
High Performance Mark-Region
Garbage Collection in the HipHop

Virtual Machine
Peter Marshall

A thesis submitted in partial fulfillment of the degree of

Bachelor of Software Engineering (Honours) at
The Research School of Computer Science

The Australian National University

October 2015

c© Peter Marshall 2015

Typeset in Palatino by TEX and LATEX 2ε.

Except where otherwise indicated, this thesis is my own original work.

Peter Marshall
21 October 2015

To my parents Ian and Robyn,
who taught me how to think.

Acknowledgements

First of all, an enormous thanks to my supervisor Steve Blackburn. Thank you for
your wisdom and guidance over the course of this thesis, your encouragement, your
insight and your passion. When I started I knew basically nothing about research in
computer science. Thank you for welcoming me to your research group.

To Edwin Smith of Facebook, thank you for guiding me through the vast ocean of
HHVM and for your extreme generosity in making time to meet with me so regularly.
A special thanks for welcoming me to Boston and providing much needed friendship
and mentoring over the year. A warm thanks also to Rick Lavoie, Bill Nell, Jason
Evans and everybody else who has worked with me from Facebook throughout the
year.

To Tony Hosking and Michael Norrish, a great thanks for your interest in my re-
search and for your ongoing support. To Xi Yang, Kunshan Wang, Yi Lin, Luke An-
gove, John Zhang and Theo Olsauskas-Warren, thank you for all of your conversa-
tions, suggestions, detours, work-arounds and commiserations. It’s been excellent to
work as a researcher alongside such talented people.

To Migara Liyanagamage, thank you for being my human rubber duck and for
letting me explain every detail of my work to you in excruciating detail at least four
times.

To my friend Chris Wodzinski, a great thanks for your feedback on my work and
lunchtime phone conversations to draw me away from my desk.

To my girlfriend and companion Brigitta Quantock, immense thanks for your sup-
port and encouragement over the past year. Thank you also for reading my drafts,
despite studying History.

To my housemate Geoff, I’m sorry, I’ll do the dishes soon, I’ve had a lot on my
plate.

To my parents Ian and Robyn, thank you for encouraging me to pull things apart
my entire life, for supporting me in all my endeavors and for showing me the value
of hard work.

To my friends and my family, my immense gratitude.

vii

Abstract

The PHP language is one of the most widely used programming languages for web-
site development, and many large companies such as Facebook and The Wikimedia
Foundation rely on it to run their extremely high traffic websites. The speed and effi-
ciency of PHP implementations is paramount to the success of such websites. Garbage
collection plays a critical role in the performance of managed languages such as PHP,
however all PHP implementations to date use naive reference counting garbage col-
lection algorithms, which are inefficient and unable to compete with tracing garbage
collection. The use of reference counting is not a coincidence, because the way that
the PHP language was designed strongly implies its use. Some PHP applications in
widespread use have even come to depend on implementation-specific features re-
lated to reference counting, complicating further the relationship between PHP and
garbage collection. These obstacles prevent PHP runtimes from utilising modern,
well-performing garbage collection techniques and restrict the performance of PHP.

It is my thesis that the barriers to high performance garbage collection in PHP can
be overcome, and that modern, high performance garbage collection algorithms can
significantly improve the performance of PHP engines.

This thesis analyses the literature to identify opportunities to improve the per-
formance of PHP through more modern garbage collection techniques. PHP engines
rely heavily on a deferred array copy mechanism for their performance, which is im-
plemented using reference counting. I propose a one-bit reference counting scheme,
which alleviates the need for naive reference counting. The one-bit reference count
still captures much of the information required of the previous reference counting
scheme, but at a far lower cost. The HipHop Virtual Machine is the high-performance
PHP implementation that powers Facebook, and serves close to one billion unique
users per day. It serves as the experimentation platform for this work, which intro-
duces a mark-region garbage collector and produces a functioning, high performance
PHP implementation that does not rely on precise reference counts.

The one-bit reference counting scheme introduces a small performance overhead
of 1-2% because of additional copy operations caused by copy-on-write, which is can-
celled out by the lower cost of maintaining the far simpler one-bit scheme. With copy-
on-write taken care of, full reference counts are redundant and the one-bit scheme
can be used to inform all garbage collection, copy-on-write and reference behaviour.
Without reference counting, PHP suffers a total performance decrease of only 3%,
despite poor performance due to incomplete garbage collection. I introduce a mark-
region block and line style allocator to replace the free-list allocator, and present novel
optimisations to explicitly managed allocations in HHVM, showing that PHP can be
made compatible with tracing garbage collection.

ix

x

This work has implications for other managed languages where the design of the
language seems to force decisions in the implementation, by showing that these can
be overcome. Additionally, showing that high performance garbage collection can
incorporate a one-bit reference counting scheme provides more flexibility to any other
language implementations that may depend on reference counting. This thesis opens
a new path for improvement of the PHP language in general by showing that it can
be compatible with modern advances in garbage collection techniques.

Contents

Acknowledgements vii

Abstract ix

1 Introduction 1
1.1 Thesis Statement . 1
1.2 Contributions . 2
1.3 Meaning . 2
1.4 Thesis Outline . 3

2 Background and Related Work 5
2.1 Garbage Collection Overview . 5
2.2 Garbage Collection Algorithms . 6

2.2.1 Allocation . 6
2.2.2 Identification . 7
2.2.3 Reclamation . 9

2.3 Canonical Collectors . 9
2.3.1 Naive Reference Counting . 9
2.3.2 Mark-Sweep . 10
2.3.3 Semi-Space . 11
2.3.4 Mark-Compact . 11
2.3.5 Immix . 11
2.3.6 RC Immix . 13

2.4 The PHP Language . 13
2.4.1 Value Semantics . 13
2.4.2 Object Destructors . 15
2.4.3 Reference Variable Semantics . 16
2.4.4 Summary . 16

2.5 The HipHop Virtual Machine . 17
2.5.1 Garbage Collection . 18
2.5.2 Reference Count Optimisations . 18

2.6 Related Work . 18
2.6.1 Garbage Collection in PHP . 18
2.6.2 Copy-on-write . 19

2.7 Summary . 19

xi

xii Contents

3 Experimental Methodology 21
3.1 Benchmarks . 21
3.2 Software . 22
3.3 Hardware . 22

4 Overcoming Obstacles to Tracing Garbage Collection 23
4.1 Obstacles in PHP . 23

4.1.1 Copy-on-Write . 23
4.1.2 Precise Destruction . 24
4.1.3 Precise Demotion of References . 24

4.2 Solution Design Space . 25
4.2.1 Pass References By Value . 25
4.2.2 Specialised Data Structure Support 25
4.2.3 Blind Copy-On-Write . 26
4.2.4 Static Analysis . 26
4.2.5 Improved Reference Counting . 26

4.3 One-bit Reference Count . 27
4.3.1 Prototype Design . 27
4.3.2 Prototype Results . 28
4.3.3 Prototype Analysis . 30
4.3.4 Discussion . 31

4.4 Behaviour, Semantics and the PHP Specification 32
4.5 Further Opportunities . 33

4.5.1 Use in garbage collection . 33
4.5.2 Reset stuck bits during marking 33
4.5.3 Storing the one-bit count in references 34

4.6 Summary . 34

5 HHVM Without Reference Counts 35
5.1 Design space considerations . 35

5.1.1 Conservative Marking . 35
5.1.2 Incremental Collection . 36
5.1.3 Heap Partitioning . 36
5.1.4 Explicitly Managed Allocations . 36
5.1.5 Triggering Collection . 37
5.1.6 Threading Considerations . 37

5.2 Proposed Design . 37
5.2.1 Heap Organisation . 37
5.2.2 Object Map and Conservative Marking 38
5.2.3 Explicit Allocations . 39

5.3 Experimental Results . 39
5.3.1 Explicit Allocations . 39
5.3.2 Collector Performance Results . 42

5.4 Further Work . 42

Contents xiii

5.4.1 Implement Defragmentation . 42
5.4.2 Remove reference counting assumptions 42
5.4.3 Improve timing of collection . 43
5.4.4 Tune collector parameters . 43
5.4.5 Remove costly heap-size dependent operations 43

5.5 Summary . 44

6 Conclusion 45
6.1 Further Work . 46

Bibliography 47

xiv Contents

Chapter 1

Introduction

This thesis explores high performance garbage collection in PHP, which until now
has relied on outdated memory management techniques. By identifying the ways in
which PHP relies on naive reference counting and examining alternatives, PHP can
adopt with high performance memory management techniques.

1.1 Thesis Statement

There are two main branches of garbage collection work: tracing garbage collection
[McCarthy 1960] and reference counting [Collins 1960]. Tracing garbage collection
identifies reachable objects by performing a closure over the heap from a set of known
roots, while reference counting identifies unreachable objects by maintaining a count
of the number of referents to each object. Implemented naively, reference counting
can cause considerable runtime overhead [Shahriyar et al. 2012].

The HipHop Virtual Machine (HHVM) has made significant progress in achieving
a high performance implementation of PHP, but still makes use of naive reference
counting as a garbage collection algorithm. The challenges that must be overcome
in order to make use of modern tracing garbage collection algorithms are significant,
due to the language’s reliance on the semantics of reference counting. All major PHP
implementations use reference counting garbage collection, with good reason. The
design of the PHP language implicitly encourages reference counting by including
language features which are difficult to implement without reference counting.

My thesis is that the barriers to high performance garbage collection in PHP can be over-
come and that modern garbage collection algorithms will increase the performance of current
PHP implementations.

PHP has achieved widespread use as a programming language for web servers
and remains the most commonly used language for this task. Facebook relies heavily
on PHP, and created HHVM, a PHP engine with the goal of being a high performance
alternative to the default PHP implementation by Zend (Zend PHP). HHVM also runs
the Hack language, a statically-typed version of PHP with some additional language
features, also created by Facebook and used widely across their codebases. However,

1

2 Introduction

HHVM still uses naive reference counting as a garbage collection algorithm, which is
slow and inefficient compared to more modern tracing garbage collection algorithms.

In order to modify HHVM to use more modern tracing garbage collection tech-
niques, several issues regarding PHP’s reliance on reference counts must be addressed.
Examples of this include the copy-on-write optimisation [Tozawa et al. 2009], precise
destruction of PHP objects and precise demotion of reference types to values.

1.2 Contributions

This thesis aims to (a) identify and analyse the ways in which PHP as a language is
tied to naive reference counting as a garbage collection strategy, and (b) implement
solutions that make PHP compatible with tracing garbage collection.

I analyse the copy-on-write optimisation in HHVM and reach the conclusion that
deferred coping of arrays and strings is essential for the performance of PHP. I find
that a one-bit reference counting scheme allows deferred copying of arrays and strings,
eliminating the need for exact reference counting. This is an extremely promising al-
ternative to maintaining full reference counts that allows for deferred copying whilst
reducing PHP’s reliance on reference counting garbage collection.

With reference counting removed, I explore the design space for tracing garbage
collection in HHVM. I propose a prototype design for a new garbage collector and
provides analysis of the implementation. This design is based on the Immix garbage
collector, a modern mark-region memory management scheme that has been shown
to perform extremely well, but has not been tailored for PHP or HHVM. With some
modification, the Immix-based collector can be implemented in HHVM, resulting in
the first PHP runtime that provides competitive performance without reference count-
ing. This implementation can act as a basis for further work to improve the perfor-
mance of tracing garbage collection in HHVM and for PHP in general.

1.3 Meaning

When designing new languages, a creator must carefully consider many competing
factors and interests to arrive at a coherent, sensible result. In the early stages of a
language, the design of the language and the development of its reference implemen-
tation may co-evolve, and over the history of programming languages it is possible
to see how decisions made at these early stages of the design process have affected
the direction of the language many years later [Jibaja et al. 2011]. By showing the
difficulties that arise in searching for solutions to problems that are introduced early
in the life of a language, this thesis shows the importance of giving due considera-
tion to garbage collection strategies in the design of managed languages. Language
designers should contemplate the interactions between language semantics and im-
plementation options to avoid constraining the language to specific methodologies.

Solving the problems encountered in PHP and the adaption of a high performance
garbage collector from literature [Blackburn and McKinley 2008] to a production im-

§1.4 Thesis Outline 3

plementation shows that there are promising pathways for managed languages that
have constrained performance due to design decisions. The analysis and techniques
presented in this thesis present a basis for further exploration of high performance im-
plementations of PHP and open the door for a new approach to memory management
in PHP.

