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Abstract

Region-based garbage collectors, including Garbage-first GC, Shenandoah GC, C4 GC,
and ZGC, share a lot of similar designs and algorithms, such as the similar marking
algorithm, memory structure, and allocation algorithm. However, the existence of
such underlying relationship among these collectors has not been well identified
and explored. Instead, the designers of these region-based collectors tend to treat
these as stand-alone collectors instead of an improvement over existing collectors.
Such ignorance of the underlying relationships among the region-based collectors
can mislead the future design of related garbage collectors.

Hence, analysis, measurements, and comparisons among these collectors can also
be hard. Although the design and algorithms of these collectors are similar, their
structural relationships are not reflected in the original design and implementations of
these collectors. For this reason, no one has measured GC performance contribution
of specific parts of the GC algorithm or the extension component involved in these
collectors. Which means no one can properly understand the pros and cons of the
design of these collectors, and may further lead to some potential performance issues
due to the inappropriate GC design.

The key contribution of this thesis is the identification of the existence of a struc-
tural relationship among the region-based collectors and an in-depth exploration of
the structural relationships among a set of region-based collectors which have a sim-
ilar design to the Garbage-first GC. In this thesis, I use the term "The Garbage-first
Family of Garbage Collectors" to describe such category of collectors.

This thesis produces the first implementation to reflect these structural relation-
ships. Specifically, in this thesis, I built a total of six members of the G1 family
of collectors, starting from a simple region-based collector to the Garbage-first GC
and Shenandoah GC. Each collector is implemented as an improved versions of the
previous collector to reflect the corresponding algorithmic relationship.

Based on such implementation, this thesis performs a detailed analysis of GC per-
formance contribution of each component of the algorithms. These analyses include
the measurement of the GC pause time, concurrency overheads of several algorithms
and the space overhead of remembered-sets.

The exploration of the Garbage-first family of garbage collectors leads to the con-
clusion that there exists a structural relationship among these G1 family of collectors.
Instead of being stand-alone collectors, they tend to be collectors with algorithmic
improvements over existing collectors.

As the result of GC performance evaluation, structural components including
concurrent-marking, remembered-sets, and concurrent evacuation contributes to a
reduction of 58.2%, 41.9%, and 84.1% respectively to the 95 percentile GC pause time
on the DaCapo benchmark suite. By using remembered-sets, G1 has 9.6% average
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footprint overhead. G1 has a concurrency overhead of 22.0% due to concurrent
marking and an overhead of 59.6% due to concurrent remembered-set refinements.
Shenandoah GC has a concurrent evacuation overhead of 85.5%.

The explored algorithmic relationships among the G1 family of collectors can
help GC designers or other programmers working with the JVM to have a deeper
understanding of the G1 family of collectors as well as their relationships and the
pros and cons of their involved improvements. The measured GC performance
contribution of each component of the GC algorithm can help garbage collection
algorithm designers to reconsider the design of the region-based garbage collectors
and memory structures, identify the main advantages and drawbacks of each involved
GC algorithm and hence have the ability to make further optimizations to them.
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Chapter 1

Introduction

This thesis explores the Garbage-first family of garbage collectors, including the
underlying relationship among them, the improvements each GC makes and the
performance contribution of each algorithmic component. My thesis is that different
members in Garbage-first family of collectors are strongly related and that each col-
lector is an improvement over other existing collectors. Each improvement increases
GC performance in some respect but also has drawbacks.

1.1 Project Statement

As the memory size of modern server machines becomes larger, the latency time of
garbage collectors for managed programming languages generally becomes longer.
In this way, the design of low-latency garbage collectors has become a hot topic today.
The aim of these collectors includes reducing the latency of collectors and performing
heap compaction or evacuation to avoid heap fragmentation.

Among all the existing low-latency garbage collectors, the category of region-
based collectors is widely explored and used in industry. Region-based collectors are
designed to reach high GC performance (especially GC pause time) by managing the
heap as a set of memory regions. Four well-known region-based garbage collectors,
Garbage-first GC, Shenandoah GC, C4 GC and ZGC created by Detlefs et al. [2004];
Flood et al. [2016]; Tene et al. [2011]; Liden and Karlsson [2018] respectively are high
performance region-based garbage collectors implemented for Java Virtual Machines
to achieve a short GC pause time and a high program throughput.

The design and implementation of such region-based collectors has been well
explored, but unfortunately, their underlying relationship remains unidentified and
unexplored. Although these collectors share a lot of basic algorithms and structures,
the original papers and other publications describing these collectors only regard
them as newly created and stand-alone collectors instead of improvements over the
existing collectors. Such ignorance of the potential relationships prevents GC design-
ers to have a clear overview of the algorithms supporting these collectors.

The lack of explorations of these relationships makes GC performance evaluation
and analysis among these collectors difficult. The collectors are invented by different
groups. The implementations and optimizations employed by these collectors are
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2 Introduction

varied. This means that the original implementations of the family of collectors do
not reflect their underlying structural relationships. This implementation differences
make it hard to understood GC performance contribution of each GC algorithm
involved in these collectors. Also, the lack of explorations on these relationships
and the lack of performance analysis and comparisons may cause some unexpected
performance issue to these collectors. As an example, according to Nguyen et al.
[2015], sometimes GC time of region-based collectors can take up to 50% of the total
execution time of Big Data systems. On the other hand, this can also mislead the
future design of related collectors.

So here comes the problem which this thesis is aimed to solve: What are the
relationships among the G1 family of collectors and in which way do they contribute
to GC performance?

1.2 Contribution

I show that this family of collectors be strongly related to each other, although the
original papers of these collectors present them each as a stand-alone collector in-
stead of an improved collector based on other existing GC algorithms. The lack of
explorations of such structural relationships makes it hard to carefully analyze the
performance contribution caused by each part of the GC algorithm, hence prevents
GC designers from truly understanding the pros and cons of each GC algorithm.

This thesis makes an exploration of the underlying relationship among the G1
family of garbage collectors. The algorithmic relationships are summarized as a series
of progressive improvements, which generally reflects the evolutionary history of the
G1 family of collectors.

As another major component of the exploration, I implement the collectors by
following the steps of the progressive improvements, starting from a most simple
form of the region-based collector to the most complex collector, e.g. Garbage-first
GC and Shenandoah GC, to reveal the hierarchy of the G1 family of collectors. I
did not implement C4 GC and ZGC due to some platform limitations, which will
be discussed in Chapter 5. GC performance of these implemented collectors is also
evaluated and discussed.

The general steps involved in this thesis for exploring these collectors include:

Discover the relationships of the G1 family of garbage collectors includ-
ing understanding the basic algorithms of these collectors, inferring the
underlying relationships among them and reconsidering them as a series
of algorithmic improvements instead of individual isolated collectors.

Implement a simple mark-region collector by starting from an existing
SemiSpace GC in MMTk and replacing the two copy-spaces with a region-
space which divides the memory up into multiple regions. Then I added
an extra marking phase before the evacuation phase.

Perform a series of improvements by starting from the simple mark-
region collector and progressively perform improvements including linear-
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scan evacuation, concurrent marking, remembered sets and concurrent
evacuation. This step produces improved versions of the mark-region
collectors, the Garbage-first GC and the Shenandoah GC.

Measure GC performance including measuring the GC pause times of all
implemented collectors, the concurrency overheads and the remembered
set size. These measurements reflect the performance gain due to each
algorithmic improvement.

Explain and explore the results which leads to a reconsideration of the
pros and cons of each G1-related GC algorithm in depth.

A total of six different Garbage-first family of garbage collectors were imple-
mented to reveal the relationships among them and demonstrate different kinds of
garbage collection algorithms, such as concurrent marking, remembered-sets, and
Brooks barriers.

In order to make a detailed and careful analysis of these collectors and be able to
compare these collectors at an algorithmic level, the implementations are as close as
possible to the design of their original papers.

I measure the GC pause times for each implemented collector, as well as the
concurrency overheads involved in these collectors, including overhead for concurrent
marking, concurrent remembered-set refinements and concurrent evacuation. I found
that concurrent marking contributes to a decrease of the 95 percentile GC pause time
by 58.2% where linear scanning evacuation increases the GC pause time by 15.8%.
However, the use of remembered-sets can reduce the GC pause time by 41.9%, and
concurrent evacuation can also reduce the GC pause time up to 84.1% As the result
of concurrency overhead analysis, I found that concurrent marking has an overhead
of 22.0% where Shenandoah GC’s concurrent evacuation has an overhead of 85.5%.

All works were done in JikesRVM, a research purpose Java Virtual Machine and
MMTk which is a memory management took written in Java [Blackburn et al., 2004].

1.3 Thesis Outline

Chapter 2 provides a general background and an overview of the Garbage-first family
of garbage collectors. Similarities and differences among some major categories of
garbage collectors are discussed as well. Also, the related work on implementing and
measuring region-based collector and G1 family of collectors are discussed.

Chapter 3 provides the detailed steps and algorithms of the implementation of all the
Garbage-first family of garbage collectors.

Chapter 4 describes the methodology used for evaluating the implemented collectors,
including the benchmark involved and the detailed steps of each evaluation. This
chapter also presents the results of the evaluation and benchmarking on the imple-
mented collectors, as well as detailed and critical discussion on the evaluation results



4 Introduction

of the implemented collectors.

Chapter 5 discusses the work related to this project that I plan to do in the future and
the conclusion of this thesis.



Chapter 2

Background and Related Work

Garbage collection is a hot topic in terms of modern managed programming language
implementations. Specifically, region-based collectors like Garbage-first GC and C4
GC are widely used in modern Java Virtual Machines to archive high GC performance.
This chapter describes the background and basic ideas of several garbage collectors,
particularly those targeting the Java Virtual Machines and are implemented in Open-
JDK, as well as the differences among them. In addition, this chapter also performs a
general discussion of the related work on implementing and analyzing region-based
garbage collectors.

Section 2.2 roughly discusses and compares the different classes of GC algo-
rithms. Section 2.4 describes the general design of the Garbage-first family of garbage
collectors. Section 2.5 describes the related work on implementing and analyzing
region-based garbage collectors.

2.1 JikesRVM and MMTk

The whole project discussed in this thesis is based on JikesRVM. All the garbage
collectors I implemented and evaluated in this project are all implemented by using
the Memory Management Toolkit (MMTk). In this section, I will briefly discuss
the design of JikesRVM and MMTk, as well as some introductions of their general
structures.

2.1.1 JikesRVM

JikesRVM is a research Java Virtual Machine and was first released by IBM [Alpern
et al., 2005]. It is a meta-circular JVM which is implemented in the Java program-
ming language and is self-hosted. JikesRVM was designed to provide a flexible
open sourced test-bed to experiment with virtual machine related algorithms and
technologies.

