lieber, S. Smith,
T. Ngo, J. J. Barton, S. F. Hummel, J. C. Sheperd, and M. Mer-
gen. Implementing Jalapeño in Java. In ACM SIGPLAN
Conference on Object-Oriented Programming, Systems, Lan-
guages, and Applications, Denver, Colorado, 1999. doi: 10.
1145/320384.320418.

[3] Apple. WebKit JavaScript Core. URL http://trac.
webkit.org/wiki/JavaScriptCore.

[4] M. Arnold and D. Grove. Collecting and exploiting high-
accuracy call graph profiles in virtual machines. In Inter-
national Symposium on Code Generation and Optimization.
IEEE Computer Society, 2005. doi: 10.1109/CGO.2005.
9.

[5] S. M. Blackburn and K. S. McKinley. Immix: A mark-
region garbage collector with space efficiency, fast collection,
and mutator performance. In ACM SIGPLAN Conference on
Programming Language Design and Implementation, Tucson,
Arizona, 2008. doi: 10.1145/1375581.1375586.

[6] S. M. Blackburn, M. Hirzel, R. Garner, and D. Stefanović.
pjbb2005: The pseudoJBB benchmark. URL http:
//users.cecs.anu.edu.au/˜steveb/research/
research-infrastructure/pjbb2005.

[7] S. M. Blackburn, R. Garner, C. Hoffman, A. M. Khan, K. S.
McKinley, R. Bentzur, A. Diwan, D. Feinberg, D. Framp-
ton, S. Z. Guyer, M. Hirzel, A. Hosking, M. Jump, H. Lee,
J. E. B. Moss, A. Phansalkar, D. Stefanović, T. VanDrunen,
D. von Dincklage, and B. Wiedermann. The DaCapo bench-
marks: Java benchmarking development and analysis. In ACM
SIGPLAN Conference on Object-Oriented Programming, Sys-
tems, Languages, and Applications, Portland, Oregon, 2006.
doi: 10.1145/1167515.1167488.

[8] H.-J. Boehm and M. Weiser. Garbage collection in an unco-
operative environment. Software—Practice and Experience,
18(9), Sept. 1988. doi: 10.1002/spe.4380180902.

[9] C. Click, G. Tene, and M. Wolf. The pauseless GC algorithm.
In ACM/USENIX International Conference on Virtual Execu-
tion Environments, Chicago, Illinoois, 2005. doi: 10.1145/
1064979.1064988.

[10] X. Huang, S. M. Blackburn, K. S. McKinley, J. Moss,
Z. Wang, and P. Cheng. The garbage collection advan-
tage: Improving program locality. In ACM SIGPLAN Confer-
ence on Object-Oriented Programming Systems, Languages
& Applications, Vancouver, Canada, 2004. doi: 10.1145/
1028976.1028983.

[11] R. Jones, A. Hosking, and E. Moss. The Garbage Collection
Handbook. Chapman & Hall, 2012.

[12] V. Kumar, D. Frampton, S. M. Blackburn, D. Grove, and
O. Tardieu. Work-stealing without the baggage. In ACM SIG-
PLAN Conference on Object-Oriented Programming Systems,
Languages and Applications, Tucson, Arizona, Oct. 2012.
doi: 10.1145/2384616.2384639.

[13] OpenJDK Group. Hotspot VM. URL http://openjdk.
java.net/groups/hotspot/.

[14] F. Pizlo, D. Frampton, and A. L. Hosking. Fine-grained adap-
tive biased locking. In International Conference on Principles
and Practice of Programming in Java, Kongens Lyngby, Den-
mark, 2011. doi: 10.1145/2093157.2093184.

[15] SPEC. SPECjvm98, release 1.03, 1999. URL http://
www.spec.org/jvm98.

[16] SPECjbb2000. SPECjbb2000 (Java Business Bench-
mark) documentation. URL https://www.spec.org/
jbb2005/.

[17] J. M. Stichnoth, G.-Y. Lueh, and M. Cierniak. Support for
garbage collection at every instruction in a Java compiler.
In ACM SIGPLAN Conference on Programming Language
Design and Implementation, Atlanta, Georgia, 1999. doi: 10.
1145/301618.301652.

[18] X. Yang, S. M. Blackburn, D. Frampton, and A. L. Hosking.
Barriers reconsidered, friendlier still! In ACM SIGPLAN
International Symposium on Memory Management, Beijing,
China, June 2012. doi: 10.1145/2258996.2259004.

[19] X. Yang, S. M. Blackburn, and K. S. McKinley. Computer
performance microscopy with SHIM. In International Sym-
posium on Computer Architecture, Portland, Oregon, 2015.
doi: 10.1145/2749469.2750401.

http://dl.acm.org/citation.cfm?id=974974
http://dl.acm.org/citation.cfm?id=974974
http://dx.doi.org/10.1145/320384.320418
http://dx.doi.org/10.1145/320384.320418
http://trac.webkit.org/wiki/JavaScriptCore
http://trac.webkit.org/wiki/JavaScriptCore
http://dx.doi.org/10.1109/CGO.2005.9
http://dx.doi.org/10.1109/CGO.2005.9
http://dx.doi.org/10.1145/1375581.1375586
http://users.cecs.anu.edu.au/~steveb/research/research-infrastructure/pjbb2005
http://users.cecs.anu.edu.au/~steveb/research/research-infrastructure/pjbb2005
http://users.cecs.anu.edu.au/~steveb/research/research-infrastructure/pjbb2005
http://dx.doi.org/10.1145/1167515.1167488
http://dx.doi.org/10.1002/spe.4380180902
http://dx.doi.org/10.1145/1064979.1064988
http://dx.doi.org/10.1145/1064979.1064988
http://dx.doi.org/10.1145/1028976.1028983
http://dx.doi.org/10.1145/1028976.1028983
http://dx.doi.org/10.1145/2384616.2384639
http://openjdk.java.net/groups/hotspot/
http://openjdk.java.net/groups/hotspot/
http://dx.doi.org/10.1145/2093157.2093184
http://www.spec.org/jvm98
http://www.spec.org/jvm98
https://www.spec.org/jbb2005/
https://www.spec.org/jbb2005/
http://dx.doi.org/10.1145/301618.301652
http://dx.doi.org/10.1145/301618.301652
http://dx.doi.org/10.1145/2258996.2259004
http://dx.doi.org/10.1145/2749469.2750401

	Introduction
	Background, Analysis, and Related Work
	Background
	Analysis
	Related Work

	Yieldpoints
	Mechanisms
	Scope
	Code Patching As An Optimization

	Methodology
	Results
	Overhead of Untaken Yieldpoints
	The Overhead of Taken Yieldpoints
	Time-To-Yield Latency for GC

	Conclusion