1.4 Thesis Outline

Chapter 2 provides background information relevant to the key contributions of this
thesis. It introduces and motivates garbage collection, common algorithms and typ-
ical collectors, terminology and concepts helpful for the understanding of the later
chapters. This chapter also introduces the PHP language and presents the specific
aspects relevant to this thesis, along with HHVM.

Chapter 3 gives an outline of the experimental methodology and details needed to
understand the context of the results given elsewhere in this thesis.

Chapter 4 addresses the reliance of PHP on reference counting and introduces
the one-bit reference count, motivating the usage and detailing results to show that
the scheme is a suitable basis for exploration of further garbage collection work in
HHVM.

Chapter 5 explores the design space of a tracing garbage collector in HHVM, tak-
ing the highly performing Immix garbage collector and detailing the specific consid-
erations for its inclusion in HHVM. It presents the analysis of a working prototype
and further avenues of optimisation.

Chapter 6 draws together the results of this thesis and makes the conclusion that
PHP can be made compatible with high performance garbage collection techniques,
and opportunities for further work are presented.

4 Introduction

Chapter 2

Background and Related Work

This chapter outlines the history of automatic memory management, from the seminal
publications in the field through to the most recent evolutions of these ideas. It also
introduces PHP and HHVM.

Section 2.1 provides a broad overview of garbage collection, motivating its im-
portance and introducing key ideas. Section 2.2 introduces the details of the various
garbage collection algorithms that are discussed elsewhere in this thesis, and intro-
duces relevant terminology. Section 2.3 outlines the canonical garbage collectors and
addresses their trade-offs. Section 2.4 introduces the PHP language, describing its
history and its peculiar relationship with garbage collection. Section 2.5 describes
HHVM and outlines its current approach to memory management. Finally, Section
2.6 briefly outlines some prior work in similar areas of research.

2.1 Garbage Collection Overview

Garbage collection refers to automatic memory management in a program or a lan-
guage runtime. Garbage collection deals with the management of dynamically allo-
cated memory with two main goals: to increase performance, and to increase memory
efficiency.

In a language where no garbage collection is provided, the task of dynamically al-
locating and reclaiming memory is left to the programmer. Programmers are required
to explicitly request space for each dynamically allocated data structure and must also
explicitly indicate that the space is no longer required. Mistakes in properly manag-
ing memory can lead to subtle and hard to find bugs, as well as poor utilisation of
resources. Memory management walks a fine line between efficiency and correctness.
Any object which is retained when it is no longer required is considered a memory
leak, and any object reclaimed while it is still needed can cause severe failures. Auto-
matic memory management takes this task out of the hands of the programmer and
provides a memory-safe environment, relieving the programmer of this burden.

Managed languages provide automatic memory management. Any dynamic mem-
ory management scheme has several main tasks:

1. Memory allocation: providing space in memory for new objects.

5

6 Background and Related Work

2. Garbage identification: locating memory that has been allocated, but is no longer
needed.

3. Garbage reclamation: reclaiming unused memory so that it can be allocated
again.

Each of these tasks can be accomplished through any number of different approaches
and algorithms, which Section 2.2 describes in detail.

Proper management of dynamic memory allocation is extremely important to the
performance of managed languages, such as PHP. The garbage collection strategy be-
ing employed can significantly affect the performance of the running program, re-
ferred to as the mutator, and also controls the memory footprint of the running process.
For this reason, there has been significant research into improving garbage collection
strategies.

2.2 Garbage Collection Algorithms

Garbage collection algorithms must allocate space for objects, identify dead objects
and reclaim unused memory. Many choices exist for each of these three tasks. The
following sections present an introduction to each, before the major garbage collectors
are introduced.

2.2.1 Allocation

Allocation is the task of assigning space for an object in memory. An allocation algo-
rithm must take care to ensure that the same space in memory is never allocated to
two or more objects at the same time. Several typical allocation algorithms exist.

Bump pointer

In bump pointer allocation, a pointer is held to the beginning and the end of some
block of memory. When an allocation is requested, the allocator simply checks that
the space requested will fit between the beginning and end of the current block of
memory. If it does, then the first pointer is incremented or ’bumped’ to indicate that
the memory before it is no longer available. Bump pointer allocation is easy to im-
plement and has the advantage of allocating objects contiguously in memory. Objects
that are allocated sequentially are more likely to be accessed sequentially at a later
time, and as a result bump pointer allocation generally increases locality [Blackburn
et al. 2004]. Bump-allocated memory can be difficult to re-use except in bulk, or unless
a hybrid scheme such as an overlaid free-list is used.

Free-list

Free-list allocation maintains a list or multiple lists of free chunks of memory, and
responds to allocation requests by finding a chunk of a suitable size. When memory

§2.2 Garbage Collection Algorithms 7

is reclaimed, it can simply be appended to the appropriate free-list for re-use. Finding
an appropriate chunk of memory can be potentially costly and involves the trade-off
of quickly finding a chunk that is at least as big as the requested space, but not much
larger, to avoid wasted space. Many different strategies exist to optimise the use of
free-lists, such as maintaining size-segregated lists where every chunk in a particular
list is the same size. Finding a chunk in a list can then be completed in constant time
provided that requested sizes can be mapped to individual lists [Ugawa et al. 2010].

2.2.2 Identification

Identification is the task of recognising which allocated spaces in memory are no
longer needed. Two categories exist: implicit, where all live objects are identified and
any other memory that was allocated is implicitly dead, or explicit, where dead objects
are identified and all other memory is assumed to be live. In practice, reachability is
used as a conservative proxy for liveness, meaning all reachable objects are assumed
to be live.

Reference Counting

Reference counting [Collins 1960] maintains a count of the number of references that
exist to each heap allocated object. When there are no more references to an object, the
reference count drops to zero and the space it occupies is identified as garbage. This is
explicit identification: each piece of unused memory is explicitly known to be eligible
for reclamation. Reference counting by itself is not able to identify cyclic garbage,
which must be identified by some additional algorithm or leaked. In HHVM a 32
bit reference count is used, which introduces a memory overhead for every allocated
object.

Limited Bit Reference Counting

In practice, the vast majority of objects do not exceed a very low reference count
[Shahriyar et al. 2012]. This leads to interesting optimisations for reference count-
ing schemes. Several optimisations to reference counting have introduced the notion
of limited-bit reference counts, which provide a much lower maximum count. Objects
that exceed the maximum count may have their counts continued in some additional
data structure or they may simply ’stick’ the reference count at its maximum value,
ignoring all decrements. Such counts could optionally be restored during the object
marking phase if a tracing collector was also present.

The most extreme form of this idea is a one-bit reference count [Wise and Fried-
man 1977], which simply represents that an object is currently singly-referenced, or
that it is shared. This scheme is also referred to as a multiple reference bit, and was used
in logic programming languages which sought to reduce unnecessary copying and al-
low incremental collection between tracing collections [Chikayama and Kimura 1987;
Inamura et al. 1989; Nishida et al. 1990].

8 Background and Related Work

Tracing

Tracing garbage collection [McCarthy 1960] periodically performs a transitive closure
over the heap, marking every object that can be reached from a known set of roots,
typically including global variables, the stack and registers. A second pass over the
heap then releases all objects that are not marked, and are thus unreachable. This is
implicit identification, given that only live objects are actually identified, and all other
allocated space is considered to be dead.

Tracing garbage collection requires significant effort to identify all live objects at
some point in the execution of the program. Simple tracing garbage collectors must
’stop the world’ to perform their marking and sweeping passes over the heap, poten-
tially introducing significant latency to the executing program.

Generational Tracing

Generational tracing is an optimisation to tracing collection that takes advantage of
the weak generational hypothesis which states that the majority of objects die young
[Ungar 1984]. New objects are allocated into a nursery partition which is the most
frequently collected partition. Surviving objects are copied to an older generation
which requires less-frequent scanning, reducing overhead. Generational tracing pays
the price of copying objects only in the rare case that they survive.

Conservative Marking

During the marking phase of a tracing collector, all references reachable from a root
set are followed and the referred object is marked as live. However, simply reading
the contents of the stack does not provide the required type information to distinguish
between references and values.

When scanning the stack for references into the heap, implementations that do
not have sufficient type information about the stack must use conservative marking.
Conservative marking involves looking at each potential reference on the stack and
determining whether it could legitimately point to a heap object, in which case the
object must be marked so that it is not inadvertently reclaimed. This technique is
conservative because in some cases it may mark objects in the heap that were not
actually referred to by a reference in the stack, but rather a program value in the stack
could be interpreted as a reference to that object.

A further consequence of conservative marking is that objects in the heap that
are marked conservatively cannot be moved by the collector during compaction or
evacuation, because the pointers to that object would be updated, causing a change to
the value in the stack that was conservatively considered to be a reference.

Stack maps are a solution that provide up-to-date type information for the entire
stack, meaning that any potential reference on the stack is known to be a reference
or a value, alleviating the need for conservative marking. In practice however, stack
maps are very difficult to implement as they require significant cooperation from the

§2.3 Canonical Collectors 9

compiler, and research into the costs of conservative marking have found it to be a
competitive strategy [Shahriyar et al. 2014].

2.2.3 Reclamation

Append to Free-list

In reference counting, objects are reclaimed individually as their reference counts drop
to zero. The memory that they occupied is simply added to the appropriate free-list,
ready for re-use by the allocator.

Sweep to Free-list

After a marking phase has occurred in a tracing collector, all objects that are not
marked are reclaimed, and the memory for each is added to the appropriate free-list.
This differs from the way in which naive reference counting uses a free-list in that all
implicit garbage is added in one go, rather than explicitly and incrementally.

Evacuation

In evacuation, objects that survive the collection phase are moved into a separate heap
space and re-allocated sequentially. At collection, the entire original heap space is
reclaimed. This requires that the heap be partitioned into separate spaces, one of
which cannot be used for allocation, as it must remain reserved for the evacuation
phase, and requires that all objects can be moved.

Compacting

In compacting collection, surviving objects are typically scattered across the heap.
In order to provide large, contiguous free space for subsequent allocation, surviving
objects are moved next to each other in memory, eliminating holes within the heap.
This differs to evacuation in that the moving occurs within the same area of the heap,
eliminating the need for a reserved space.

2.3 Canonical Collectors

2.3.1 Naive Reference Counting

Naive reference counting garbage collection requires that the runtime keep an accu-
rate record of exactly how many references exist to each heap-allocated object [Deutsch
and Bobrow 1976]. Allocation is by means of a free-list allocator. Such schemes are
easy to implement and provide a simple means for reclamation of unused space: it
can simply be appended to the appropriate free-list. The typical life-cycle of an object
is as follows:

1. An object is to be created, and space is requested from the free-list allocator.

10 Background and Related Work

2. The allocator finds an appropriate chunk of memory and returns the address to
the object creation routine.

3. The data of the object is written into the provided space, and the object is created,
typically with a reference count of one.

4. As this object is used and altered, its reference count is incremented or decre-
mented as references to it are created and destroyed.

5. When the final reference is destroyed, the reference count is decremented to
zero.

6. The memory that the object occupied is immediately returned to the free-list
allocator, which appends it to an appropriate free-list, ready for re-use.

This strategy has the advantage that it is relatively simple to implement. The run-
time must follow a particular discipline when copying references to ensure that the
count is appropriately incremented or decremented, but the stored count gives imme-
diate information about the object in a local scope, meaning that garbage identification
can happen incrementally.

Naive reference counting is referred to as ’naive’ because it does not take advan-
tage of underlying properties of memory management that provide opportunities for
optimisation. Reference counts are maintained precisely and for all objects. Anal-
ysis of a variety of programming languages and runtimes have shown that a large
proportion of objects die young [Ungar 1984], and therefore only ever reach low refer-
ence counts. However, the cost of maintaining this count is still paid for every object.
An exact reference counting algorithm pays the cost of maintenance in the extremely
common case that an object does not require it. Free-lists also do not provide the
side-by-side allocation of sequentially allocated objects, meaning that cache misses
are typically more common [Shahriyar et al. 2013].

Reference counting by itself cannot identify cycles, which occur when two or more
objects refer to each other. When all references into the cycle are removed, each ob-
ject in the cycle still has a positive reference count, despite not being reachable from
elsewhere. Reference counting implementations may either leak this cyclic garbage,
employ a backup tracing collector, or use additional algorithms with the specific pur-
pose of identifying cycles [Bacon and Rajan 2001].