Instead of executing Java programs by directly interpreting the Java byte code,
JikesRVM compiles them into machine code for execution. JikesRVM implemented
two tiers of compilers: the baseline compiler and the optimizing compiler. The
baseline compiler simply translates the Java bytecode into machine code and does no
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6 Background and Related Work

optimizations while the optimizing compiler performs several optimizations during
the code generation phase. I performed all benchmarking and analysis works on the
optimized build of the JikesRVM.

2.1.2 MMTk

MMTk is a memory management toolkit and is used as a memory management
module of JikesRVM for memory allocation and garbage collection [Blackburn et al.,
2004].

For memory allocation, MMTk defines several address spaces to allocate different
type of objects. e.g. NonMovingSpace for non-copyable objects and SmallCodeSpace for
storing java code. After receiving an allocation request, MMTk will decide which
space the object belongs to and allocate memory from that space.

All of the G1 family of garbage collectors involved in this thesis have two ma-
jor phases: the marking phase and the evacuation phase. Instead of using the
MMTk’s pre-defined PREPARE -> SCAN ROOTS -> CLOSURE -> RELEASE collection phase
which only performs a single tracing on the heap, I extended this to perform a sepa-
rate full or partial heap tracing or linear scanning phase for evacuation and reference
updating.

MMTk will check for stop-the-world or concurrent garbage collection within each
space allocation slow path. This involves the invocation of methods collectionRequired(...)
and concurrentCollectionRequired(...). I made full use of these two methods, not
only for checking whether a collection is required but also performing switches be-
tween different schedules of collection phases for either nursery or mature collection
for the G1 collector.

2.2 Categories of GC Algorithms

This section discusses the major classes of garbage collection algorithms, as well as
their pros and cons.

2.2.1 Reference counting

Reference counting is a widely used garbage collection technique which tracks the
count of references for each heap-allocated object. This algorithm was firstly intro-
duced by Collins [1960]. The reference count for an object is increased when an
new variable references to the object and decreased when a reference to the object
is deleted or goes out of its declaring scope. The reference count for each object is
initialized to one when the object is created, which means there is only one owner
for the object (its creator). When the reference count of the object goes to zero, it is
certain that the object has no owner that references to it. Then the object becomes
floating garbage and its occupying memory is released.

In order to track the reference count for each object, a write barrier is involved for
reference counting collectors. For each object reference modification obj.x = y, the
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reference count of the old object reference is decreased and the reference count of the
new object reference is increased by 1. If the old object reference has no owner, then
its memory cell will be swept.

This collection algorithm has two variants. The naive reference counting algorithm
performs reference counting manipulations without pausing all mutators and the
workload for collecting objects is almost evenly distributed. However, manipulating
reference counts all the time significantly increases the mutator overhead. Another
variant is the deferred reference counting, which performs object collection during
some small pauses instead of taking up the mutator time. Deferred reference counting
collectors generally have relatively larger pause time than naive reference counting
collectors but have a much better mutator performance.

However, one major disadvantage of the reference counting GC is that it can
hardly handle cyclic references [Lins, 1992] where some object A references the other
object B and B also references A. In such case the reference count is at least 1 for both
A and B, even if there are no objects referencing to them.

2.2.2 Mark & sweep GC

Mark and Sweep GC was firstly invented by McCarthy [1960]. It is a type of tracing
GC which uses the object graph to assist with garbage collection. The algorithm
considers all the objects that are unreachable in the program as garbage. In this way,
Mark and Sweep GC has the ability to collect cyclic referenced garbages, as long as
they are unreachable from other live objects.

When allocating objects or requesting memory pages from some memory resource,
the mutator does no extra work but only checks whether the memory is full. If there
is no free space for allocation, the execution of all the mutators will be paused and
the Mark and Sweep GC is triggered.

The Mark and Sweep GC requires an extra metadata byte in the object header for
marking. During each GC cycle, the Mark and Sweep GC first scans and marks all of
the static objects, global objects and stack variables as a set of "root objects". Then the
collector starting from the root objects and recursively walks over the object graph
to mark all the remaining objects. At the end of the marking phase, all the marked
objects in the heap are definitely reachable from the "root set" and all other objects
become floating garbage and are swept.

After a GC cycle, all the paused mutators are resumed to continue execution and
allocation.

The Mark and Sweep GC has the ability to collect cyclic referenced garbages by
tracing the reachability of heap objects. However, as the use of large-scale servers and
high memory-load programs for business become more and more popular, the Mark
and Sweep GC reveals its drawback that it can cause significant memory fragmenta-
tion after a sufficiently long running time. Because when the collector keeps allocate
and free small memory chunks, the size of contiguous free chunks becomes smaller,
which may lead to allocation failure for large objects, even if the total free memory
size is larger than the requested chunk size.
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2.2.3 Copying GC

Copying GC is a class of garbage collectors that aims to reduce heap fragmentation
by performing heap evacuation, which moves objects in the heap together.

As one of the most simple copying GC, the SemiSpace GC created by Fenichel
and Yochelson [1969] divides the whole heap into two spaces: the from-space and
the to-space. All objects allocation are done from the to-space. When the to-space
is exhausted, a GC cycle is triggered. The two spaces are flipped at the start of GC.
The collector starts from all root objects and recursively walks over the object graph
to copy all reachable objects to the to-space. Then the to-space becomes the new
from-space for further allocation. In this way, the SemiSpace GC ensures all live
objects are copied to the to-space and all non-reachable objects (i.e. dead objects) are
not forwarded and are swept at the end of the GC cycle.

Copying GCs have the ability to reduce heap fragmentation but can cause longer
GC pause time. Especially for some GCs which have additional evacuation phase at
the end of a marking phase, e.g. the MarkCompact GC.

2.3 Mark-Region Collectors

Instead of evacuating all the live object during each GC like the SemiSpace GC, Mark-
Region collectors divide the heap up into small regions, and only evacuate or collect
objects in a specific subset of regions.

As a high performance Mark-Region collector, Immix GC created by Blackburn
and McKinley [2008] has a two level heap architecture, blocks and lines. It divides the
heap up into blocks and further splits blocks into lines. During the marking phase,
Immix GC marks the blocks as well and collects blocks that are not marked at the
end of the marking phase. During each GC cycle, Immix GC performs opportunistic
evacuation after the marking phase for defragmentation. The opportunistic evacua-
tion only copy a very small proportion of objects to other regions which significantly
reduces the GC pause time due to object evacuation.

2.4 Garbage-First Family of Garbage Collectors

This section will give a brief introduction to the three most popular collectors from
the Garbage-first family of garbage collectors. For each collector, the basic algorithm
and the past and current status will be discussed.

2.4.1 Garbage-first GC

Garbage-first GC created by Detlefs et al. [2004] is a copying collector which was
initially released in Oracle JDK 6 and was fully supported in Oracle JDK 7. G1 was
designed as a server-style collector which targeting machines with multi-processors
and large memories.
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G1 GC divides the whole heap up into fixed sized regions. As a copying collector,
G1 GC tries to reduce the pause time for evacuating objects by performing evacuation
on a subset of regions (called the collection set) instead of all allocated regions.

The collection cycle of the G1 GC starts with a concurrent marking phase. During
which the collector threads marks all the objects in the heap, just like the Mark &
Sweep GC, but without pausing the mutators. After the marking phase, the G1
collector selects the collection set which contains the regions with the smallest ratio
of live objects. Then the collector evacuates live objects in the collection set.

In order to perform evacuation on a subset of regions, the collector uses a data
structure called "remembered set" to remember all uses of the objects in the collection
set. After these live objects are evacuated, the collector scans the remembered set to
update the pointers in other regions that references these live objects.

By performing partial heap evacuation, the G1 GC generally has lower pause time
than other copying GCs, especially on machines with large heaps [Detlefs et al., 2004].
By adjusting the size of the collection set before evacuation, G1 has the ability to
control the pause time to meet some user-defined soft pause time goal. However,
one main drawback of G1 is that the implementation of remembered sets can be
inefficient.

2.4.2 Shenandoah GC

Shenandoah GC is an experimental collector for OpenJDK. Shenandoah GC also di-
vides heap up into regions and performs concurrent marking, similar to the Garbage-
first GC.

Shenandoah GC tries to further reduce the GC latency by performing concurrent
evacuation. The concurrent marking phase that Shenandoah GC has is similar to
the G1’s concurrent marking phase. However, Shenandoah GC does not have a
generational mode and does not perform partial evacuation to reduce pause times.
Instead, the Shenandoah GC performs the evacuation phase concurrently to collect
all possible regions, without pausing mutators.

By performing concurrent marking and evacuation, Shenandoah GC does most of
the heap scanning work concurrently. In this way, the pause time caused by garbage
collection is extremely small and is not proportional to the heap size. However,
Shenandoah GC has to insert some mutator barriers into the Java program, before
every object reference read and write. So the mutator overhead caused by these
barriers is much more larger than other GCs.

2.4.3 C4 GC

C4 GC is a pauseless GC algorithm created by Tene et al. [2011] and is the default
collector of Azul’s Zing JVM. C4 is a region-based generational collector which per-
forms mostly concurrent marking and evacuation during nursery and mature GCs.
According to the Tene et al. [2011], by performing most of the GC work concurrently,
C4 GC has the ability to reduce the mutator response time down to around 10 ms
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when targeting 100 GB heaps.
C4 GC is similar to Shenandoah GC, where the difference is that C4 is generational

and uses an enhanced version of Shenandoah GC’s mutator barrier. In detail, assigns
a color for each pointer and stores this metadata into the unused bits in the 64bit
pointers. Instead of inserting barriers on every object reference read and write, ZGC
only uses a "load barrier" which is only inserted before the mutator loads an object
reference from the heap. The barrier is responsible for both object concurrent marking
and evacuation, by checking the "color" metadata in the pointer. In this way, C4
significantly reduces the throughput reduction caused by the mutator barriers.

2.4.4 ZGC

ZGC is a new garbage collector introduced by Liden and Karlsson [2018] and is very
similar to the Shenandoah GC and C4 GC. ZGC was developed as an experimental
pauseless collector for OpenJDK. ZGC is very similar to C4 GC. Both of them use "col-
ored pointers" as well as related mutator barriers to perform concurrent marking and
evacuation. The only difference from C4 GC is that ZGC is still under experimental
status and currently does not supports generational mode.

2.5 Related Work

2.5.1 Implementations and evaluations of the G1 family of collectors

The current working G1 family of garbage collectors implemented for modern Java
Virtual Machines includes the Garbage-first GC, Shenandoah GC, and ZGC. All of
these three major collectors are implemented in OpenJDK.