As is discussed in Section 2.3.5, reference counting can be improved significantly
if careful optimisations are made and if free-list allocation is replaced.

2.3.2 Mark-Sweep

The canonical mark-sweep garbage collector allocates and reclaims memory by use
of a free-list, and identifies garbage by performing a trace over the heap [McCarthy
1960]. Mark-sweep collectors impose a low overhead at collection time due to their
simple approach of an object marking phase followed by a sweep-to-free-list, but suf-
fer poor locality as newly allocated objects are spread across the heap, not allocated

§2.3 Canonical Collectors 11

side-by-side. As objects are allocated into holes in the heap, mark-sweep collectors
can suffer fragmentation leading to poor memory utilisation, unless compaction is
used.

Mark-sweep is often used as a backup tracing algorithm for reference counting
implementations to collect cycles as they both share the free-list heap layout, allowing
for easier integration, but it can also perform all garbage collection without the aid of
reference counting.

2.3.3 Semi-Space

The simplest semi-space collectors use bump-pointer allocation into a block of mem-
ory that represents half of the total available heap space [Cheney 1970]. At collection
time, a trace is performed and all live objects identified, and each live object is evac-
uated to the empty second half of the heap and re-allocated contiguously. After the
collection has completed, bump-pointer allocation continues in the second half of the
heap, beginning after the last evacuated objects. This provides excellent locality be-
cause new objects are allocated together, and older objects are moved next to their
contemporaries. It also fundamentally limits the usable heap size because it sets half
aside for evacuation. Copying operations can also be expensive if there are a large
number of live objects, but this is uncommon.

2.3.4 Mark-Compact

Mark-compact collectors use the bump-pointer allocation seen in semi-space, but make
use of the full heap size when doing so [Stygar 1967]. After the trace is performed
and live objects are identified, several additional passes over the heap arrange for
surviving objects to be moved to the start of the heap and re-allocated contiguously.
Mark-compact relies on moving objects within the heap, rather than moving them to
a new space as in semi-space, but this causes additional passes over the heap which
introduces increased overhead at collection time, despite the benefits to locality and
decrease in fragmentation.

2.3.5 Immix

The Immix collector [Blackburn and McKinley 2008] addresses the issues of collection
speed, mutator performance and space efficiency by introducing a class of collectors
known as mark-region. The Immix collector segregates memory into blocks and lines,
allowing bump-pointer allocation with reclamation at either the line or block level, but
not at the level of individual objects (Figure 2.1). During the marking phase, lines and
blocks are marked in addition to individual objects and at reclamation time, blocks
are either totally reclaimed if no lines are marked, or noted as recyclable, meaning
free lines are present for allocation.

Immix combines this heap layout with opportunistic copying during the marking
phase, using a set of heuristics to detect fragmented blocks and possible destinations
for evacuated objects.

12 Background and Related Work

Stack

Bump Pointer Allocation in Immix

Garbage Identification

Recyclable Line Block

Line

Allocation

Figure 2.1: Immix segregates the heap into lines and blocks, allocating new objects
into empty or partially free blocks and reclaiming at the line or block level.

§2.4 The PHP Language 13

2.3.6 RC Immix

RC Immix combines highly optimised reference counting with the region layout of
Immix [Shahriyar et al. 2013]. By taking advantage of the underlying properties of
reference counting, RC Immix reduces the runtime overhead of maintaining reference
counts. RC Immix differs from other reference counting schemes in that it does not
use free-list allocation. The Immix line and block layout is combined with per-line
reference counts, resulting in a high performance reference counting implementation
that is the fastest garbage collector in the literature.

2.4 The PHP Language

PHP is a dynamic scripting language largely used for website development. PHP
began as a personal project for dynamically creating sections of HTML within a web
page, and grew over a period of years into a programming language that became
widely used across the internet. In this respect, PHP had an unusual beginning in that
it was not originally designed as a programming language, and many of the design
decisions made at this early stage have affected the evolution of PHP over the years.
An example is the use of naive reference counting, which is often chosen due to its
relative ease of implementation, compared to far more complex, but better performing
tracing garbage collectors.

For much of its life, PHP has operated without a language specification, relying
on the Zend PHP implementation as a de-facto standard. Zend PHP was the only
widely used PHP virtual machine prior to the creation of HHVM (Section 2.5), which
is an oddity compared to similar dynamic languages which have multiple, largely
cross-compatible implementations. Examples include Python which is implemented
by CPython, Jython (JVM) and PyPy (meta-circular Python), and Ruby, implemented
by MRI (de-facto), JRuby (JVM) and Rubinius (meta-circular Ruby).

Zend PHP also offers a large selection of extensions that provide additional fea-
tures such as interaction with various types of databases and libraries to support data
formats such as XML, JSON and YAML. These extensions are in wide use across exist-
ing PHP projects, making the task of creating a compatible PHP virtual machine more
difficult, as it would have to also offer support for these extensions.

Several decisions regarding the design of the PHP language have had perhaps
unintended consequences in restricting virtual machine design.

2.4.1 Value Semantics

The Zend PHP engine defines pass-by-value semantics by default for all types within
PHP. Objects have their reference passed by value, but strings and arrays are passed
directly by value, suggesting a new copy of the data is present inside the function.
When an array or string is passed to a function as a parameter, that function receives
its own local copy which it can modify, and those changes will not be visible in the

14 Background and Related Work

calling scope (Figure 2.2). Other languages such as Ruby, Python and Java do not offer
these semantics.

A naive implementation may simply copy every array or string that is passed as
a parameter, however this could significantly slow the performance of the mutator,
particularly with large data structures. In some number of cases, the data would only
ever be read inside the function, but not modified, meaning that the copy was never
actually needed.

function reveal($arr) {
$arr[1] = "Targaryen"; // copy-on-write occurs

}

$words = ["Jon", "Snow"];
reveal($words);

echo $words[1]; // prints "Snow";

Figure 2.2: PHP pass-by-value semantics. The reveal() function can modify the array,
but this is not visible outside the function scope because the array has been copied.

This introduces the possibility for a deferred copy mechanism. The guiding prin-
ciple of this optimisation is that not all structures that are passed by value need to be
copied, only those that are modified, and only in certain circumstances. A sensible
solution would be to provide a reference to the original data in the calling scope un-
til such time that it would be modified inside the function, and then lazily copy the
array, modifying the new copy instead. This would be indistinguishable to the pro-
grammer, but would save copying as often, ultimately reducing computational work.
This scheme where the copy is delayed until write is fittingly referred to as copy-on-
write, and this variant where every array is copied at write time is referred to as blind
copy-on-write [Sergeant 2014].

The above scheme can be improved further, however. There may exist cases where
the modification to the data inside the function would not be visible outside of the
function, even when a reference to the original array, not a value-copy is used. If
the runtime can dynamically determine that the array is not referenced elsewhere,
then the copy at write time can be avoided completely. In practice it would be very
difficult to determine whether an array was referenced elsewhere in the runtime on
request, unless such a statistic was constantly maintained, as it is with naive reference
counting.

If an array has a reference count of one, then the runtime can determine that mod-
ification inside the function will not be visible in any other scope, even if the original
array is modified in-place, rather than copied. Zend PHP makes use of this insight,
and checks the reference count prior to copying an array inside a copy-on-write check.
This particular optimisation is a design choice of the implementation, and because it
does not affect semantics, it is not required by the language definition itself. However
as Chapter 4 shows, removing this optimisation can have drastic effects on perfor-

§2.4 The PHP Language 15

mance.
By utilising reference counts for the copy-on-write optimisation, Zend PHP has

tied its performance in implementing its parameter passing semantics to its garbage
collection strategy, which are two separate concerns. Because of this, PHP strongly
implies the use of reference counting garbage collection because without accurate ref-
erence counts, performance suffers.

2.4.2 Object Destructors

Zend PHP, and by extension, the PHP language, also provides constructors and de-
structors for objects. A destructor is a user-defined method associated with an object
class, typically used to perform ’clean-up’ actions such as to release resources that
were acquired by that instance. The PHP specification defines when destructors are
called as follows:

The destructors for instances of all classes are called automatically once
there are no handles pointing to those instances or in some unspecified
order during program shutdown. [The PHP Group 2015]

In Zend PHP, the implementation of destructors follows the first option above, and
calls the destructor method when no other references to an object exist, again using
reference counting to make this determination. Because of the determinism in object
lifetime that reference counting provides, destructors in PHP are sometimes treated
as guaranteed to be run at a particular time (Figure 2.3). This may be compounded by
the fact that other languages that provide user-defined destructors, for example C++,
do guarantee deterministic calling of these methods [ISO/IEC 2014].

class DBWriter {
Database db;
function __construct() {

db = Database::getDB();
db.lock();

}
function __destruct() {

db.unlock(); // release resource in destructor, RAII-style.
}

}

Figure 2.3: PHP destructors are sometimes used to free resources, but this isn’t guar-
anteed.

The definition of PHP destructors could be considered much closer to the concept
of a finalizer in Java, which makes no guarantee in relation to when the method will
be called, from the perspective of the programmer [Gosling et al. 2014]. While PHP
does not explicitly bind implementations to using reference counting in this instance,
in practice existing PHP applications may make use of destructor behaviour as if it

16 Background and Related Work

were deterministic. Any changes to the garbage collection used in PHP must consider
this issue.

2.4.3 Reference Variable Semantics

PHP provides pass-by-value semantics by default but also allows reference assign-
ment using the &= operator as well as argument passing and value returning by ref-
erence. The way in which this language feature has been designed once again encour-
ages the use of reference counting.

When a variable is created, the underlying representation is stored as a value. If
this value becomes shared between two or more variables due to a reference-assignment
operation, it is then considered to be a reference. When variables that share the ref-
erence are removed and there is only one referring variable remaining, it is demoted
back to a value. In Zend PHP a flag called is ref is used to explicitly track the ref-
erence status of a value. HHVM represents references as a separate data structure
RefData. Both of these methods explicitly track whether the value is a reference
using the current reference count.

These reference variable semantics become visible in PHP when combined with
array copying. In PHP it is possible to create a reference to a value that is an element
of an array, sharing that value. When an array is copied (which, semantically, happens
at every assignment operation to an array) the elements that are references are not
copied by value, but instead re-created in the new array as another sharing of the
same reference. Any changes to the referenced value in one array are visible in the
other, consistent with the element being shared, but this produces visible behaviour
that relies on reference counting.

$original = ["A", "B", "C"];
$value_ref =& $original[1]; // "B" is now shared
$copy = $original; // "B" is shared between three

$copy[1] = "Z";
// $original[1] == $value_ref == $copy[1] == "B"

Figure 2.4: A reference inside an array is not copied by value and remains shared.

Figure 2.4 shows an example that will work regardless of reference counting be-
cause no reference demotion is performed. Figure 2.5 is almost identical, except that
unset() should demote "B" to a value, causing it to be copied by value when the
array is copied. Zend and HHVM both rely on reference counting to produce this
behaviour.

2.4.4 Summary

The direction of the PHP language has been largely influenced by the de-facto imple-
mentation, Zend PHP, and this has resulted in the design of language features that are

§2.5 The HipHop Virtual Machine 17

$original = ["A", "B", "C"];
$value_ref =& $original[1]; // "B" is now shared
unset($value_ref); // "B" should be demoted to a value
$copy = $original; // "B" is should be copied by value

$copy[1] = "Z";
// $original[1] == "B"
// $copy[1] == "Z"

Figure 2.5: The reference should be demoted to a value before the array copy occurs,
relying on reference counting.

most easily implemented with the use of reference counting. An important conclu-
sion, however is that none of the issues raised definitively require PHP to use refer-
ence counting. Copy-on-write is an implementation optimisation to achieve efficient
value semantics, but this does not mean it is required in practice. Destructors, while
sometimes used as though deterministic guarantees about calling times are present,
do not require this guarantee. Finally, it is possible to duplicate Zend’s reference vari-
able behaviour by other means, or simply implement slightly different semantics for
this unusual language feature. This conclusion suggests that PHP is not inherently
incompatible with garbage collection that does not use naive reference counting.

2.5 The HipHop Virtual Machine

HHVM is an open source virtual machine created and maintained by Facebook. HHVM
serves as an implementation for PHP as well as Hack, Facebook’s own language based
on PHP which introduces static typing, generics, support for asynchronous functions
and several other new language features, whilst maintaining backward compatibility
with PHP.

Facebook runs one of the world’s largest websites, which is written in PHP and
Hack. Server operating costs for supporting a user base of approximately 1.5 billion
are astonishing, and Facebook has entire teams dedicated to reducing these costs. In
addition, the scalability and stability of their infrastructure plays a key role in keeping
such a large site running. In 2010, Facebook open sourced HPHPc, a PHP to C++
transpiler aimed at achieving greater efficiency than Zend PHP. It was successful in
this goal but was replaced in 2013 by the new HHVM, which featured a just-in-time
(JIT) compiler allowing further performance gains.

HHVM is under active development and continues to make improvements in both
CPU and memory efficiency. Even small improvements can result in large savings in
cost to Facebook.

18 Background and Related Work

2.5.1 Garbage Collection

HHVM uses naive reference counting for automatic memory management. This al-
lows it to achieve a high level of compatibility with Zend PHP and provides a simple
path for the implementation of copy-on-write using reference counts, as well as fully
compatible destructor and reference variable behaviour.

HHVM allocates objects using a reap (region-heap) which imposes free-list struc-
tures over regions of memory. This allows individual objects to be reclaimed while
supporting typical operations that apply to regions, such as the ability to reclaim large
chunks of contiguous memory simultaneously. At the end of a request, HHVM simply
reclaims all regions in use, freeing any objects which were not incrementally collected.
Bump-pointer allocation is used to fill new regions, which are requested if the size-
segregated free-lists cannot fulfill the allocation request. This still results in free-list
allocation begin used in the common case, which is known to result in fragmentation
and increase cache misses [Shahriyar et al. 2013].

While the state-of-the-art RC Immix garbage collector does make use of reference
counts, this is a highly optimised implementation, and does not rely on free-list allo-
cation [Shahriyar et al. 2013]. Due to the high impact that garbage collection can have
on program efficiency, research into better garbage collection strategies for HHVM is
justified.

HHVM has recently added a backup mark-sweep collector for use in collecting
cycles and as a basis for future garbage collection work, although this is experimental
and not enabled by default. HHVM does not implement stack maps, so conservative
marking is used for the stack and some other roots, as well as for some heap objects
until functions to scan every possible heap object for references are complete.

2.5.2 Reference Count Optimisations

The HHVM JIT performs some reference count optimisation in an attempt to reduce
the overhead caused by unnecessary operations [Facebook Inc. 2015]. This analysis
attempts to find matching pairs of incRef and decRef operations between which no
events happen that could rely on the incRef having occurred. These pairs can then
be safely removed, as the increased reference count would only be used to protect
against destructive overwriting of the object during a mutation. It also attempts to
weaken decRef operations to decRefNZ operations, which are used when it is known
that the count cannot reach zero, saving having to check this at runtime for destructor
or garbage collection behaviour.

2.6 Related Work

2.6.1 Garbage Collection in PHP

Sergeant [2014] measured the memory characteristics of HHVM and found that the
demographics of heap objects in PHP are suited to tracing garbage collectors such as
Immix. Sergeant also proposed and evaluated blind copy-on-write, which was found

§2.7 Summary 19

to cause unacceptable performance loss, and began work on a mark-region garbage
collector. Chapter 4 of this thesis builds on these findings and introduces the one-bit
reference count in order to maintain copy-on-write in HHVM. Chapter 5 continues
this by analysing a new prototype collector based on Immix which is able to run sev-
eral major PHP frameworks. This collector is a complete implementation that is able
to collect all garbage, and also fully implements conservative heap scanning and novel
optimisations for explicitly managed allocations, which has not been completed pre-
viously.

2.6.2 Copy-on-write

Tozawa, Tatsubori, Onodera, and Minamide [2009] analysed the impact of copy-on-
write on language semantics in PHP and found that copy-on-write actually caused
PHP to be inconsistent with copy-on-assignment/pass-by-value semantics. This work
provides extensive background and analysis of the semantics and further reinforces
PHP’s peculiar reliance on reference counting, and highlights the difficulty of imple-
menting a new runtime for an implementation-defined language.

2.7 Summary

This chapter introduced the topic of memory management and motivated its impor-
tance, detailing concepts and algorithms which will prove important in Chapters
4 and 5. It also introduced the PHP language, describing how early design deci-
sions have shaped garbage collection strategies, providing the required motivation for
Chapter 4, and HHVM was introduced as the proving ground for this work. Chapter
3 will first provide an outline of the experimental methodology before Chapters 4 and
5 detail the main contributions of this thesis.

20 Background and Related Work

Chapter 3

Experimental Methodology

This chapter outlines the components and configuration used to carry out the exper-
iments present in this thesis, presenting the motivation behind these choices where
applicable.

3.1 Benchmarks

The HHVM project uses the hhvm/oss-performance suite of open source application
benchmarks that are designed to provide a realistic macro-benchmark framework for
measuring the performance of PHP engines [Bissonnette 2015]. This thesis uses results
from WordPress, MediaWiki and Drupal7 as they are the most realistic benchmarks
included in the suite. These applications apply typical usage patterns of PHP in inter-
acting with databases and dynamically creating HTML.

This suite creates a HHVM process connected to a web server and uses Siege (a
HTTP load testing utility) to bombard the server with requests, simulating 200 users
as an analogy for heavy traffic. Under these benchmarks HHVM is configured to
sensible defaults for production use, including the use of Repo-Authoritative mode
which caches the PHP bytecode derived from PHP source code rather than re-creating
it for each request. Warm-up runs are performed by the suite prior to the measured
run in order to warm up the JIT compiler and accurately simulate a web server in a
steady state. The suite performs a timed test of 60 seconds and measures the number
of requests that successfully complete, measuring the result in requests per second
(RPS).

The suite’s batch run facility is used to run the three frameworks in succession with
each different build being benchmarked. The figures throughout this thesis present
the mean result from ten batch runs for each experiment.

Facebook has used these benchmarks to measure improvements to HHVM and
they are the standard performance measurement for open source contributors to HHVM.
Facebook also measures HHVM’s performance improvements internally using a closed-
source benchmark based on www.facebook.com.

21

22 Experimental Methodology

3.2 Software

The benchmarking operating system is 64 bit Ubuntu 14.04 Server with kernel version
3.13.0-32. hhvm/oss-performance makes use of Siege (2.70), Nginx (1.4.6) and MySQL
(5.5.41).

3.3 Hardware

The benchmark machine has a 3.40 GHz Intel Core i7 2600 (Sandy Bridge) processor,
which has four cores with hyper-threading, one 32 KB L1 data cache and one 32KB L1
instruction cache per core, a shared 1 MB L2 cache and a shared 8 MB L3 cache. The
machine has 4 GB RAM.

Chapter 4

Overcoming Obstacles to Tracing
Garbage Collection

Chapter 2 introduced memory management as well as the language (PHP) and exper-
imental platform (HHVM) for this thesis. This Chapter outlines the ways in which
PHP is tied to naive reference counting as a garbage collection strategy and proposes
solutions to these barriers to further garbage collection work, providing both imple-
mentation and analysis.

Section 4.1 details the ways in which the PHP language relies on naive reference
counting. Section 4.2 explores the design space for possible solutions that allow PHP
to maintain performance with reference counting removed. Section 4.3 proposes a
one-bit reference count as a solution and presents the analysis undertaken to show
that this is an effective strategy. Section 4.4 discusses differences between the pro-
posed behaviour that the new one-bit scheme introduced and the existing behaviour
within the context of the PHP specification.

4.1 Obstacles in PHP

The two major PHP implementations, Zend PHP and HHVM, both use naive refer-
ence counting for garbage collection. The PHP language itself heavily encourages the
use of reference counting, and relies on it for performance and correctness, making
the removal of reference counting a difficult task.

4.1.1 Copy-on-Write

As discussed in Section 2.4.1, the pass-by-value semantics for arrays and strings in
PHP rely on copy-on-write for efficient implementation in Zend PHP and HHVM. A
naive implementation of pass-by-value might make a full copy of an array or string
at every assignment statement or function call (copy-on-assignment), but this would
cause severe performance degradation and require a much larger heap. Copy-on-
write stems from the observation that eager copying is often unnecessary to provide
value semantics, because if the array is not modified or modifications are not visible
elsewhere in the runtime, the copy can be safely ignored.

23

24 Overcoming Obstacles to Tracing Garbage Collection

In practice this suggests that implementations should attempt to delay the copying
of arrays and strings passed by value until it is absolutely necessary, or should be able
to analyse code to determine which copies will be necessary. Strategies for delaying
copies until necessary are referred to as deferred-copy mechanisms.

HHVM and Zend PHP use copy-on-write as a deferred-copy mechanism, using
the reference count of the array or string inside the check to determine whether a copy
is necessary. This behaviour relies on the presence of exact reference counts, which is
incompatible with high performance garbage collection.

4.1.2 Precise Destruction

PHP provides destructors for object types, which allow user code to be run when the
object is reclaimed by the memory manager. In Zend PHP and HHVM, destructors
are run when an object’s reference count is decremented to zero, which is determin-
istic from the perspective of the programmer. If PHP does not use reference counting
garbage collection, this behaviour cannot be easily guaranteed.

The PHP specification does not require that destructors are run immediately when
an object is no longer reachable, yet some applications written in PHP rely on this
behaviour for their own correctness. Unlike copy-on-write, which is purely an opti-
misation, changes to the timing of destructors is visible to PHP code.

This thesis does not explore options for replicating the precise destruction be-
haviour of Zend PHP and HHVM without reference counting. The PHP specifica-
tion only requires that destructors are run before the end of the request, which can be
achieved easily using tracing garbage collection. Section 4.4 discusses the impact this
has on common PHP frameworks and explores how it can be resolved.

4.1.3 Precise Demotion of References

When a value in PHP becomes shared by two or more references due to reference-
assignment or pass-by-reference, it becomes a reference type. When a reference type
is no longer shared between multiple references, it is demoted back to a value type.
Zend PHP and HHVM both implement this behaviour using naive reference counting,
which provides the exact number of references to any object.

This behaviour is visible to PHP code because reference types that are members
of an array are not copied by value, but rather re-shared when the array is copied.
HHVM lazily demotes reference types when copying arrays if the reference count is
one. This behaviour is difficult to replicate without reference counting, because ref-
erences to a reference type are not necessarily bound to the same scope and could be
anywhere in the runtime, meaning that it would be extremely difficult to track these
down on demand. These peculiar semantics are unique to PHP, and have been anal-
ysed in detail previously [Tozawa et al. 2009]. Other languages avoid such semantics
due to the implementation headache they can introduce, as exemplified by PHP.

§4.2 Solution Design Space 25

4.2 Solution Design Space

The are a few ways in which PHP relies on reference counting, but copy-on-write is
the most problematic, due to the performance impact that it causes. This section ex-
plores possible solutions. Providing pass-by-value semantics for dynamically sized
and potentially large data structures such as strings and arrays is not a design issue
limited to PHP. Several approaches have been used in other languages and a consid-
eration of each is provided.

4.2.1 Pass References By Value

Most other languages do not pass arrays directly by value, but instead pass a refer-
ence to the array by value, most likely to avoid the exact issues this causes for PHP.
In Java, Python, JavaScript, C# and many more, object references are passed by value.
The function receives a local copy of the object reference, and contents of the data
structure itself are not copied. By following the object reference, the internals of the
data structure passed to a function can be modified and the results of this are visi-
ble outside of the function scope. Tracing garbage collection is used in mainstream
implementations of each of these languages.

This particular passing semantic is the default in the above languages and does not
require copying underlying data, saving time and space. Unfortunately, PHP defines
pass-by-value semantics for arrays and strings, and changes to this specification are
not within the scope of this thesis, as they would likely render most existing PHP code
incorrect. Any suitable solution must maintain pass-by-value semantics.

4.2.2 Specialised Data Structure Support

The motivation behind copying data structures to provide pass-by-value is that a func-
tion must be able to modify the data structure in a way that is not observable outside
of that function scope. The simplest way to provide this behaviour is to provide a new
copy of the structure which can be modified, but other approaches also exist.

Ropes [Boehm et al. 1995] are one such example for strings which provides an al-
ternative implementation that does not suffer the cost of recreating the entire string
in memory to modify it. Ropes also provide other operations that can avoid copies
where they would normally be required, such as string concatenation, and are partic-
ularly effective for operations on large strings.