Detlefs et al. [2004] designed and evaluated the basic algorithm of the Garbage-
first collector, including the original design of the pure(non-generational) and gener-
ational version of G1 GC. Based on this paper, G1 GC was first implemented and re-
leased as an alternative experimental GC for OpenJDK 7. Flood et al. [2016] designed
the basic algorithm of the Shenandoah garbage collector and the first implementation
of Shenandoah GC was done as an alternative experimental GC for OpenJDK 8. ZGC
is a new garbage collector designed and implemented for OpenJDK and has justly
released the first experimental version in OpenJDK 11.

Detlefs et al. [2004]; Flood et al. [2016] evaluated the performance of G1 GC
and Shenandoah GC respectively, including the pause time and mutator barriers
overhead. However, their evaluations use different benchmarking programs and are
done within different hardware platforms. In addition, the implementations between
these collectors vary significantly, even for parts that share similar ideas, which makes
it hard to compare the benchmarking results between G1 GC and Shenandoah GC.

2.5.2 Evaluation of region-based collectors

Gay and Aiken [1998] measured the performance of memory management on a
region-based heap. They divided the heap up into regions and used a safe C dialect
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with a conservative reference-counting collector to manage the memory. Then they
measured the performance of both allocation and collection over such region-based
heap, on a collection of realistic benchmarks. They found that the regional structure
has advantages for memory allocation and collection, with a competitive performance
compared to malloc/free in C programs and has low overhead when using a garbage
collector. However, they only evaluated the reference counting collector, which is not
a mark and copy collector that this thesis is trying to evacuate. Also, the language
they were using is a safe C dialect, which is different from the Java language in many
aspects.

2.5.3 Evaluation of barrier overheads

Yang et al. [2012] evaluated a wide range of different read and write barriers on
JikesRVM, using the DaCapo benchmarks and the SPECjvm98 benchmarks. Also, they
observed the barrier performance differences of in-order and out-of-order machines.
They found that write barriers generally have overheads of 5.4% while write barriers
have average overheads of 0.9%. However, these barriers evaluations did not include
the evaluations of the Brooks indirection barriers. In addition, this paper measured
the behavior of card marking barriers but did not measure the overhead of the
remembered-set barrier which is optionally used alongside with the card marking
barrier in the Garbage-first GC.

2.6 Summary

In this section, I introduced the background and basic ideas of several garbage collec-
tors, as well as the design of the widely used copying region-based garbage collectors.
I also performed a general discussion of the related work on implementing and
analyzing region-based garbage collectors.

Most mark-copy garbage collectors generally have the similar design, especially
for those Garbage-first related region-based collectors which share the common de-
sign of the heap structure and marking algorithm. This leads to an open question: To
what extent do these region-based collectors relate to each other? To answer this ques-
tion, in the next chapter I will explore the differences and relationships among these
collectors and implement them on JikesRVM as a series of progressive algorithmic
improvements instead of building them separately.
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Chapter 3

Design and Implementation of the
G1 Family of Garbage Collectors

As briefly discussed in the previous chapter, the four well-known copying region-
based collectors, Garbage-first GC, Shenandoah GC, C4 GC, and ZGC share many
common design parts such as concurrent marking algorithm, region-based structure
and allocation algorithm. However, there are also several differences among them,
especially the different techniques designed to improve GC performance. Hence their
resulting GC performances are different.

As a major contribution of this thesis, this chapter explores the underlying rela-
tionships among these collectors, which the original designers of these GCs did not
identify. Based on these connections, this chapter also discusses the implementation
of several region-based GCs, we call "The Garbage-first family of garbage collectors",
as a series of improvements inferred by the relationships.

Section 3.1 describes the general and high-level design of the G1 family of garbage
collectors and explores their underlying relationships. Section 3.2 describes the im-
plementation details of a simple region-based GC. Section 3.3 describes the imple-
mentation of the simple region-based GC that uses linear scanning for evacuation.
Section 3.4 describes the implementation of the concurrent marking algorithm. Sec-
tion 3.5 describes the details of implementing the Garbage-first GC Section 3.6 de-
scribes the details of implementing the Shenandoah GC.

3.1 General Design

The general design of the implementation including reconsidering the underlying
relationship among all the existing region-based garbage collectors, reordering them
and implementing them to reflect those relationships.

3.1.1 Analysis of the collectors and their relationships

The four well-known region-based garbage collectors, G1 GC, Shenandoah GC, C4
GC, and ZGC share plenty of common design and algorithms. The major similarity of

13
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these collectors is that they are copying region-based collectors designed for modern
Java Virtual Machines and targeting large heaps.

The same design goal leads to the similar general structure of these collectors. As
described in publications by Detlefs et al. [2004], Flood et al. [2016], Tene et al. [2011]
and Liden and Karlsson [2018], their similarities include:

Region-based memory structure which divides the whole heap up into
smaller regions and performs copying collection on a subset of regions
during each GC (such subset is called the "collection set").

Bump pointer allocator which uses an allocation algorithm that linearly
allocates objects within the memory slice of a region and moves to another
available region when the current region is filled.

Concurrent marking. At the beginning of each GC cycle, all of the col-
lectors use the Snapshot-at-the-beginning algorithm (firstly introduced by
Yuasa [1990]) to mark all live objects in the heap concurrently without
stopping the mutators.

Perform evacuation after the marking phase, including copying live ob-
jects in the collection set to other regions before releasing the memory in
the collection set.

Differences also exist among these collectors. These garbage collectors adopt dif-
ferent techniques to reduce the GC pause time and increase the mutator throughput.
Specifically,

Garbage-first GC uses a data structure called a "remembered set" to record
the cross region pointers during the execution of the Java program. Later
during evacuation phase, instead of walking over the whole object graph
to update references as other collectors (e.g. SemiSpace GC) did, G1
only needs to scan the remembered sets to update cross region pointers
pointing to the collection set. Also, G1 has a generational mode which
eagerly collects newly allocated objects during nursery GCs.

Shenandoah GC is very similar to G1, but it performs the evacuation phase
concurrently, by using the Brooks indirection barrier (which was first
introduced by Brooks [1984]). Although Shenandoah GC still performs
full heap tracing during the evacuation phase, the GC pause time is very
low and is not proportional to the heap size.

C4 GC be simply regarded as an improvement over the Shenandoah GC
with a generation mode and better mutator performance. ZGC uses the
"colored pointers" as well as a highly optimized read barrier to assist with
the Brooks indirection barrier to further increase the mutator throughput.

ZGC is very similar to C4 GC and also performs concurrent evacuation
during each GC. The major difference to C4 GC is that ZGC is still under
experimental state and currently has no generational mode.
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In general, these four collectors are strongly related to each other in terms of
the design and algorithm structure. In addition, each collector performs their own
enhancements to improve GC performance. In this way, at the algorithmic level, these
collectors tend to be a set of improvements over the naive region-based collector.
Hence they are more likely to form as a family of collectors instead of individual and
unrelated collectors.

3.1.2 Implementation steps

As the first implementation which reflects such algorithmic hierarchy, members of
the G1 family of garbage collectors are reorganized and reimplemented on JikesRVM
by following different steps against the original implementations.

I started from implementing a simple region-based GC which divides the whole
Java heap up into fixed sized regions. During each GC cycle it performs fully stop-
the-world but parallel object marking and full-heap tracing based object evacuation.
Then I made progressive improvements based on this very simple collector to further
implement some G1 family of garbage collectors.

Since both Garbage-first and Shenandoah GC use heap linear scanning for evacu-
ation, I implemented a linear-scan region-based GC by dividing the heap evacuation
phase of the simple region-based GC into two phases: The linear scan evacuation
phase and the reference updating phase.

Then I changed the stop-the-world marking phase of the linear-scan region-based
GC to the concurrent marking phase to implement a concurrent-marking region-based
GC. The Snapshot-at-the-beginning algorithm [Yuasa, 1990] was used to implement
the concurrent marking phase.

By adding the remembered-sets to the concurrent-marking region-based GC and
switching to remembered-set based evacuation, I implemented the Garbage-first col-
lector.

Also, starting from the concurrent-marking region-based GC, by implementing the
Brooks indirection pointers and the corresponding mutator barriers, I implemented
the Shenandoah GC.

By performing such progressive improvements, I successfully implemented a se-
ries of G1 family of garbage collectors that share as much code and design as possible
among the implementations of these collectors. This enables the possibility for fu-
ture algorithmic-level analysis on these garbage collectors. The other two discussed
collectors, C4 GC and ZGC, are not implemented and evaluated in this project.

3.2 Simple Region-based GC

This simple region-based GC is provided as a baseline for future implementation of
the G1 family of collectors. It contains the most basic structures of the Garbage-first
family of garbage collectors such as the region-based heap space and bump pointer
allocation algorithm. By making progressive improvements over this region-based
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GC, I keep the implementation differences among the G1 family of garbage collectors
to a minimum.

3.2.1 Heap structure and allocation policy

This simple region-based GC and other GCs discussed later all use the same imple-
mentation of the heap structure (which is implemented in RegionSpace and Region
classes) and the same allocation policy (which is implemented in the RegionAllocator
class). The RegionSpace divides the whole heap up into fixed 1 MB regions (256 pages).

Figure 3.1 shows the code for allocation objects within the region space. To allocate
objects, for each allocator, it firstly requests a region of memory (256 pages) from the
page resource. Then it makes the allocation cursor points to the start of the region
and bump increase this allocation cursor to allocate objects. Figure 3.1(a) shows the
code for such allocation fast path. Most of the object allocation processes will only
follow the fast path. After a region is filled, to allocate a new object, the mutator
enters a slow path which is shown in Figure 3.1(b). In this slow path the allocator
moves the bump pointer to another newly acquired region for future allocations.

MMTk reserves some extra pages for each region to record metadata. After the
allocator filled a region, it records the end address of the region in the metadata pages
for region linear scanning which is lately used in some collectors. Also, an off-heap
bitmap is maintained in the region’s metadata pages to record the liveness data of
objects in this region.

3.2.2 Stop-the-world marking

Based on the high-level design of MMTk, after the memory is exhausted, MMTk
checks if a stop-the-world or concurrent GC is required for the currently selected GC
plan. For this simple region-based GC, only stop-the-world collections are triggered.

The region-based GC initiates a collection cycle when the free heap size is less
than the pre-defined reservedPercent (default is 10%). During each GC cycle, the
collector starts by performing a full heap tracing to recursively mark all live objects.
The marking algorithm considers the heap as a graph of objects and follows the idea
of breadth-first graph search which first scans and marks all the stack and global
root objects and pushes them into an object queue. Then the collector threads keep
popping objects from the object queue and collecting all its object reference fields
(which are child nodes of the current object node in the object graph). If these object
fields were not marked previously, the collector then marks and pushes them back
into the object queue. The marking process is done when all of the local and global
object queues are drained, which means all objects that are reachable from the root
objects have been marked by the end of the marking phase.