Ropes achieve different performance characteristics by representing strings as an
ordered tree of smaller strings with each node representing the concatenation of its
children (Figure 4.1). The leaf nodes are the traditional string structure of an array of
contiguously allocated characters. HHVM does not implement any such data struc-
ture and to introduce Ropes may involve considerable engineering effort, however
they still provide a promising path for exploration.

26 Overcoming Obstacles to Tracing Garbage Collection

22

9

6 6

6 3 2 1

2 1 64

Hello_ my_

na me_i s _Simon

A

B

C

E F G

J K M

H

D

N

Figure 4.1: A Rope representation of the string ”Hello my name is Simon”. The
weightings for leaf nodes indicate the number of characters at that leaf, and the
weightings for inner nodes represent the sum of weightings of the leaf nodes in the
left sub-tree [Yao 2013].

4.2.3 Blind Copy-On-Write

A simple solution that does not involve reference counting is to always copy the data
structure when a mutation occurs. Mutating operations are no longer required to
perform a check to see whether the reference count is above one, so the reference count
is no longer tied to copy-on-write behaviour, allowing far greater choice in garbage
collection strategies. This approach has been analysed previously by Sergeant [2014],
and found to cause unacceptable performance loss. These results are replicated for
the sake of completeness in Section 4.3.2.

4.2.4 Static Analysis

Copy-on-write attempts to ensure that pass-by-value semantics are maintained by
lazily copying whenever a modification might have been observed through a different
handle to the underlying memory. One optimisation copy-on-write does not consider
is that it may not be the case that a modification is actually observed, just because it is
possible to be observed.

Static analysis of PHP code at compile-time may provide enough information
about the usage of these temporarily shared data structures to remove copying where
it is not required and to insert it where it is needed for correctness. However, build-
ing such a tool could prove quite difficult, and it may not be possible to accurately
estimate the effect on performance until it is complete.

4.2.5 Improved Reference Counting

Reference counting garbage collection is not without benefits. The local scope of op-
eration and immediacy of reclamation are two benefits often cited, however a naive

§4.3 One-bit Reference Count 27

implementation cannot compete with tracing garbage collection. Improvements and
optimisations to reference counting have been considered and analysed for some time,
and it may be simpler to modify the existing reference counting implementation which
has already seen the investment of considerable engineering effort. Potential optimi-
sations include those proposed by RC Immix [Shahriyar et al. 2013] and more extreme
schemes, such as the one-bit reference count.

Many optimisations to reference counting involve leveraging the fact that com-
pletely accurate reference counts are not typically needed at all points in a program.
This allows temporarily incorrect reference counts which are later corrected or ac-
counted for. Because PHP does make use of the reference counts during copy-on-
write, extreme care would be required to ensure that reference counts are at least con-
servatively high - a reference count that is too low could lead to incorrect behaviour.

4.3 One-bit Reference Count

This thesis explores the use of a one-bit reference count in HHVM. This is chosen due
to the simplicity of its implementation given the existing reference counting scheme,
and due to properties of the runtime and common PHP programs that make it an
attractive scheme.

4.3.1 Prototype Design

A one-bit reference count has two states, representing that the object is unshared or
shared. Conceptually, this is identical to a limited-bit reference count that ’sticks’ at
a value of two. Objects are born unshared with their bit set to 0. Note that there is
no representation of a zero reference count in this scheme - similarly in most refer-
ence counting implementations, objects are born with a reference count of one, and
when the count would be decremented to zero, the object is instead reclaimed, never
actually reaching zero and saving the cost of the decrement operation.

If the object were to have its reference count incremented, it must be to a value
of two or higher, indicating that the object has become shared, so the bit is uncondi-
tionally set when a new reference to the object is created. Once an object has become
shared, any further increments will have no effect, but will still result in an uncondi-
tional set of the bit. Because it is not possible to track how many references there are
once the bit has been set, the one-bit scheme simply ignores decrement operations to
a shared object.

When an object is mutated and a copy-on-write check is performed, instead of
consulting the reference count, HHVM will check the one-bit reference count and copy
if the object is marked as shared. The nature of one-bit reference counts mean that this
scheme must perform the same or a greater number of copies, due to the inaccuracy
introduced by losing track of reference counts that exceed a value of one.

This scheme can be implemented using the existing reference counting operations
within HHVM by transforming all increments to unconditional sets of the bit and
removing all decrements that occur to objects that may potentially be shared. This

28 Overcoming Obstacles to Tracing Garbage Collection

scheme introduces one operation, setShared, which sets the bit. All existing incRef op-
erations are replaced with setShared, and all existing decRef operations are removed.
The rationale for this design is to a) save space in the object header by reducing the
number of bits from 32 to 1, and b) remove operations from the hot path by uncondi-
tionally setting the bit.

To analyse what sort of effect the one-bit reference count might have on perfor-
mance, it is important to understand how many copy-on-write checks occur and what
proportion of these result in a copy under reference counting compared to the pro-
posed scheme.

4.3.2 Prototype Results

The builds of HHVM used throughout this section implement one-bit RC alongside
existing reference counting to ensure correctness and allow perform comparative anal-
ysis The changes required to implement the one-bit reference count also provided a
simple way to analyse blind copy-on-write, the results of which are provided here as
a point of comparison.

The results presented use the macro-benchmark suite which contains several com-
mon open source PHP applications in order to gauge the systemic effects of these
changes. Several micro-benchmarks were initially analysed, but copy-on-write per-
formance impacts are typically non-existent or completely dominate the results, de-
pending on how the benchmark was written. These results are not significant in show-
ing the typical use of PHP as a web server language and are not idiomatic PHP, and
are not presented.

Statistical Results

Use of a one-bit count to inform copy-on-write checks drastically reduces the number
of copies compared to blind copy-on-write, which results in a copy at every check.
One-bit RC should perform as well as RC in the best case and as poorly as blind-cow
in the worst case. Any array or string which is currently shared between multiple
references will be copied under one-bit RC, just like regular reference counting. On
top of this, in the case that the object was shared and unshared and would have a ref-
erence count of one, one-bit RC will copy unnecessarily because it cannot distinguish
these from currently shared objects. This proves to be relatively uncommon compared
to the case where an object is still shared at the time of the check.

Table 4.1 shows the results of the statistical analysis. On average, the number of ar-
rays copied under one-bit reference counting increases in the range of 21%-36% com-
pared to the existing reference counting implementation, and the number of strings
copied increases in the range of 4%-10%. This compares extremely well to blind copy-
on-write, which increases by up to 13x and 2x respectively.

§4.3 One-bit Reference Count 29

Table 4.1: Number of copy-on-write checks resulting in a copy, normalised to RC

Application RC One-bit RC Blind-CoW

Wordpress
array 1.0 1.30 13.22

string 1.0 1.04 1.54
Mediawiki

array 1.0 1.36 10.04
string 1.0 1.11 1.86

Drupal7
array 1.0 1.21 5.45

string 1.0 1.07 2.00

Table 4.2: Requests per second, normalised to maintain one-bit

Application RC One-bit RC Blind-CoW

Wordpress 1.0 0.981 0.626
Mediawiki 1.0 0.986 0.161

Drupal7 1.0 0.989 0.845

Table 4.3: Total heap size of copied objects, normalised to RC

Application RC One-bit RC Blind-CoW

Wordpress 1.0 10.8 1898.1
Mediawiki 1.0 2.4 7462.1

Drupal7 1.0 1.9 26.3

30 Overcoming Obstacles to Tracing Garbage Collection

Performance Results

Given that all garbage collection in PHP relies on reference counting, the builds pre-
sented here for analysis still have reference counting in place and use it to collect
garbage, due to the large performance impact that removing it would incur. To prop-
erly assess the impact that one-bit RC has on performance, results are normalised to
a build which maintains the one-bit count but does not use it, so that just the per-
formance impact caused by copying behaviour is measured. The results presented
in Table 4.2 confirm previous work that suggests blind copy-on-write causes unac-
ceptable performance loss, degrading total performance by more than 80% in the case
of Mediawiki. One-bit reference counting shows extremely promising results, only
degrading performance due to additional copying by 2% in the worst case.

To further explain these results, total heap size of all objects copied during copy-
on-write checks is presented in Table 4.3. Table 4.1 shows the raw number of copies
that occur but does not account for the size of the data structures. The increase in total
heap size of copied objects is far more drastic in blind-cow than the increase in the
raw number of objects. This analysis better explains the performance results of blind
copy-on-write, which must copy every array and string, and shows that the total heap
size of copied data can increase by up to 7500x under blind copy-on-write.

4.3.3 Prototype Analysis

Maintaining reference counts can impose a significant overhead and this has moti-
vated the removal of reference counts from HHVM. Introducing one-bit counts must
still incur some overhead, and measuring this impact is crucial to its analysis.

The results in the previous section show the impact that the additional copying of
arrays and strings has on performance for the open source applications, but the build
used still maintains full reference counts which it uses for garbage collection. In order
to fairly evaluate HHVM with reference counts removed, some garbage collection
must be present so that benchmarks do not run out of memory, and so that systemic
effects on locality are accounted for.

no-rc is a build of HHVM which uses the one-bit reference counts for garbage col-
lection, in order to measure the performance of one-bit RC without a significant over-
head due to absent garbage collection. The build is still able incrementally release
objects that do not have their bit set. Given that most objects are never shared and
never have their bit set, it is possible to reclaim most unreachable objects, although
shared objects will be leaked. This can be normalised to a build of HHVM which
incurs the same maintenance overhead as reference counting, but behaves like the
one-bit scheme, double-inc.

Double-inc is identical to HHVM master except that incRef increases the reference
count by two instead of by one, while still decrementing by one. This has the effect
of emulating the behaviour of a one-bit reference count while using almost identical
instructions to a reference counting scheme. Objects are born with a reference count
of one and all increments are by two. Decrement operations are not changed, mean-
ing that any object that is ever incremented will never reach zero and thus never be

§4.3 One-bit Reference Count 31

reclaimed. This produces a build which has the same maintenance costs as reference
counting, but the garbage collection and copy-on-write behaviour of no-rc.

The performance of double-inc should match no-rc if the overhead of maintaining
the one-bit count is equal to the overhead of maintaining full reference counts. The
difference between double-inc and no-rc is therefore the difference in the cost of main-
taining full reference counts compared to a one-bit count.

Table 4.4 compares these two builds. no-rc performs better across the benchmark
suite by a range of 0.9-1.4% showing that one-bit counts are cheaper to maintain than
full reference counts.

Table 4.4: Requests per second, normalised to master

Application RC No-RC Double-Inc

Wordpress 1.0 0.960 0.949
Mediawiki 1.0 0.981 0.967

Drupal7 1.0 0.972 0.963

4.3.4 Discussion

Reference counting builds of HHVM have precise information regarding sharing when
performing copy-on-write checks, minimising the number of copies required to main-
tain pass-by-value semantics. Blind copy-on-write builds however are extremely un-
informed, and have no extra information regarding the array to be copied, and so
always elect to copy, in the case than the array may be shared. This results in blind
copy-on-write being too conservative in its categorisation of objects, as additional
copies are acceptable in terms of correctness. A build that can use better heuristics
during a copy-on-write check can therefore be less conservative, and alleviate the per-
formance impact of removing reference counting.

Ideally, the number of additional copies should be as small as possible to avoid
incurring too high a performance penalty, otherwise any further work to improve
garbage collection will not actually result in a net improvement. One-bit RC is promis-
ing; an optimal scheme would see a 0% increase, but would likely require more than
one bit of memory and greater runtime overhead in order to maintain it. One-bit
RC provides a compromise that allows the copy-on-write optimisation to continue
to reduce the overhead associated with maintaining pass-by-value semantics while
helping to reduce the cost of maintaining reference counts.

The results presented are based on a simple implementation of one-bit RC that
replaces reference counting operations one-for-one with one-bit RC operations. This
does not take into account the way in which the rest of HHVM has been designed
around reference counting. The presence of reference counting is a pervasive assump-
tion throughout HHVM, and because much of the code must deal directly with refer-
ence counting operations, this cannot be easily avoided. With a much simpler one-bit
RC scheme in place, design choices that assume reference counting is present could

32 Overcoming Obstacles to Tracing Garbage Collection

be revisited, particularly in the JIT reference counting optimisation pass, resulting in
even better performance of one-bit RC.

4.4 Behaviour, Semantics and the PHP Specification

Precise Destruction

The PHP language specification only makes the guarantee that destructors will be run
during the shutdown sequence of the virtual machine, which means that the one-bit
RC build is compatible with the specification as long as destructors are run during
shutdown. In practice, some existing PHP code has come to rely on destructors being
run at a precise time or in a defined order. To examine this behaviour, no-rc is used to
run the tests suites of the open source applications used for benchmarking.