Instead of using the GC byte in the object header for marking which is widely used
in other GCs in MMTk, a bitmap for each region is maintained to record the liveness
data of the objects. At the start of the marking phase, bitmaps of all regions are
initialized to zero. As shown in Figure 3.2, during visiting each object, the collector
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1 @Inline
2 public final Address alloc(int bytes, int align, int offset) {
3 /* establish how much we need */
4 Address start = alignAllocationNoFill(cursor, align, offset);
5 Address end = start.plus(bytes);
6 /* check whether we’ve exceeded the limit */
7 if (end.GT(limit)) {
8 return allocSlowInline(bytes, align, offset);
9 }

10 /* sufficient memory is available, so we can finish performing the allocation
*/

11 fillAlignmentGap(cursor, start);
12 cursor = end;
13 // Record the end cursor of this region
14 Region.setCursor(currentRegion, cursor);
15 return start;
16 }

(a) Region allocator - fast path

1 @Override
2 protected final Address allocSlowOnce(int bytes, int align, int offset) {
3 // Acquire a new region
4 Address ptr = space.getSpace(allocationKind);
5 this.currentRegion = ptr;
6

7 if (ptr.isZero()) {
8 return ptr; // failed allocation --- we will need to GC
9 }

10 /* we have been given a clean block */
11 cursor = ptr;
12 limit = ptr.plus(Region.BYTES_IN_REGION);
13 return alloc(bytes, align, offset);
14 }

(b) Region allocator - slow path

Figure 3.1: Region-based allocation algorithm
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1 @Inline
2 public ObjectReference traceMarkObject(TransitiveClosure trace, ObjectReference

object) {
3 if (testAndMark(rtn)) {
4 Address region = Region.of(object);
5 // Atomically increase the live bytes of this reigon
6 Region.updateRegionAliveSize(region, object);
7 // Push into the object queue
8 trace.processNode(object);
9 }

10 return object;
11 }

Figure 3.2: Code for marking each object

attempts to set the mark bit of the current object in the bitmap and push the object
into the object queue only if the attempt operation succeeds.

Although using such extra "liveness table" is not necessary for this region-based
GC, this is a common design for Garbage-first and Shenandoah GC. So the GC byte
in the object header was disabled at the very beginning to reduce the implementation
difference among all the collectors.

3.2.3 Collection set selection

As shown in Figure 3.2, during the processing of each object in the heap, the collectors
also atomically increase the live bytes for each region, starting from zero. After the full
heap marking phase, the collector starts a collection set selection phase to construct a
set of regions for later defragmentation.

The collection set selection phase first takes a list of all allocated regions, and sorts
them in ascending order by the live bytes of the region. Then the collector selects the
regions with lowest live bytes. Also, the collector should make sure the total count of
live bytes in the collection set is not greater than the free memory size of the heap, to
prevent the to-space from being exhausted during evacuation.

At the end of the collection set selection phase, the collector marks all regions in
the collection set as "RELOCATION_REQUIRED" for the future evacuation phase.

3.2.4 Stop-the-world evacuation

The evacuation phase is a fundamental part of the copying collectors. It tries to avoid
heap fragmentation by forwarding the live objects in highly fragmented memory
slices and copying them together.

For this simple region-based GC, the evacuation phase is performed after the end
of the collection set selection phase. This evacuation phase is aimed to copy/evacuate
all live objects in the collection set to other regions.

Figure 3.3 shows the process of evacuating an object. To evacuate objects, the
collector performs another full heap tracing to re-mark all the objects, just like the
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1 @Inline
2 public ObjectReference traceEvacuateObject(TraceLocal trace, ObjectReference

object, int allocator) {
3 if (Region.relocationRequired(Region.of(object))) {
4 Word priorStatusWord = ForwardingWord.attemptToForward(object);
5 if (ForwardingWord.stateIsForwardedOrBeingForwarded(priorStatusWord)) {
6 // This object is forward by other threads
7 return ForwardingWord.spinAndGetForwardedObject(object, priorStatusWord);
8 } else {
9 // Forward this object

10 ObjectReference newObject = ForwardingWord.forwardObject(object, allocator
);

11 trace.processNode(newObject);
12 return newObject;
13 }
14 } else {
15 if (testAndMark(object)) {
16 trace.processNode(object);
17 }
18 return object;
19 }
20 }

Figure 3.3: Code for evacuating each object

marking phase discussed before. But in addition to marking the objects, the collector
also copies the objects and atomically updates the forwarding status in the object
header if the object is in the collection set. Such full heap tracing ensures that all
objects that were marked in the marking phase are also being scanned and remarked
in the evacuation phase. This means that all live objects in the collection set are
processed and evacuated properly.

At the end of the evacuation phase, after all objects are evacuated, the whole stop-
the-world GC cycle is finished. The collector frees all the regions in the collection set
and resumes the execution of all the mutators.

3.2.5 Evacuation correctness verification

Since the region-based evacuation is a fundamental component of the G1 family of
garbage collectors and can have several variants (e.g. concurrent evacuation), it is
necessary to verify the correctness of the evacuation process in order to assist in
debugging and gain confidence in the implementation. I used an additional full
heap tracing for verification. The full heap tracing is similar to the marking trace
and is fully stop the world to ensure the object graph is never changed during the
verification process. When visiting each object node during verification, the collector
checks all its object reference fields and ensures that they are either null or pointing
to the valid Java objects. The collector also checks that no object node is located in
the from space (i.e. the collection set).

This full heap tracing verification process is optional and can be switched on and



20 Design and Implementation of the G1 Family of Garbage Collectors

off for debugging purposes. At the end of the verification process, we can assert that
the whole Java heap is not broken and is in the correct state.

3.3 Linear Scan Evacuation

Since both Garbage-first and Shenandoah GC use heap linear scanning for evacuation,
I implemented a linear-scan evacuation version of the simple region-based GC.

In the simple region-based GC, both object evacuation and reference updating are
done together during the stop-the-world evacuation phase, by using a single full heap
tracing. For this linear-scan region-based GC, I split the stop-the-world evacuation
phase into two phases: The linear scan evacuation phase and the reference updating
phase.

During the linear scan evacuation phase, the collector threads linearly scan all
of the regions in the collection set and evacuate live objects in these regions. The
collector does not fix or update any references during this phase.

During the reference updating phase, the collector performs a full-heap tracing,
just likes the evacuation phase of the simple region-based GC, but only fixes and
updates pointers to ensure that every pointer in the heap points to the correct copy
of the object.

By separating the linear scan evacuation phase and the reference updating phase,
the linear-scan region-based GC reveals the basic collection processes of most G1
family of garbage collectors: marking -> evacuation -> update references -> cleanup.
The modular design of this collectors enables the future redesign and rewriting of
some specific phases, e.g. concurrent marking, remembered-set based evacuation or
concurrent evacuation.

3.4 Concurrent Marking

An improvement over the previous collector is to make the marking phase concurrent
to reduce the mutator latency caused by the stop-the-world object marking.

The concurrent marking phase uses the Snapshot-at-the-beginning (SATB) algo-
rithm. This algorithm was first introduced by Yuasa [1990] to complete most of the
marking work concurrently without pausing mutators. The SATB algorithm assumes
an object is live if it was reachable (from the roots) at the start of the concurrent
marking or if it was created during the concurrent marking.

The whole marking phase consists of two pauses: the initial mark pause and
final mark pause. During the initial mark pause, just as within the stop-the-world
marking phase, the collector clears the live bitmap for all regions, and then it scans
and process all the root objects including stack objects and global objects. After
that, the collector resumes all the mutators and concurrently marks all the remaining
object. If the mutators allocate spaces too quick and the used ratio of the heap reaches
the stop-the-world GC threshold previously defined in the simple region-based GC,
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the collector then pauses all the mutators and switches to a stop-the-world marking
phase to continue the marking process.

3.4.1 SATB write barriers

As part of the SATB algorithm, to maintain the invariant of "An object is live if it was
live at the start of marking", the mutators in this concurrent-marking GC implemented
a SATB barrier, which is a piece of code inserted into the Java program, before every
object field write, object field compare & swap and object array copy operations in the
program. Figure 3.4 shows the object reference write barrier that is used to track every
object graph modifications during the concurrent marking. When an object reference
field modification happens, since the old child object reference was reachable from
the roots before this modification, it should be considered as a live object. So the
SATB barrier traces and enqueues this old object reference field to ensure it is marked
as live. Just as within the stop-the-world marking process, the concurrent marking
phase finishes after the local and global object queues are drained.

During the final mark pause, the collector releases and resets the marking buffer
that was used for concurrent marking. Then it starts the collection set selection phase,
just like the simple region-based GC.

This concurrent-marking region-based GC is an important enhancement which
enables the analysis of the pause time and mutator latency due to the SATB concurrent
marking algorithm on the region space. By analyzing this implementation of the
concurrent-marking algorithm, we are able to understand the detailed performance
impact of the Garbage-first and Shenandoah GC due to the SATB algorithm.

3.5 Garbage-First GC

Garbage-first (G1) GC [Detlefs et al., 2004] was originally designed by Oracle to
replaces the old Concurrent Mark and Sweep GC. G1 GC was designed to target large
heap but has a reasonable and predictable GC pause time. To achieve a short pause
time, G1 uses a data structure called remembered-set to perform partial heap scanning
during the pointer updating phase, instead of performing a the full-heap scanning.
To make the GC time predictable, a pause time prediction model is involved in G1 to
predict and choose the number regions in the collection set to meet a soft real-time
pause goal. In addition, G1 has a generational mode which performs nursery GCs
that collects young (newly allocated) regions only.

During each GC cycle of G1 GC, there are 5 major phases. The first three phases
are the concurrent marking phase, the collection set selection phase and the linear
scan evacuation phase, just as within the concurrent-marking region-based GC. The
fourth phase is the remembered-set based pointer updating phase. And the last phase
is the cleanup phase which frees the regions in the collection set.

The construction of the Garbage-first GC on JikesRVM is based on the concurrent-
marking region-based GC. It involves three improvements over the concurrent region-
based collector discussed in Section 3.4: remembered-set based pointer updating,
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1 @Override
2 protected void checkAndEnqueueReference(ObjectReference ref) {
3 if (!barrierActive || ref.isNull()) return;
4

5 if (Space.isInSpace(Regional.RS, ref)) Regional.regionSpace.traceMarkObject(
remset, ref);

6 else if (Space.isInSpace(Regional.IMMORTAL, ref)) Regional.immortalSpace.
traceObject(remset, ref);

7 else if (Space.isInSpace(Regional.LOS, ref)) Regional.loSpace.traceObject(
remset, ref);

8 else if (Space.isInSpace(Regional.NON_MOVING, ref)) Regional.nonMovingSpace.
traceObject(remset, ref);

9 else if (Space.isInSpace(Regional.SMALL_CODE, ref)) Regional.smallCodeSpace.
traceObject(remset, ref);

10 else if (Space.isInSpace(Regional.LARGE_CODE, ref)) Regional.largeCodeSpace.
traceObject(remset, ref);

11 }

(a) The SATB Barrier which enqueues objects into a SATB buffer

1 @Inline
2 public void objectReferenceWrite(ObjectReference src, Address slot,

ObjectReference tgt, Word metaDataA, Word metaDataB, int mode) {
3 if (barrierActive) checkAndEnqueueReference(slot.loadObjectReference());
4 VM.barriers.objectReferenceWrite(src, tgt, metaDataA, metaDataB, mode);
5 }
6

7 @Inline
8 public boolean objectReferenceTryCompareAndSwap(ObjectReference src, Address

slot, ObjectReference old, ObjectReference tgt, Word metaDataA, Word
metaDataB, int mode) {

9 boolean result = VM.barriers.objectReferenceTryCompareAndSwap(src, old, tgt,
metaDataA, metaDataB, mode);

10 if (barrierActive) checkAndEnqueueReference(old);
11 return result;
12 }
13

14 @Inline
15 public boolean objectReferenceBulkCopy(ObjectReference src, Offset srcOffset,

ObjectReference dst, Offset dstOffset, int bytes) {
16 Address cursor = dst.toAddress().plus(dstOffset);
17 Address limit = cursor.plus(bytes);
18 while (cursor.LT(limit)) {
19 ObjectReference ref = cursor.loadObjectReference();
20 if (barrierActive) checkAndEnqueueReference(ref);
21 cursor = cursor.plus(BYTES_IN_ADDRESS);
22 }
23 return false;
24 }

(b) SATB mutator barriers

Figure 3.4: Snapshot-at-the-beginning barriers
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Figure 3.5: Remembered-set structure

pause time predictor and generational collection. The remembered-set based pointer
updating phase largely reduces the pause time by avoiding full heap tracing when
performing reference updating, by using remembered sets. The pause time predictor
uses a statistical prediction model to make the pause time of each GC more predictable
and most of the time not exceed a soft pause time goal. The generational mode enables
G1 to collect garbage more efficiently by collecting young objects earlier.

3.5.1 Remembered-set

Under the G1 collection policy, the region space further divides regions into fixed
256 B cards for constructing remembered sets.

Figure 3.5 shows the general structure of a remembered-set. The remembered-set
[Hosking and Hudson, 1993] is a data structure for each region to remember cross
region pointers in other regions that pointing to objects in the current region. A
remembered-set for a region is implemented as a list of PerRegionTables. A PerRe-
gionTable in the remembered-set is a bitmap corresponds to a region in the heap. The
bitmap records cards in the corresponding region that contains pointers pointing to
the current region. Each bit in the bitmap corresponds to one card.

The remembered-sets are maintained by the collector and should be updated at
every object field modification operation to ensure the correctness of the remembered-
sets.

3.5.2 Concurrent remset refinements

As shown in Figure 3.6, in order to maintain the structure of remembered-sets, a
new barrier called "remembered-set barrier" was involved for each object field modi-
fication action in the Java program. For each object field modification obj.x = y, the
remembered-set barrier checks whether the pointer y is a cross region pointer (i.e.
not pointing to the region that contains obj). If the check succeeds, the remembered-
set barrier enters a slow path which marks the card containing obj and pushes this
card into a local dirtyCardBuffer. Since the minimum memory allocation unit in the
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1 @Inline
2 void markAndEnqueueCard(Address card) {
3 if (CardTable.attemptToMarkCard(card, true)) {
4 remSetLogBuffer().plus(remSetLogBufferCursor << Constants.

LOG_BYTES_IN_ADDRESS).store(card);
5 remSetLogBufferCursor += 1;
6 if (remSetLogBufferCursor >= REMSET_LOG_BUFFER_SIZE) {
7 enqueueCurrentRSBuffer(true);
8 }
9 }

10 }
11

12 @Inline
13 void checkCrossRegionPointer(ObjectReference src, Address slot, ObjectReference

ref) {
14 Word x = VM.objectModel.objectStartRef(src).toWord();
15 Word y = VM.objectModel.objectStartRef(ref).toWord();
16 Word tmp = x.xor(y).rshl(Region.LOG_BYTES_IN_REGION);
17 if (!tmp.isZero() && Space.isInSpace(G1.G1, ref)) {
18 Address card = Region.Card.of(src);
19 markAndEnqueueCard(card);
20 }
21 }

Figure 3.6: Remembered-set barrier

MMTk metadata space is one page (4 KB), the size of the local dirtyCardBuffer is 1024
cards, instead of 256 cards which are used by the original G1 design.

When the local dirtyCardBuffer is full, the remembered-set barrier pushes the
local dirtyCardBuffer to the global filled RS buffer set. And when the size of the
global filled RS buffer set reaches a threshold of 5 dirtyCardBuffers, a concurrent
remset refinement is triggered. A separate concurrent remset refinement thread
was started to process each dirtyCardBuffer in the globally filled RS buffer set. The
refinement thread scans each card of each dirtyCardBuffer. If the card is marked, it
clears its marking data, linearly scans it for cross-region pointers and updates the
corresponding remembered-set for each cross-region pointer.

The card table

To perform card marking and card linear scanning during concurrent remset refine-
ments, A card table should be used to record the marking data for each card as well
as the offset of the first and the last object for each card. The card table consists of
three parts. a) A bitmap of all cards in the Java heap to record the marking data of
the cards. b) A byte array (i.e. a byte map) to record the offset of the first object for
each card. c) Another byte array to record the offset of the last object for each card.
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Hot cards optimization

During concurrent remset refinements, some cards may be enqueued and scanned
multiple times. This can cause extra computation costs. To avoid such redundant
scanning, a hotness value is assigned for each card. Every scan on a card increases its
hotness value by 1. When the hotness value for a card exceeds a threshold (default is
4), this card is considered as a "hot card". Hot cards are pushed into a separate hot
cards queue and the processing of all the hot cards card is delayed until the start of
the evacuation phase.

3.5.3 Evacuation phase

G1 uses linear scan evacuation, just like the previously mentioned collectors. During
the evacuation phase, the collector linear scans each region in the collection set and
copies live objects to the to-regions.

3.5.4 Remembered set-based pointer updating

By performing concurrent remset refinements, G1 GC can ensure that the structure
of all remembered-sets is always maintained correctly. This enables partial heap
scanning for pointer updating, without full heap tracing.

After the collection set selection phase, the collector first performs a linear scan
over regions in the collection set to evacuate all live objects in the collection set. Then
the collector starts a reference updating phase which considers the root set as the
union of all root objects and objects in the cards that are recorded in the remembered-
sets. During the reference updating phase, instead of performing a full heap tracing
to fix and update all the references in the heap, the collector only scans root objects
and cards in remembered-sets to update references, because all pointers that need to
be updated are either root pointers or those that are remembered in the remembered-
sets.

At the end of the pointer updating phase, same as the full-heap tracing based
pointer updating, the collector frees all the regions in the collection set.

By performing the remembered set based pointer updating, the G1 collector has
the ability to collect any subset of regions in the heap, without scanning the whole
heap. In this way, the GC pause time due to object evacuation can be largely shortened.
Although G1 must still perform a full-heap tracing for marking, it performs this
process concurrently instead of pausing mutators

3.5.5 Pause time predictor

Due to the ability to collect any subset of regions in the heap, G1 can further make
the pause time of each GC predictable by choosing the number of regions in the
collection set.

The total works to do during the stop-the-world evacuation are fixed: dirty cards
refinements, object evacuation and linear scan cards for updating references. This
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brings us the ability to model the pause time for each GC, in terms of the remembered-
set size and live bytes of each region in the collection set.

My implementation reuses the pause time prediction model proposed in the
original G1 paper [Detlefs et al., 2004].

TCS = Tf ixed + Tcard ∗ NdirtyCard + ∑
r∈CS

(Trs card ∗ rsSize(r) + Tcopy ∗ liveBytes(r))

Where

TCS is the total predicted pause time
Tf ixed is the time of all extra works involved during the GC pause
Tcard is the time of linear scanning a card for remembered set refinements
NdirtyCard is the number of dirty cards that have to be processed before evacuation
Trs card is the time to linearly scan a card in the remembered-set for evacuation
rsSize(r) is the number of cards in the remembered-set of region r
Tcopy is the time for evacuating a byte
liveBytes(r) is the total live bytes for evacuation

By using this pause time prediction model, during each collection set selection
phase, the collector can choose the number of regions in the collection set to meet a
user-defined pause time goal. This mechanism makes the pause time more predictable
and being controlled around a reasonable value.

3.5.6 Generational G1

The original design of G1 GC comes with a generational mode which collects newly
allocated regions only during young GCs [Detlefs et al., 2004]. The generational
collection is based on an assumption that the newly allocated objects have higher
chances to become garbage compared to those objects that are survived after several
GCs.

Based on this assumption on the age of objects, the Generational G1 collector
divides the regions into three generations: Eden, Survivor and Old generation, as
shown in Figure 3.7. Eden regions contain objects that are newly allocated since
the end of last GC. Survivor regions contain objects that are survived from the last
GC. And Old regions contain objects that are survived after several GCs. During the
allocation process, the newly allocated regions are marked as Eden regions. When
the ratio of the number of Eden regions exceeds a newSizeRatio threshold, a young
GC is triggered which only collects all Eden and Survivor regions. During young
GCs, live objects in Eden regions are evacuated to Survivor regions and objects in
Survivor regions are evacuated to Old regions. Objects evacuated to Survivor regions
will still be included as part of the collection set during the next young GC.
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Figure 3.7: Generational G1 heap structure

Young GC

Young GCs are just simple nursery GCs that only evacuate objects without a marking
phase. There is no marking phase during a young GC. Instead of determining the
liveness of objects by marking, during young GCs the collector considers all objects
that are not in the to-space (i.e. the collection set) as live. The collector simply starts
from the root objects and remembered-sets to recursively evacuate live objects out of
the collection-set.

Mixed GC

When the allocated memory in the heap exceeds some threshold, the generational G1
will initiate a concurrent marking phase for a mixed GC just likes the non-generational
G1. When the to-space is exhausted during mixed GCs, G1 switches to a stop-the-
world full GC.