The Wordpress and Drupal7 applications are able to run their benchmarks on this
build without issue and pass their unit tests, however Mediawiki cannot. Mediawiki
uses a class called ScopedCallback which allows the creator to register a callback to be
run in the destructor of the ScopedCallback object. These objects are typically used as
local variables inside a function to ensure that a lock or resource is released when the
function scope is exited or if an exception is thrown. Figure 4.2 shows an example of
Mediawiki code which relies on precise destruction.

$acquired = $this->mMemc->add(
$statusKey, ’loading’, MSG_LOAD_TIMEOUT);

if ($acquired) {
Unlock the status key if there is an exception
$statusUnlocker = new ScopedCallback(
function () use ($this, $statusKey) {

$this->mMemc->delete($statusKey);
});
...
Unlock
ScopedCallback::consume($statusUnlocker);

Figure 4.2: Mediawiki relies on precise destruction to ensure resources are released in
the case of exceptions being raised.

While this code cannot be guaranteed to be correct when using one-bit RC, it can be
easily modified to produce the same behaviour in a way that is supported by the spec-
ification, as seen in Figure 4.3. Finally blocks were introduced in PHP 5.5 and because
precise destruction times are typically relied upon for resource unlocking or similar
behaviour, they provide a convenient replacement that is guaranteed to achieve the
intended result.

§4.5 Further Opportunities 33

try {
$acquired = $this->mMemc->add(

$statusKey, ’loading’, MSG_LOAD_TIMEOUT);
if ($acquired) {

...
}

} finally {
Unlock the status key every time, even if there is an exception
$this->mMemc->delete($statusKey);

}

Figure 4.3: This modified version of the code removes the reliance on precise destruc-
tion with minor re-factoring. The finally construct is used to ensure that clean-up code
is always run, even in the event of an exception. This is guaranteed by the specifica-
tion, and behaves in the same way.

Precise demotion of references

One-bit RC does not provide any way to demote references to values, and can there-
fore display different copying behaviour to Zend PHP and HHVM without modifi-
cations. This could impact the correctness of programs, but Wordpress, Drupal7 and
Mediawiki are not affected by this change in semantics. Allowing sharing of array
elements through reference assignment is a peculiar semantic which PHP provides,
although in practice it is likely that it is rarely relied upon.

4.5 Further Opportunities

4.5.1 Use in garbage collection

In addition to providing information regarding the number of references to an ob-
ject inside copy-on-write checks, one-bit RC has also been used in conjunction with
mark-sweep garbage collectors to free objects outside of a garbage collection sweep
[Chikayama and Kimura 1987]. This allows reclamation of objects between collections
that are not shared and therefore don’t have their bit set. One-bit reference counts
could potentially be used in the garbage collection strategy, which is further explored
in Chapter 5.

4.5.2 Reset stuck bits during marking

In the same way that a tracing collector can reset reference counts during the marking
phase of a collection, it can also restore stuck one-bit counts for objects that are no
longer shared [Roth and Wise 1998]. Because a tracing collector was not present in the
builds used in Section 4.3, this was not analysed, however it may provide further op-
portunity for increased performance from the one-bit count by reducing unnecessary
copies.

34 Overcoming Obstacles to Tracing Garbage Collection

4.5.3 Storing the one-bit count in references

Past work [Chikayama and Kimura 1987; Stoye et al. 1984] has described storing the
one-bit count in pointers to objects rather than in the object headers themselves. Un-
used bits in object references in the runtime can be used to ’tag’ a reference as a shared
or unshared reference. This implementation detail saves dereferencing each pointer
every time the bit must be checked, reducing memory accesses. This is highlighted
as particularly important in multiprocessing systems where the object being pointed
to is not actually in the local memory of the machine with the pointer, although this
is not a concern in HHVM. This technique has not been explored in HHVM in the
analysis presented due to the complexities of introducing it, but may provide further
opportunity for improvement.

4.6 Summary

This chapter outlined the issues that surround PHP in regards to garbage collection
strategies. It described how PHP has been tied to naive reference counting in the
past, and introduced and evaluated the one-bit reference count as a solution to these
problems. It showed that these barriers to high-performance garbage collection in
PHP can in fact be overcome, and that PHP can be made compatible with tracing
garbage collection. This chapter also outlined how these changes to the behaviour of
PHP may affect development of PHP programs.

The results of this work thus far are a build of HHVM that does not rely on exact,
naive reference counting, yet can still successfully run major PHP applications. This
work provides the basis for Chapter 5, which provides the design and analysis of
the first tracing garbage collection scheme for PHP that does not include traditional
reference counts.

Chapter 5

HHVM Without Reference Counts

Chapter 4 described the state of garbage collection in PHP and outlined the historical
reasons this has occurred. It also introduced the use of a one-bit reference count that
is used in place of full, naive reference counting, which enables further exploration of
tracing garbage collection for PHP.

This chapter explores the design and implementation of a tracing garbage collector
in HHVM. Section 5.1 outlines the design considerations that are specific to HHVM.
Section 5.2 outlines the details of the proposed garbage collector, taking into account
considerations from Section 5.1. Section 5.3 details the results of the implementation
of this garbage collector and compares performance and memory characteristics to
the naive reference counting implementation. Section 5.4 outlines opportunities for
future work in this area and discusses potential improvements that could be made to
the existing implementation.

5.1 Design space considerations

This Section outlines the design considerations for implementing a tracing garbage
collector in HHVM. The design for a new memory management system in Section
5.2 takes into account the considerations presented here as well as the current state of
garbage collection in HHVM, the results from literature and the underlying properties
of typical PHP programs.

5.1.1 Conservative Marking

HHVM does not maintain stack maps and therefore must perform conservative mark-
ing. To determine whether an ambiguous reference points to a valid object in the heap,
a conservative marking algorithm must be able to identify whether the referenced lo-
cation is an allocated object. It must then find and mark the object as reachable. This
requires the memory manager to maintain a record of where live objects are located
in the heap or to calculate this on-the-fly by using a parsable heap structure.

HHVM uses a parsable heap which involves writing a special object header at the
start of each hole in the heap. Each object and hole in the heap can then be iterated
over, starting at the beginning of a block. This can be quite costly to maintain as
reclaiming an object requires writing to the heap.

35

36 HHVM Without Reference Counts

Moving collectors must also be able to pin objects that are referred to by ambigu-
ous references in the event that the reference is actually a value, so that the value is
not changed when the object is moved, and must be resilient to the potential fragmen-
tation caused by object pinning.

5.1.2 Incremental Collection

A one-bit reference count as introduced in Chapter 4 allows for the incremental col-
lection of objects that are never shared. RC Immix combines limited-bit reference
counting with a line and block layout, but this has not been explored for one-bit ref-
erence counts. A build of HHVM that uses one-bit reference counts for copy-on-write
can decide whether to also use these for garbage collection. However, unless an op-
timisation like coalescing [Levanoni and Petrank 2001] is used like in RC Immix, the
build must include decRef operations, which can be completely removed if the one-bit
RC is not being used for garbage collection. A potential pitfall of this strategy is that
it once again ties garbage collection strategy to language semantics, which this thesis
shows to be a dangerous choice.

5.1.3 Heap Partitioning

Garbage collection algorithms often make use of separate heap spaces for logically
different classes of allocations. A typical example involves maintaining a large object
space where allocations over a certain size are individually allocated and reclaimed,
allowing different behaviour for different classes of allocations. Finding suitable cut-
off values for these classes is a key consideration in designing a garbage collector.

5.1.4 Explicitly Managed Allocations

HHVM has a number of explicitly managed allocations that are also allocated on the
garbage-collected heap. These are not reference counted by the virtual machine and
cannot be reclaimed by the garbage collector. However, they do need to be scanned
during the marking phase because they may contain pointers into the heap, and so
must participate in reachability analysis.

These types of allocations are typically used by extensions in HHVM which need
to heap allocate objects internal to the VM. Raw calls to malloc/free and smart-pointer
managed internal VM objects are typical cases which result in an explicitly managed
allocation. In these cases, the garbage collector cannot know when these need to be
collected, and must wait until they are explicitly released by the caller.

Currently HHVM allocates these objects using the same size-segregated free-list
as reference counted allocations and ignores them when it finds them unmarked dur-
ing the sweep phase instead of reclaiming their memory. A new garbage collection
scheme must consider how these allocations need to be involved in the tracing phase
and whether they should be allocated in the garbage collected heap, given that they
are not collectable objects. In a moving collector, explicit allocations must be pinned

§5.2 Proposed Design 37

because the collector cannot know of all references to the allocation, and is therefore
unable to update them to point to the new location.

5.1.5 Triggering Collection

The backup tracing collector in HHVM can be called explicitly through the use of the
gc collect() API in PHP and is also run at the end of request threads, both of which
only occur if enabled by a runtime flag. The heuristics for triggering garbage collec-
tion in HHVM are quite basic, because reference counting is still responsible for most
garbage collection, with only cycles being left to the tracing collector. Controlling the
triggering of the garbage collector is an essential part of the design.

5.1.6 Threading Considerations

HHVM currently uses a thread-local heap which serves one request at a time. Concur-
rency is not provided at the level of PHP code, which simplifies the design, because
each request simply has its own heap which does not need to include synchronisa-
tion operations. A single HHVM instance acts as a server, paired with a HTTP server
to handle each incoming request. At this level, multiple threads execute at the same
time, handling separate and independent requests, each with their own heap. Thread-
local heaps request blocks of memory from malloc, and free all allocation at the end
of each request.

5.2 Proposed Design

This thesis introduces a prototype mark-region garbage collector based on Immix for
use in HHVM. Immix cannot be used as a drop-in replacement for reference counting
and this section discusses the adaption of Immix to HHVM, specifically addressing
the design considerations from Section 5.1.

5.2.1 Heap Organisation

The first major difference between HHVM’s reference counting and Immix is the heap
layout. The new collector separates the heap into 128 byte lines in 32 Kbyte blocks,
bump-allocating small and medium sized objects allowing them to span multiple lines
but not multiple blocks. Small objects are defined as 128 bytes or less, medium as
all other objects 8Kbyte or less, and large as all remaining objects. Large objects are
allocated in a separate large object space which uses malloc/free for each allocation.

Medium objects that are unable to fit in the current free space are overflow-allocated
to a special-purpose block to limit the wasted space at the end of each block. As each
block becomes full, a new block is requested using malloc which provides a central-
ized API for block distribution to the thread-local allocators/collectors.

38 HHVM Without Reference Counts

5.2.2 Object Map and Conservative Marking

The backup mark-sweep collector used in HHVM includes conservative marking, but
makes use of expensive operations that iterate over the entire heap in order to locate
valid headers. As objects are incrementally reclaimed through reference counting,
their header in the heap is overwritten with a FreeNode, which stores the size of the
free space until the next header. Maintaining a mix of allocations and FreeNodes in
the heap allows the entire heap to be parseable by beginning at the start of each block
and following the stored size of each allocation or FreeNode to the next header.

This strategy is not compatible with Immix, which does not reclaim individual
objects, only lines or blocks. Writing the FreeNode header to the heap for every object
that is reclaimed causes a performance overhead, and introduces a complex discipline
that must be followed in order to ensure that the heap is parseable at all times.

To limit the space and performance overhead of conservative marking, the proto-
type collector uses one bit in an object map [Shahriyar et al. 2014] per 16-byte align-
ment in the Immix heap, limiting the space overhead to 1/128 of heap size. When an
object is allocated, the bit that corresponds to the start of the object in the object map
is set.

Shahriyar, Blackburn, and McKinley [2014] propose completing all conservative
marking at the start of the marking phase, then zeroing the object map and re-creating
it when performing exact marking. This requires that all scanning of heap objects is
exact, which is not the case in HHVM. The prototype collector instead performs all
marking, and then re-creates the map based on the mark bits of each heap object.

To diagnose an ambiguous reference during conservative marking, the pointer is
first range checked to see whether it is within an Immix block or a large object. If it is
within a large object, the object is marked and added to the scan queue. If it is within
an Immix block, the object map is consulted and the appropriate header is marked
and added to the scan queue. If the pointer does not point into the Immix heap or a
big allocation, it cannot be a reference to a live allocation and is discarded.

Conservative marking may also encounter interior pointers, which reference a lo-
cation within an allocated object, rather than the header of the object. These objects
still need to be marked as live so that they are not collected while a pointer into them
remains. The prototype conservative marker back-tracks to the nearest header in the
object map in order to correctly diagnose interior pointers.

Scanning progresses through the queue to perform a transitive closure over the
heap, marking each object as it is found. The sweep phase then iterates over each
object in the heap using the object map and finds marked objects, setting the corre-
sponding bit in the object map and marking its Immix line.

Blocks that contain unmarked lines are then made available for allocation, and the
allocator will re-use empty lines within partially full blocks before requesting new
blocks.

§5.3 Experimental Results 39

5.2.3 Explicit Allocations

Explicit allocations are outside the control of the memory manager and pose a prob-
lem when combined with the Immix line and block layout. This collector allocates ex-
plicitly managed allocations into a separate space to avoid the excess pinning caused
by explicit allocations, which cannot be moved.

It uses a lazy bump-pointer allocator (see Section 5.3.1), which we designed specif-
ically to reduce allocation cost and memory usage in the event that an object is re-
claimed before the next allocation, which is extremely common for explicit allocations
in HHVM.

5.3 Experimental Results

5.3.1 Explicit Allocations

Using the virtual machine’s memory manager to allocate internal VM objects is un-
common, so literature discussing Immix does not explore whether to treat these al-
locations specially. This section profiles explicit allocations in HHVM to ensure that
the allocation strategy used is appropriate. Several choices exist for managing explicit
allocations:

(a) Allocate explicitly managed allocations in the Immix heap, with no special treat-
ment,

(b) Pass explicit allocations through to the standard library’s malloc/free implemen-
tation, the same strategy that is used for big allocations, or

(c) Use a separate allocation space.

Properties of explicit allocations

The experiments presented in this section show that explicitly managed objects in
HHVM have extremely unusual lifetime characteristics. Remarkably, the majority of
allocations are reclaimed before the next explicit allocation is performed, from the
perspective of the allocator. This chapter refers to these allocations as ephemeral allo-
cations.

Table 5.1: Demographics of explicitly managed allocations

Application Ephemeral Allocations Immortal Allocations

Wordpress 93.9% 3.7%
Mediawiki 90.2% 1.1%
Drupal7 70.3% 5.7%

Table 5.1 shows analysis of the demographics of explicitly managed allocations in
HHVM for several PHP applications. The results are extraordinary, with ephemeral
allocations making up more than 90% of allocations for Wordpress and Mediawiki.

40 HHVM Without Reference Counts

If a typical bump-pointer allocator is used where ephemeral allocations are the
common case, the typical result is a large chain of allocated objects where only the
most recent allocation is actually live. This wastes heap space because the majority of
objects have been reclaimed, but their space cannot be re-used.

Explicit allocations are also unusual in that of the allocations that are not imme-
diately reclaimed, many live until the end of the request, meaning they will never be
reclaimed during execution for re-use. These are called immortal allocations.

Lazy bump pointer

This combination of observations motivates the use of a lazy bump pointer allocation
space for explicitly managed allocations, which I present here as a novel optimisation
for explicit allocations.

When an object is allocated, the size allocated is stored, but the bump pointer
is not changed. If the next event from the perspective of the memory manager is an
allocation request, the stored size is added to the bump pointer and the new allocation
request is handled. If the next request was instead a call to free the most recently
allocated object, the stored size is cleared, resulting in the next allocation overwriting
the now-reclaimed previous allocation. This enables immediate re-use of memory
that would otherwise be unused until the next collection, which increases memory
efficiency as the rate of ephemeral allocations increases.

Table 5.1 shows that remarkably, ephemeral allocations are the common case for
explicitly managed allocations in each of the PHP frameworks tested. Table 5.2 shows
that the amount of memory saved by the lazy bump pointer ranges from 37.7% up to
93.7% in the best case, for explicitly managed allocations. This translates to between
5.6% and 17.2% of total heap space saved by the use of the lazy bump pointer allocator
for explicitly managed allocations.

Table 5.2: Relative heap size of ephemeral allocations

Application Ephemerals as % of Explicit Heap Ephemerals as % of Total Heap

Wordpress 93.7% 17.2%
Mediawiki 86.7% 5.6%
Drupal7 37.7% 5.6%

Lazy bump pointer is conceptually similar to unbumping in order to deallocate an
ephemeral allocation. Guyer, McKinley, and Frampton [2006] proposed that explicit
calls to free could be statically inserted at compile time and used to reclaim unreach-
able objects at runtime. One variant of this scheme involved unbumping the bump
pointer if the call to free was for the most recently allocated object. This scheme was
not able to insert explicit free operations for all objects, and required additional com-
piler cooperation. In contrast, explicitly managed allocations must have a call to free,
unless they leak memory. Lazy bump pointer also inverts the assumption by expect-
ing that explicit allocations are ephemeral, which is the common case in HHVM, and

§5.3 Experimental Results 41

only paying the cost of maintaining them in the uncommon case that they live.

Comparison of different strategies

Table 5.3 presents a comparison of the performance of three different allocation strate-
gies for explicitly managed allocations.

Table 5.3: Performance of different explicit allocation strategies

Application in-immix-heap malloc/free lazy-bump

Wordpress 1.0 0.813 1.125
Mediawiki 1.0 1.050 0.984

Drupal7 1.0 0.863 0.881

Treating explicit allocations as regular heap objects causes no overhead at alloca-
tion time, but scatters these allocations throughout the heap, even though they cannot
be reclaimed by the memory manager and must be pinned. The benchmarks used do
not perform collection until the end of the request, due to the small heap size needed
and therefore do not pay the cost of this fragmentation, but longer running requests
with larger heap sizes would. Additionally, the conservative marker does not need
to consider them as valid allocations, because it does not matter whether they are
marked or not, meaning they have quite different properties to other objects in the
Immix heap. This motivates a separate allocation space with different behaviour.

Lazy bump pointer does not outperform the other two strategies in every case,
but does provide better memory usage. It can also be further optimised and would be
highly affected by the choice of the medium/large size cut-off. With further tuning,
lazy bump pointer can gain even more ground over other strategies.

Use of malloc/free allocates the same amount of memory as regular allocation in
the Immix heap, but causes more performance slowdown. The lazy bump-pointer is
able to immediately re-use memory with a low performance overhead, and does not
fragment the heap by pinning additional lines and blocks.

Summary

Explicit allocations are not released by the memory manager, meaning they cannot
be moved, and the associated lines must be pinned. In HHVM, explicit allocations
need to be scanned because they may contain pointers into the heap, which must be
followed as part of the reachability analysis. Explicit allocations do not need to be
marked, however, because they cannot be reclaimed by the memory manager even if
they are unreachable, until the owner of the allocation releases them.

Our analysis shows that explicit allocations in several PHP open source applica-
tions have remarkable properties, in that a large proportion are ephemeral allocations.
By allowing the most recent allocation to be reclaimed using a lazy bump pointer, the
allocator can save significant amounts of memory that would otherwise be unusable

42 HHVM Without Reference Counts

until at least the next collection. This would most likely also improve locality for allo-
cations that survive.

5.3.2 Collector Performance Results

The prototype presented in this chapter is able to run each of the three PHP applica-
tions used for benchmarking, but it does not yet outperform naive reference counting
garbage collection in HHVM.

Table 5.4: Performance comparison of the prototype collector

Application RC + Backup tracing Immix (lazy-bump)

Wordpress 1.0 0.754
Mediawiki 1.0 0.744

Drupal7 1.0 1.050

Table 5.4 shows the final results of the new prototype collector compared with the
naive reference counting implementation with backup tracing enabled. The prototype
collector performs slightly better for Drupal7, but falls short of the backup tracing
collector by a margin of 25%.

5.4 Further Work

The memory manager profiled in Section 5.3 is a prototype implementation of a high
performance garbage collector (Immix) adapted for HHVM, but is far from complete.
Many opportunities exist to continue to improve its performance.

5.4.1 Implement Defragmentation

The prototype collector does not opportunistically evacuate allocations at collection
time in order to defragment the heap, as Immix does. Due to the nature of PHP as a
language for web back-end scripting, many of the requests used in the macro bench-
mark suite do not invoke the collector until clean-up at the end of each request. This
makes defragmentation less crucial, as it would never be used in such sort-lived re-
quests. However, longer running server scripts or large requests would make use of
the collector throughout the request, and heap defragmentation would be more bene-
ficial to these types of requests.

5.4.2 Remove reference counting assumptions

HHVM has been built with reference counting as the garbage collection algorithm,
and the way reference counts are maintained throughout the codebase reflects this.
The one-bit reference count implementation was developed to directly replace refer-
ence counting in HHVM and did not refactor code in HHVM that assumes the pres-
ence of full reference counts.

§5.4 Further Work 43

The reference counting optimisations in the JIT implement a number of strategies
to reduce the number of reference counting operations emitted in native code, but
are based on the assumption that full reference counts exist. There may be further
opportunity to improve this pass when dealing with the much simpler one-bit count.

5.4.3 Improve timing of collection

The prototype collector runs a full collection at the end of each request, including
marking live objects and identifying recyclable lines and blocks in the heap. The heap
then immediately frees all blocks during the shutdown sequence of the request. If
the request reaches its end without triggering the collector, there is no need to run
the collector before returning all outstanding memory because there is no discernible
difference.

Heuristics for invoking the collector are also quite basic, and this is another area
where careful evaluation and experimentation could improve this prototype.

5.4.4 Tune collector parameters

Immix has several parameters which are easily adjusted that may result in increased
performance. Experimentation with line and block size may be able to adjust the pro-
totype collector to better suit the object demographics of HHVM. Line size also de-
termines the maximum size of small objects in Immix, but the cut-off point between
medium and large objects can be adjusted independently, depending on fragmenta-
tion concerns and the cost of calls to malloc/free for large objects. Profiling of the
various factors at play and experimentation with different parameters may yield fur-
ther performance gains.

5.4.5 Remove costly heap-size dependent operations

In the prototype collector, during the final phase of collection when lines are being
marked as recyclable, any object that has been reclaimed must have a small fragment
of clean-up code run in order to check for and remove the dynamic properties array
associated with the PHP object. This is a costly operation, as it requires scanning over
the entire heap using the object map, so its runtime cost scales with the size of the
heap. This piece of clean-up and others like it could be ignored, delayed, batched or
otherwise made cheaper through a variety of implementation options, speeding up
the final phase of collection.

Each heap object has a mark bit which maintains the state of whether an object
is currently reachable by the collector or not. The prototype implementation iterates
over the entire heap to reset these mark bits before the marking phase, which accesses
every single heap object. By alternating whether the bit represents marked or un-
marked at each collection, this costly iteration can be avoided.

44 HHVM Without Reference Counts

5.5 Summary

This chapter introduced a tracing garbage collector for PHP, implemented in HHVM.
This is the first PHP implementation that can claim widespread compatibility with
existing PHP programs without the use of naive reference counting, proving that PHP
can be made compatible with different garbage collection strategies and opening the
door for future research in this area.

The garbage collector in this chapter can be used as a basis for further improve-
ments or novel optimisations by providing a test-bench on which experiments can
take place. It also serves as a useful tool for exploring the design space of a tracing
garbage collector in HHVM and PHP.

Chapter 6

Conclusion

This thesis has outlined the topic of garbage collection and explored its use and mis-
use in the dynamic web language PHP. PHP implementations have been tied to using
naive reference counting for their garbage collection since the inception of the lan-
guage. Demand for a high performance PHP virtual machine has risen, primarily led
by Facebook in order to run their extremely high traffic web servers. In addressing the
performance of PHP, garbage collection presents unique challenges and opportunities
for improvement.

This thesis has presented three language features of PHP which rely on naive ref-
erence counting for efficient implementation. In order to further pursue garbage col-
lection as an area of research, this thesis has presented the one-bit reference count
as a replacement for full, naive reference counting. This optimisation has consider-
able benefits, requiring only one bit of overhead in the object headers whilst provid-
ing comparable results when used to inform copy-on-write checks. Changes to the
behaviour of destructors introduced are found to be consistent with the PHP spec-
ification, and code that relies on old behaviour is found to be easily adapted using
alternative design patterns.