Pause time predictor for young GCs

To meet the soft pause time goal for young GCs, the collector updates the value of
newSizeRatio at the end of every young GC to find a more appropriate Eden size ratio.
Then the collector can perform better in meeting the pause time goal during future
young GCs.

3.6 Shenandoah GC

Shenandoah GC is an experimental garbage collector and is originally implemented
on OpenJDK [Flood et al., 2016]. Shenandoah GC is designed to reduce GC pause
times for large heaps and tries to make the GC pause time not proportional to the
heap size.

When the heap occupancy reaches a threshold ratio (default is 20%), the Shenan-
doah GC triggers a concurrent GC cycle, starting from a concurrent marking phase.
The concurrent marking phase also uses the Snapshot-at-the-beginning algorithm,
which is similar to the G1 GC and the concurrent-marking region-based GC. After
the concurrent marking phase is a concurrent remembered-set selection phase which
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is the same as the stop-the-world remembered-set selection phase but runs concur-
rently, without pausing the mutators. The third phase is the concurrent evacuation
phase. Shenandoah GC uses the Brooks-style indirection pointer [Flood et al., 2016;
Brooks, 1984] to evacuate objects in to-space concurrently. The fourth phase is the
concurrent reference updating phase, which also perform a full heap tracing, like the
stop-the-world reference updating phase, but runs concurrently, under the help of
the Brooks-style indirection pointers.

By performing the marking, evacuation and pointer updating phases run con-
currently, Shenandoah GC performs most of the heap scanning work concurrently,
without pausing mutators. In this way, Shenandoah GC can have very low pause
times and the pause time is not proportional to the heap size.

3.6.1 Brooks indirection barrier

The Brooks-style indirection pointer is a pointer stored in the Java object header
to record the forwarding status of a Java object [Brooks, 1984]. This requires the
Shenandoah collector in JikesRVM to reserve an extra GC word for each Java object
[Flood et al., 2016]. During object allocation, after a new Java object is allocated, the
indirection pointer of this Java object is initialized to point to the object itself.

During the concurrent evacuation phase, after an object is forwarded, the collector
atomically updates the indirection pointer of the old copy to point to the new copy.
Mutators should always perform modification actions on the new copy of the object,
by following the indirection pointer in the object header.

By using the Brooks-style indirection pointers, the mutators can read and modify
objects (by following the indirection pointers) while the collector can also evacuate
these objects concurrently.

Read Barriers

The read operations of each object field obj.x, including the object reference fields
and the primitive fields, must go through the object’s indirection pointer. Figure 3.8
shows the read barrier that is inserted before every object field read instruction. The
barrier always unconditionally extracts the indirection pointer from the object header
and reads the object field value from the object that the indirection pointer points to.

If the object is not in the collection set or is in the collection set but is not for-
warded, reading data from its original copy is safe since there is no other copies
of the object at the time the object field read happens. If the object is forwarded,
its indirection pointer points to the new copy of the object. Then by following the
indirection pointer, the mutator will always read data from the object’s new copy.

Write Barriers

Since the mutator should always meet the "write in the to space" invariant, it is not
safe for mutators to write objects just by following the indirection pointers. If a
mutator is trying to update an object while a collector thread is also copying this
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1 // class ShenandoahMutator
2

3 @Inline
4 public ObjectReference getForwardingPointer(ObjectReference object) {
5 return ForwardingWord.extractForwardingPointer(object);
6 }
7

8 @Inline
9 public ObjectReference objectReferenceRead(ObjectReference src, Address slot,

Word metaDataA, Word metaDataB, int mode) {
10 return VM.barriers.objectReferenceRead(getForwardingPointer(src), metaDataA,

metaDataB, mode);
11 }
12

13 // class ForwardingWord
14

15 @Inline
16 public static ObjectReference extractForwardingPointer(ObjectReference oldObject

) {
17 return oldObject.toAddress().loadWord(FORWARDING_POINTER_OFFSET).and(

FORWARDING_MASK.not()).toAddress().toObjectReference();
18 }

Figure 3.8: Brooks read barrier

object, the write operation will only perform on the old copy and the new copy may
still contain the old data, because the indirection pointer is still pointing to the old
copy when the evacuation of this object is still in progress.

To resolve this problem, the write barrier used in Shenandoah GC is different
from the read barrier. As shown in Figure 3.9, before the mutator performs the
object field write operation on an object that is in the collection set, the mutator
first checks whether the indirection pointer of the object is marked as FORWARDED or
BEING_FORWARDED. If the object is forwarded, then the mutator follows the indirection
pointer to perform the write operation on the new copy. If the object is marked
as NOT_FORWARDED, the mutator awaits until the object is forwarded to get the correct
indirection pointer to the new copy. If the object is marked as not forwarded, the
mutator takes the responsibility for forwarding this object. Under such situation, the
mutator copies this object and updates the indirection pointer, just like the forwarding
process that the collector does.

After the mutator takes responsibility for forwarding unforwarded from-space
objects, the mutator meets the "write in the to space" invariant.

3.6.2 Concurrent evacuation

The evacuation phase is done mostly concurrently. Before concurrent evacuation, the
collector first collects and evacuates all root objects in a short stop-the-world pause.
Then during the concurrent evacuation phase, the collector scans each region in the
collection set to evacuate all live objects and atomically set their indirection pointers.
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1 @Inline
2 public ObjectReference getForwardingPointerOnWrite(ObjectReference object) {
3 if (brooksWriteBarrierActive) {
4 if (isInCollectionSet(object)) {
5 ObjectReference newObject;
6 Word priorStatusWord = ForwardingWord.attemptToForward(object);
7 if (ForwardingWord.stateIsForwardedOrBeingForwarded(priorStatusWord)) {
8 // The object is forwarded by other threads
9 newObject = ForwardingWord.spinAndGetForwardedObject(object,

priorStatusWord);
10 } else {
11 // Forward this object before write
12 newObject = ForwardingWord.forwardObjectWithinMutatorContext(object,

ALLOC_RS);
13 }
14 return newObject;
15 } else {
16 return object;
17 }
18 } else {
19 return getForwardingPointer(object);
20 }
21 }
22

23 @Inline
24 public void objectReferenceWrite(ObjectReference src, Address slot,

ObjectReference tgt, Word metaDataA, Word metaDataB, int mode) {
25 ObjectReference newSrc = getForwardingPointerOnWrite(src);
26 VM.barriers.objectReferenceWrite(newSrc, tgt, metaDataA, metaDataB, mode);
27 }

Figure 3.9: Brooks write barrier



§3.6 Shenandoah GC 31

1 @Override
2 @Inline
3 public void processEdge(ObjectReference source, Address slot) {
4 ObjectReference oldObject, newObject;
5 do {
6 oldObject = slot.prepareObjectReference();
7 newObject = traceObject(oldObject);
8 if (oldObject.toAddress().EQ(newObject.toAddress())) return;
9 } while (!slot.attempt(oldObject, newObject));

10 }

Figure 3.10: Concurrent update references

JikesRVM has its own implementation of object forwarding functions, but it stores
the forwarding pointer into the status word in the object header. But by using the
Brooks-style indirection pointer, all objects should always have a valid indirection
pointer stored in the header, which will override other status information, e.g. lock
and dynamic hash status. So I use a new implementation of object forwarding
functions which extends the Java header by one word and stores the indirection
pointer in this extra word.

Monitor objects

Monitor objects are handled specially in the JikesRVM implementation of the Shenan-
doah GC. In JikesRVM, the JVM monitorenter and monitorexit instructions do not
trigger read barriers when locking objects, which can cause inconsistencies in the lock
status of the object. I modified the JikesRVM’s monitor lock and unlock code to make
them trigger the read barriers when necessary.

3.6.3 Concurrent updating references

Shenandoah GC also performs the update references phase concurrently. The imple-
mentation is similar to the concurrent marking phase, but in addition to concurrently
marking objects again, the collector also updates the object reference fields for each
object and makes them point the correct object.

Since the Java program is running during the concurrent reference updating
phase, unconditionally updatgin object reference fields may cause races. So instead
of unconditionally updating pointers which is used in the previous stop-the-world
GCs, I modified the procedure to perform atomic pointer updating, as shown in
Figure 3.10, to avoid races.

Object comparisons

Since the mutator can load an address of either the old or new copy of a same object
from the heap, simply comparing addresses of objects for the if_acmpeq and if_acmpne
instruction can cause false negatives. I implemented a new object comparison barrier,
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1 @Inline
2 public boolean objectReferenceCompare(ObjectReference lhs, ObjectReference rhs)

{
3 if (lhs.toAddress().NE(rhs.toAddress()) && getForwardingPointer(lhs).toAddress

().NE(getForwardingPointer(rhs).toAddress())) {
4 return false;
5 } else {
6 return true;
7 }
8 }

Figure 3.11: Object comparison barrier

as shown in Figure 3.11, to compare object references. Instead of simply compar-
ing the addresses of the objects, the object comparison barrier also compares the
indirection pointers of the objects.

The comparison of the original object addresses is still required. If we only
compare the indirection pointers a′ == b′, the GC can update the indirection pointer
b′ to a new address after the barrier loads a′ and before loads b′, which can still cause
false negatives if a and b refer to the same object.

The object comparison barrier is implemented for both JikesRVM’s baseline and
optimizing compiler.

Object compare and swaps

When the Java mutator is performing object reference compare and swap operations,
the collector threads can also update the pointers contained by the slot that the CAS
is operating on. Under such a situation, the CAS may fail even when there is only
one mutator thread updating the slot, since the old value is updated by the collector
concurrently.

Figure 3.12 shows the object compare and swap barrier used in Shenandoah GC.
Instead of simply performing compare and swap on the old object, after the CAS
with the old object failed, another CAS operation is performed where the old value is
the indirection pointer of the old object. Now the overall CAS operation still succeeds
if the old value is replaced with tha address of a new copy of the same object.

3.6.4 Concurrent cleanup

The last phase of Shenandoah GC is the concurrent cleanup phase, during which the
collector concurrently visits each region in the collection set, clears their metadata and
releases these regions. This phase also runs concurrently without pausing mutators.

3.7 Summary

This chapter identifies, explores and discusses the relationship of the G1 family of
garbage collectors. Then each step of the implementation of G1 family of collectors
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1 @Inline
2 public boolean objectReferenceTryCompareAndSwap(ObjectReference src, Address

slot, ObjectReference old, ObjectReference tgt, Word metaDataA, Word
metaDataB, int mode) {

3 boolean result = VM.barriers.objectReferenceTryCompareAndSwap(src, old, tgt,
metaDataA, metaDataB, mode);

4 if (!result) {
5 result = VM.barriers.objectReferenceTryCompareAndSwap(src,

getForwardingPointer(old), tgt, metaDataA, metaDataB, mode);
6 }
7 return result;
8 }

Figure 3.12: Object reference compare and swap barrier

(except C4 GC and ZGC) and the involved GC algorithms are also explained and
discussed, as well as a little bit further discussion of the pros and cons for each
structural component at an algorithmic level.

However, the pros and cons of several algorithms discussed in this chapter are
only discussed abstractly. The real-world GC performance impact caused by these
improvements still remains unexplored. So to explore the real-world GC performance,
in the next chapter, I perform several performance measurements on a benchmark
suite that represents the real-world Java programs, as well as some discussion of the
evaluation results.
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Chapter 4

Performance Evaluation

Answering the question of GC performance under a real-world setting, this chapter
discusses the performance evaluation I undertook for analyzing the Garbage-first
family of garbage collectors. This chapter will first describe the software and hard-
ware platform I used for benchmarking. Then the detailed evaluation process and
results of pause time, concurrency overhead, and remembered-set footprint will be
presented and discussed.

Section 4.1 and 4.2 introduce the experimental platform and software involved for
the performance measurements. Section 4.3 discusses the general evaluation method
used to evaluate the performance of all the interested metrics. Section 4.4, 4.5 and
4.6 discusses the detailed measurement steps involved to evaluate the GC pause time,
concurrency overhead and remembered set size respectively, as well as figures of the
results and the resulting discussions.

4.1 The DaCapo Benchmarks

The DaCapo Benchmark Suite is a tool for Java benchmarking and contains a set of
open-sourced real-world programs with a high memory load.

The DaCapo benchmarks are frequently used during the development of the
G1 family of garbage collectors in Chapter 3, as a validation program to verify the
correctness of the collectors under a real-world setting.

I also performed pause time evaluations and concurrency overhead evaluation on
all of the following DaCapo Benchmark suites. The benchmarking suites I used for
evaluation includes [Blackburn et al., 2006]:

• antlr Parses one or more grammar files and generates a parser and lexical
analyzer for each.

• luindex Uses lucene to indexes a set of documents; the works of Shakespeare
and the King James Bible.

• bloat Performs a number of optimizations and analysis on Java bytecode files.

• hsqldb Executes a JDBCbench-like in-memory benchmark, executing a number
of transactions against a model of a banking application.

35
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Machine bobcat rat fisher ox

CPU Info AMD FX-8320 Intel i7-4770 Intel i7-6700k Intel Xeon Gold 5118

Clock 3.5GHz 3.4GHz 4GHz 2.3GHz

Processors 4/8 4/8 4/8 4/48/96

L2 Cache 4MB 4MB 1MB 48MB

RAM 8GB 8GB 16GB 512GB

Table 4.1: Machines used for development and evaluation.

• lusearch Uses lucene to do a text search of keywords over a corpus of data
comprising the works of Shakespeare and the King James Bible.

• pmd Analyzes a set of Java classes for a range of source code problems.

• xalan Transforms XML documents into HTML.

• eclipse executes some of the (non-gui) jdt performance tests for the Eclipse IDE.

• avrora Simulates a number of programs run on a grid of AVR microcontrollers.

• sunflow Renders a set of images using ray tracing.

Except antlr, eclipse, fop, hsqldb and pmd are coming from DaCapo 2006, all the other
benchmarks are coming from the DaCapo version 9.12. Some of the implemented
G1 family of collectors can cause some bugs when running on tomcat, batik and bloat
benchmarks so I did not include these benchmarks when performing measurements.

By performing evaluations on a wide range of benchmarking suites which rep-
resents different class of real-world programs, it is more possible to understand the
pros and cons of the G1 family of collectors under a real-world setting.

4.2 Hardware Platform

During the implementation and evaluation of all the G1 family of garbage collectors
in Chapter 3, a list of machines with a variety on CPU types, clock, number of
processors and the size of cache and memory were involved, as shown in Table 4.1.

As part of the implementation process, by executing the benchmarks on these
different machines, I have the ability to statistically verify the correctness of the pre-
viously implemented garbage collectors (in Chapter 3) and make sure they perform
as intended in a real-world setting.

For further performance evaluation, the "fisher" machine was used for the final
benchmarking.
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4.3 General Measurement Methodology

I perform both GC pause time and concurrency overhead measurements on the
optimized build of the JikesRVM, with 6 different builds for the 6 GCs to be measured
respectively. To collect measurement results, I executed all 10 DaCapo benchmarks
discussed in Section 4.1 on all 6 collectors, with respect to 4 different heap sizes,
637 MB, 939 MB, 1414 MB, and 1971 MB respectively. This is abnormal since usually
heap sizes are different for each benchmark. But by using difference heap sizes for
difference benchmarks, it is meaningless to evaluate and compare GC pause time
over different heap sizes. So in this thesis I assign each benchmark the same heap
size so that I can later compare GC pause time among difference collectors when
targeting the same heap size.

Each benchmark suite is executed 10 times for each configuration of (GC, HeapSize)
to collect more precise results and avoid the error due to some unexpected environ-
mental fluctuations.

4.3.1 Reducing non-determinisms

The adaptive compiler can have non-deterministic behaviors when performing dy-
namic compilations and optimizations to the executing Java program. In order to
minimize such non-deterministic behaviors and make the program execute faster, I
performed the measurement methodology called "warmup replay", which was firstly
introduced by Yang et al. [2012], as a replacement of the "pseudoadaptive approach"
introduced by Blackburn and Hosking [2004].

This methodology performs an execution of 10 iterations for each benchmark
suite to collect run time execution information before the measurement, to assist with
more optimized compilation. Then during measurements, after the first iteration of
warmups, JikesRVM compiles all methods with the advice information generated
previously to avoid any re-compilation behaviors during the following measurement
iteration.

I ran all of the 10 benchmark suites discussed in Section 4.1 on each collector for
10 times, with 2 times of warmup execution before the timing iteration. JikesRVM
performs warmup-replay compilation at the end of the first warmup iteration.

4.4 Pause Time Evaluation

This section describes the steps took for pause time evaluation as well as all the
evaluation results and discussions.

4.4.1 Mutator latency timer

In order to perform more careful analysis on the mutator pause times, instead of
simply calculating the time starting from the first stop-the-world phase to the last



38 Performance Evaluation

stop-the-world phase during each GC cycle, I implemented a mutator latency timer
to perform a more precise calculation of mutator pause times.

The mutator latency timer contains a static "three-dimensional" array:
static long[] LOGS = long[THREAD_ID * EVENT_ID * NUM_LOGS]

This array is statically allocated within the VM Space to record the timestamp (in
nanoseconds) of each event and each mutator. The first dimension is the thread id of
all mutators. The second dimension is the event id. The third dimensional NUM_LOGS
is the max number of logs of one (eventid, eventid) combination and is currently set
to 1024. Particularly under the current context, to measure the pause time for each
mutator, two events, MUTATOR_PAUSE and MUTATOR_RESUME are defined to record the time
when a mutator thread starts waiting for GC complete and the time when a mutator
gets resumed from a GC pause for execution.

In JikesRVM, every time the program reaches a yieldpoint, the mutator thread
checks for GC requests and starts waiting if necessary , which will trigger a MUTATOR_PAUSE
event if it should be paused. After a stop-the-world cycle is finished, before contin-
uing for further execution, it triggers a MUTATOR_RESUME event immediately after gets
resumed

At the end of the benchmark execution, the mutator latency timer will dump all
the data in the LOGS array to the print buffer for further data analysis.

As an output of the analysis of the overhead data, I report the minimum, 50%,
and 95 percentile mutator pause time for each GC, each benchmark suite and each
heap size.

4.4.2 MMTk harness callbacks

During each iteration of benchmarking, the DaCapo benchmark has several warm-up
executions which will run the benchmark suite a few times to warm up the cache
and JVM. Then the DaCapo benchmark will start the actual benchmarking run. I
use a probe called MMTKCallback which will call the org.mmtk.plan.Plan.harnessBegin
method before the start of the final benchmarking execution and call the org.mmtk.plan.Plan.harnessEnd
after the final benchmarking execution. Based on this, the two callbacks harnessBegin
and harnessEnd are used to calculate the inform the mutator latency timer to start
recording logs or dump all recorded logs.

4.4.3 Results

Table 4.2 shows the results of the GC latency time evaluated on all 6 garbage collectors
discussed in Section 3. Specifically, the average, minimum, medium, 95% percentile
and maximum GC latency time nanoseconds for each collector and each heap size,
as well as the overall GC latency time for each garbage collector were reported.

To present the results more clearly, Figure 4.1 shows the benchmarking results
as a set of box plots with log-scaled pause time in nanoseconds as the y-axis. Each
subfigure shows the overall GC latency time for each garbage collection algorithm.
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Heap Size = 637MB
Pause time (ms) Mean Min Mid 95% Max

Regional 85.74 37.92 73.26 138.55 416.36
Regional

Linear-scan evacuation
110.06 55.28 101.05 160.78 424.84

Regional
Concurrent marking 11.36 0.04 1.51 67.06 279.70
Garbage-first
Non-generational 9.51 0.04 1.79 46.69 548.71

Garbage-first
Generational

10.36 0.04 3.92 44.21 364.37
Shenandoah 4.12 0.04 1.11 9.36 488.65

Heap Size = 939MB
Pause time (ms) Mean Min Mid 95% Max

Regional 94.40 39.07 82.65 137.98 401.14
Regional

Linear-scan evacuation
117.74 53.42 107.33 171.03 545.52

Regional
Concurrent marking 18.74 0.04 4.50 74.76 345.44
Garbage-first
Non-generational 11.52 0.04 4.46 45.52 803.90

Garbage-first
Generational

18.45 0.04 13.63 50.73 1198.33
Shenandoah 3.57 0.04 1.02 10.35 385.64

Heap Size = 1414MB
Pause time (ms) Mean Min Mid 95% Max

Regional 100.92 38.83 88.16 187.50 449.50
Regional

Linear-scan evacuation
131.52 51.83 121.82 197.04 463.21

Regional
Concurrent marking 21.18 0.04 4.43 82.69 281.24
Garbage-first
Non-generational 13.40 0.03 4.20 43.27 926.35

Garbage-first
Generational

27.82 0.04 25.98 54.36 820.84
Shenandoah 5.28 0.04 1.50 13.63 549.97

Heap Size = 1971MB
Pause time (ms) Mean Min Mid 95% Max

Regional 114.97 39.53 105.31 215.11 415.50
Regional

Linear-scan evacuation
150.84 56.66 138.37 234.80 420.24

Regional
Concurrent marking 23.98 0.04 4.19 93.37 310.79
Garbage-first
Non-generational 15.52 0.04 4.38 46.07 2010.66

Garbage-first
Generational

29.20 0.04 25.52 52.58 487.91
Shenandoah 5.55 0.04 1.08 18.06 613.34

Table 4.2: Results of the GC pause time
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Figure 4.1: Pause times of 6 collectors

Overheads (ns) Garbage-first
Non-generational

Garbage-first
Generational

637M 10.26%
±26.26%

5.72%
±15.21%

939M 5.71%
±14.52%

2.24%
± 7.74%

1414M 4.75%
±10.95%

2.38%
± 6.76%

1971M 9.41%
±46.04%

2.21%
± 6.94%

Overall 9.56%
± 7.09%

8.36%
± 6.99%

Table 4.3: Full GCs as a percentage of all GCs
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4.4.4 Discussion

As the most simple form of the G1 family of GC, the naive region-based collector,
performs stop-the-world GC during each GC cycle. Work for each GC cycle includes
marking all live objects and walking over the object graph to evacuate objects that
are in a set of selected memory regions. Two full heap tracings are performed during
each GC cycle, which make the GC pause time longer. The average pause time for this
naive region-based GC generally ranges from 104 to 147 milliseconds and increases
as the heap size increases.