With these barriers to tracing garbage collection removed, Chapter 5 proposed a
design for a new garbage collection scheme for HHVM and explored the design space
for such a collector. The high performance garbage collector Immix was chosen as
a base and adapted to fit the peculiarities of HHVM, providing the first PHP virtual
machine to behave correctly without the use of naive reference counting. Explicitly
managed allocations in HHVM were analysed and found to have quite different prop-
erties to other allocations, and a new lazy bump pointer allocator was presented and
evaluated.

Many potential improvements to the prototype collector are still possible, and this
prototype can act as a basis for further work towards a high performance tracing
garbage collector for PHP.

45

46 Conclusion

6.1 Further Work

Improve the prototype collector

This thesis presents a prototype tracing garbage collector based on Immix, but it does
not reach the performance of HHVM naive reference counting. This implementation
has focused on several areas including improving explicitly managed allocations and
achieving logical correctness, particularly in conservative scanning. There are still
many opportunities to focus on different areas of the collector and HHVM to improve
memory management, including removing some operations that do not integrate well
with Immix, improving how collection is triggered and removing costly whole-heap
operations during collection.

Investigate reference counting Immix

Reference counting Immix embraces reference counting and presents some novel op-
timisations that allow the combination of high performance reference counting with
tracing garbage collection. Given PHP’s reliance on reference counting, RC Immix
may be able to provide high performance garbage collection for HHVM. Such an im-
plementation could use highly optimised reference counts or examine integrating the
one-bit reference count with RC Immix.

Explore reference demotion semantics

This thesis has not focused on resolving the issue of PHP’s reference demotion seman-
tics because these do not present as much of a performance barrier as copy-on-write
does. It may be the case that reference demotion behaviour is not relied on very often
in typical PHP code. If it does prove necessary, there may be a range of implemen-
tation options that can provide these semantics without the cost of naive reference
counting.

Bibliography

BACON, D. F. AND RAJAN, V. 2001. Concurrent cycle collection in reference
counted systems. In J. L. KNUDSEN Ed., 15th European Conference on Object-Oriented
Programming, Volume 2072 of Lecture Notes in Computer Science (Budapest, Hungary,
June 2001), pp. 207–235. Springer-Verlag. (p. 10)

BISSONNETTE, P. 2015. Lockdown results and hhvm performance. http://
hhvm.com/blog/9293/lockdown-results-and-hhvm-performance. Ac-
cessed: 2015-08-28. (p. 21)

BLACKBURN, S. AND MCKINLEY, K. S. 2008. Immix: a mark-region garbage col-
lector with space efficiency, fast collection, and mutator performance. In R. GUPTA

AND S. P. AMARASINGHE Eds., ACM SIGPLAN Conference on Programming Lan-
guage Design and Implementation, ACM SIGPLAN Notices 43(6) (Tucson, AZ, June
2008), pp. 22–32. ACM Press. (pp. 2, 11)

BLACKBURN, S. M., CHENG, P., AND MCKINLEY, K. S. 2004. Myths and realities:
The performance impact of garbage collection. In ACM SIGMETRICS International
Conference on Measurement and Modeling of Computer Systems, ACM SIGMETRICS
Performance Evaluation Review 32(1) (June 2004), pp. 25–36. ACM Press. (p. 6)

BOEHM, H.-J., ATKINSON, R., AND PLASS, M. 1995. Ropes: An alternative to
strings. Softw. Pract. Exper. 25, 12 (Dec.), 1315–1330. (p. 25)

CHENEY, C. J. 1970. A non-recursive list compacting algorithm. Communications of
the ACM 13, 11 (Nov.), 677–8. (p. 11)

CHIKAYAMA, T. AND KIMURA, Y. 1987. Multiple reference management in Flat
GHC. In 4th International Conference on Logic Programming (1987), pp. 276–293.
(pp. 7, 33, 34)

COLLINS, G. E. 1960. A method for overlapping and erasure of lists. Communica-
tions of the ACM 3, 12 (Dec.), 655–657. (pp. 1, 7)

DEUTSCH, L. P. AND BOBROW, D. G. 1976. An efficient incremental automatic
garbage collector. Communications of the ACM 19, 9 (Sept.), 522–526. (p. 9)

FACEBOOK INC. 2015. HHVM. https://github.com/facebook/hhvm/
commit/9b4363859e7f4156851294f3f79ef2a0f4b58e25. (p. 18)

GOSLING, J., JOY, B., STEELE, G., BRACHA, G., AND BUCKLEY, A. 2014. The Java
Language Specification (Java SE 8 ed.). Addison-Wesley. (p. 15)

GUYER, S. Z., MCKINLEY, K. S., AND FRAMPTON, D. 2006. Free-Me: A static anal-
ysis for automatic individual object reclamation. In M. I. SCHWARTZBACH AND

47

http://hhvm.com/blog/9293/lockdown-results-and-hhvm-performance
http://hhvm.com/blog/9293/lockdown-results-and-hhvm-performance
https://github.com/facebook/hhvm/commit/9b4363859e7f4156851294f3f79ef2a0f4b58e25
https://github.com/facebook/hhvm/commit/9b4363859e7f4156851294f3f79ef2a0f4b58e25

48 Bibliography

T. BALL Eds., ACM SIGPLAN Conference on Programming Language Design and Imple-
mentation, ACM SIGPLAN Notices 41(6) (Ottawa, Canada, June 2006), pp. 364–375.
ACM Press. (p. 40)

INAMURA, Y., NOBUYUKI, I., KAZUAKI, R., AND KATSUTO, N. 1989. Optimiza-
tion techniques using the MRB and their evaluation on the Multi-PSI/V2. In North
American Conference on Logic Programming, 1989, Volume 2 (1989), pp. 907–921. MIT
Press.

ISO/IEC. 2014. Programming language c++. ISO/IEC 14882:2014, International
Organization for Standardization, Geneva, Switzerland. (p. 15)

JIBAJA, I., BLACKBURN, S. M., HAGHIGHAT, M. R., AND MCKINLEY, K. S. 2011.
Deferred gratification: Engineering for high performance garbage collection from
the get go. In J. VETTER, M. MUSUVATHI, AND X. SHEN Eds., Workshop on Memory
System Performance and Correctness (San Jose, CA, June 2011). (p. 2)

LEVANONI, Y. AND PETRANK, E. 2001. An on-the-fly reference counting garbage
collector for Java. In ACM SIGPLAN Conference on Object-Oriented Programming, Sys-
tems, Languages, and Applications, ACM SIGPLAN Notices 36(11) (Tampa, FL, Nov.
2001), pp. 367–380. ACM Press. (p. 36)

MCCARTHY, J. 1960. Recursive functions of symbolic expressions and their com-
putation by machine, Part I. Communications of the ACM 3, 4 (April), 184–195. (pp. 1,
8, 10)

NISHIDA, K., KIMURA, Y., MATSUMOTO, A., AND GOTO, A. 1990. Evaluation of
MRB garbage collection on parallel logic programming architectures. In 7th Interna-
tional Conference on Logic Programming, Jerusalem (June 1990), pp. 83–95. MIT Press.

ROTH, D. J. AND WISE, D. S. 1998. One-bit counts between unique and sticky. In
S. L. PEYTON JONES AND R. JONES Eds., 1st International Symposium on Memory
Management, ACM SIGPLAN Notices 34(3) (Vancouver, Canada, Oct. 1998), pp.
49–56. ACM Press. (p. 33)

SERGEANT, T. 2014. Improving memory management within the hiphop virtual
machine. Australian National University Honours Thesis. (pp. 14, 18, 26)

SHAHRIYAR, R., BLACKBURN, S. M., AND FRAMPTON, D. 2012. Down for the
count? getting reference counting back in the ring. In K. MCKINLEY AND

M. VECHEV Eds., 11th International Symposium on Memory Management (Beijing,
China, June 2012), pp. 73–84. ACM Press. (pp. 1, 7)

SHAHRIYAR, R., BLACKBURN, S. M., AND MCKINLEY, K. S. 2014. Fast conserva-
tive garbage collection. In ACM SIGPLAN Conference on Object-Oriented Program-
ming, Systems, Languages, and Applications (Portland, OR, Oct. 2014), pp. 121–139.
ACM Press. (pp. 9, 38)

SHAHRIYAR, R., BLACKBURN, S. M., YANG, X., AND MCKINLEY, K. S. 2013. Tak-
ing off the gloves with reference counting Immix. In ACM SIGPLAN Conference on
Object-Oriented Programming, Systems, Languages, and Applications (Indianapolis, IN,
Oct. 2013), pp. 93–110. ACM Press. (pp. 10, 13, 18, 27)

Bibliography 49

STOYE, W. R., CLARKE, T. J. W., AND NORMAN, A. C. 1984. Some practical meth-
ods for rapid combinator reduction. In G. L. STEELE Ed., ACM Conference on LISP
and Functional Programming (Austin, TX, Aug. 1984), pp. 159–166. ACM Press.

STYGAR, P. 1967. LISP 2 garbage collector specifications. Technical Report TN-
3417/500/00 (April), System Development Corporation. (p. 11)

THE PHP GROUP. 2015. The PHP language specification. http://git.php.
net/?p=php-langspec.git. Accessed: 2015-08-28. (p. 15)

TOZAWA, A., TATSUBORI, M., ONODERA, T., AND MINAMIDE, Y. 2009. Copy-on-
write in the php language. In Proceedings of the 36th Annual ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, POPL ’09 (New York, NY, USA,
2009), pp. 200–212. ACM. (pp. 2, 19, 24)

UGAWA, T., IWASAKI, H., AND YUASA, T. 2010. Improved replication-based in-
cremental garbage collection for embedded systems. In J. VITEK AND D. LEA Eds.,
9th International Symposium on Memory Management (Toronto, Canada, June 2010),
pp. 73–82. ACM Press. (p. 7)

UNGAR, D. M. 1984. Generation scavenging: A non-disruptive high performance
storage reclamation algorithm. In ACM/SIGSOFT/SIGPLAN Software Engineering
Symposium on Practical Software Development Environments, ACM SIGPLAN Notices
19(5) (Pittsburgh, PA, April 1984), pp. 157–167. ACM Press. (pp. 8, 10)

WISE, D. AND FRIEDMAN, D. 1977. The one-bit reference count. BIT Numerical
Mathematics 17, 3, 351–359. (p. 7)

YAO, M. 2013. Vector rope example. https://commons.wikimedia.org/
wiki/File:Vector_Rope_example.svg. Accessed: 2015-09-07. (p. 26)

http://git.php.net/?p=php-langspec.git
http://git.php.net/?p=php-langspec.git
https://commons.wikimedia.org/wiki/File:Vector_Rope_example.svg
https://commons.wikimedia.org/wiki/File:Vector_Rope_example.svg

	Acknowledgements
	Abstract
	Introduction
	Thesis Statement
	Contributions
	Meaning
	Thesis Outline

	Background and Related Work
	Garbage Collection Overview
	Garbage Collection Algorithms
	Allocation
	Identification
	Reclamation

	Canonical Collectors
	Naive Reference Counting
	Mark-Sweep
	Semi-Space
	Mark-Compact
	Immix
	RC Immix

	The PHP Language
	Value Semantics
	Object Destructors
	Reference Variable Semantics
	Summary

	The HipHop Virtual Machine
	Garbage Collection
	Reference Count Optimisations

	Related Work
	Garbage Collection in PHP
	Copy-on-write

	Summary

	Experimental Methodology
	Benchmarks
	Software
	Hardware

	Overcoming Obstacles to Tracing Garbage Collection
	Obstacles in PHP
	Copy-on-Write
	Precise Destruction
	Precise Demotion of References

	Solution Design Space
	Pass References By Value
	Specialised Data Structure Support
	Blind Copy-On-Write
	Static Analysis
	Improved Reference Counting

	One-bit Reference Count
	Prototype Design
	Prototype Results
	Prototype Analysis
	Discussion

	Behaviour, Semantics and the PHP Specification
	Further Opportunities
	Use in garbage collection
	Reset stuck bits during marking
	Storing the one-bit count in references

	Summary

	HHVM Without Reference Counts
	Design space considerations
	Conservative Marking
	Incremental Collection
	Heap Partitioning
	Explicitly Managed Allocations
	Triggering Collection
	Threading Considerations

	Proposed Design
	Heap Organisation
	Object Map and Conservative Marking
	Explicit Allocations

	Experimental Results
	Explicit Allocations
	Collector Performance Results

	Further Work
	Implement Defragmentation
	Remove reference counting assumptions
	Improve timing of collection
	Tune collector parameters
	Remove costly heap-size dependent operations

	Summary

	Conclusion
	Further Work

	Bibliography