By performing linear scan based evacuation, the linear-scan evacuation version of
the region-based GC perform a separate linear scan over the collection set to evacuate
live objects. In this way, the collector generally has longer pause times, which ranges
from 110.1 to 150.8 milliseconds on average and increases as the heap size increases.
Linear scan evacuation increases the 95 percentile GC pause time by 15.8%. Although
performing linear scan evacuation can increase the GC pause time, this independent
phase is an important component for G1 GC and the Shenandoah GC.

After performing concurrent marking in addition to the linear scan based evac-
uation, the resulting concurrent-marking region-based collector splits the pause for
marking into several smaller pauses and performs most of the marking work con-
currently without stopping the mutators. This makes the total pause time for a GC
smaller and significantly reduces the 95 percentile GC pause time by 58.2%.

The non-generational G1 reduces the collection size to meet a pause time goal
of 100 ms. Based on the benchmarking results, at least 95% of the pauses are less
than the pre-defined pause time goal. G1 uses remembered sets to update references
instead of performing a full heap tracing. For heap sizes of 637 MB, 939 MB, 1414 MB,
and 1971 MB, this partial heap scanning technique reduces 95 percentile pause time
by 30.4%, 39.1%, 47.7% and 50.7% respectively. This reveals that the remembered
sets based references updating has more benefits on larger heaps. However, the full
GC becomes more expensive because of the large work required to update all the
remembered sets in the heap, which usually results in a pause time ranges from 0.5 s
to 1.0 s.

By using the generational G1 GC, young/nursery GCs are usually triggered sev-
eral times before a major GC happens. Also, nursery GCs are fully stop-the-world
and always tries to collect as much nursery regions as possible, as long as the pause
time does not exceed the pre-defined pause time goal. This results in the increase of
GC pause times. However, the generational collection can largely reduce the proba-
bility of G1 GC falling back to full GCs. As shown in Table 4.3, I measured the overall
number of full GCs a precentage of all GCs for both non-generational and genera-
tional G1 GC on four different heap sizes, with a 95% confidence interval reported as
well. Based on the results, with the generational mode, G1 reduces the probability of
falling back to full GC by 12.5%.

The Shenandoah GC performs marking, evacuation and reference updating con-
currently, this significantly reduces the pause time by 84.1%, compared to the concur-
rent marking version of the regional collector. Based on the benchmarking results at
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Overheads Average 95% CI

637M 43.47% ±134.87%
939M 23.97% ±68.19%
1414M 11.01% ±23.99%
1971M 9.33% ±19.93%
Overall 22.00% ±81.90%

Table 4.4: Concurrent marking overhead

least 95% of the GC pauses do not exceed 18 milliseconds. However, full GCs can
still result in pauses of around 500 to 600 milliseconds, which are longer than the
concurrent-marking regional collector due to the Brooks barrier involved during the
evacuation phase, which performance will be discussed in Section 4.5

4.5 Concurrency overhead Evaluation

This section describes the steps took for concurrency overhead evaluation. These
concurrency overheads represent the mutator throughput reduction due to the use of
related concurrent algorithms (e.g. concurrent marking and evacuation). This section
also performs discussions of all the evaluation results.

4.5.1 Methodology

The concurrency percentage overhead is modeled as follows:

Overhead =
|Concurrency overhead−Mutator time without the specific concurrent phase|

Mutator time without the specific concurrent phase
∗ 100%

The mutator execution time is calculated as the execution time of the benchmark-
ing program with stop-the-world GC time excluded.

As discussed in Chapter 3, I implemented the Garbage-first family of collectors
by performing progressive improvements over a simple region-based collector. In
this way, after performing an algorithmic improvement over a collector, we can mea-
sure the overhead of the newly involved concurrent jobs or other technologies by
comparing the benchmarking results of the old collector and the new collector.

As an output of the analysis of the overhead data, the average Concurrency
overhead for each GC, each benchmark suite, each heap size and each concurrent
phase this project used are reported as well as their corresponding 95% confidence
interval. The overall average overhead and its 95% confidence interval for each
concurrent job are also reported.
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Overheads Average 95% CI

637M 66.84% ±146.32%
939M 53.76% ±99.08%
1414M 62.19% ±117.91%
1971M 55.82% ±133.88%
Overall 59.65% ±125.98%

Table 4.5: Concurrent remembered-set refinement overhead

4.5.2 Concurrent marking overhead

Table 4.4 shows the overheads of concurrent marking as well as their 95% confidence
interval on different heap sizes. Based on the evaluation data, the concurrent-marking
has an overhead of 22.0% on average.

The SATB barrier used by the concurrent marking algorithm is a deletion barrier.
Furing concurrent marking, the barrier will trace and mark all deleted nodes (i.e.
the old object field when performing assignment obj.x = y) in the object graph. A
major difference between the SATB barrier used in these region-based collectors and
the concurrent mark-sweep GC is that the concurrent mark-sweep GC only marks
objects when tracing an object (the mark data is usually stored in the object header).
But the G1 family of collectors have to count the live bytes for each region to assist
with further collection set selection. Also, these G1 family of collectors use off-heap
mark table instead of object header to store liveness data. For these reasons, a lot of
atomic operations are involved during concurrent marking which further reduces the
mutator throughput, compared to the concurrent mark-sweep GC.

4.5.3 Concurrent remembered-set refinement overhead

Table 4.5 shows the overheads of the Concurrent remembered-set refinement overhead
as well as their 95% confidence interval on different heap sizes.

Node that this result represents the concurrency overhead of both remembered-
set barriers and concurrent remset refinements. The design of the remembered-set
barriers and the remset refinement process follows the original design of G1 that only
1 thread is used to process the dirty card buffer and it only awakes for processing
when the card buffer is full.

Based on the measurement results, the overhead of remembered-set refinement
is not low, which is 59.7% on average. This is because the number of threads used
for remset refinement is not enough and the dirty card buffer always becomes full.
Under such situation, mutators have to take part of the responsibility to process cards
in their local buffer, which significantly reduces its throughput.

A possible fix, which has already been introduced into the OpenJDK’s G1 imple-
mentation, is to spawn more threads for remset refinement, and refinement threads
can start processing cards earlier, not necessarily need to wait until the global card
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Overheads Average 95% CI

637M 99.71% ±118.92%
939M 92.63% ±98.99%
1414M 82.15% ±87.11%
1971M 66.98% ±80.07%
Overall 85.46% ±100.44%

Table 4.6: Concurrent evacuation overhead

buffer is full.

4.5.4 Concurrent evacuation overhead

Table 4.6 shows the overheads of the Concurrent evacuation overhead as well as their
95% confidence interval on different heap sizes. On average, by using concurrent
evacuation, the concurrency overhead of Shenandoah GC is increased by 85.5%.

This is a significantly high overhead. The reason for causing this is the use of "use
barriers" which insert a barrier every time the JVM wants to access and use an object
reference. In addition, as described in Section 3.6, during the concurrent evacuation
phase, an extra barrier is used for every object comparison operation to ensure the
correct comparison between the forwarded and unforwarded pointer of the same
object reference, which further increases the concurrency overhead.

Another reason for causing this high overhead is that I could not fix a data race
problem happens during concurrent evacuation, due to the time scope of this project.
Instead I implemented a work-around to prevent this problem from happening. This
work-around has bad mutator performance since it requires addition works (e.g.
forward objects if necessary) to be done in read barriers. Although the overhead
of this work-around is not measured, it is expected to contribute to most of the
concurrent evacuation overhead shown in Table 4.6. Plans to fix this problem will be
discussed in Section 5.1 as a part of the future work.

However, in order to perform concurrent evacuation and reference updating,
the handling of forwarded and unforwarded pointers is necessary. One possible
improvement is to use "colored pointers" to ensure the CPU will always access the
new version of the object pointer before using this pointer, instead of go through the
indirection pointer every time the mutator access the object.

4.6 Remembered-Set Size

As part of the evaluation of the G1 collector, I measured the remembered-set footprint
of G1 GC.

The implementation of remembered-set follows the design of the original Open-
JDK implementation, which uses a list of PerRegionTable as remembered-set for each
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region. Each PerRegionTable remembers cards in one foreign region. PerRegionTable is
implemented as a bit table where each bit corresponds to a card in the corresponding
foreign region.

Under such implementation, theoretically the space complexity for remembered-
sets is O(N2) where N is the number of regions in the heap. Because each of total
N regions has its own remembered-set and each remembered-set consists of N − 1
PerRegionTables to remember cards in other N − 1 regions. However, the practical
space performance of such remembered-set structure has never been formally mea-
sured.

Due to the same remembered-set structure, measurements for the remembered-
set footprint of JikesRVM’s G1 implementation can reflect the footprint of the Open-
JDK’s implementation, which can help us understand the space performance of G1’s
remembered-sets under a real-world setting.

4.6.1 Evaluation metrics

In order to measure the remembered-set footprint carefully, two metrics are proposed
to reflect the space performance of remembered-sets:

Committed Memory Ratio is the ratio of the memory allocated for building
remembered-sets versus the total committed memory at some specific execution point.
This metric reflects the proportion of the heap that remembered-sets are actually take
up.

Committed Memory Ratio =
Committed memory for remset

Total committed memory
∗ 100%

Utilization Ratio is the ratio of the memory (in bits) actually used for remembered-
sets to remember the cards, versus the total memory allocated for remembered-sets.
This metric reflects the proportion of the remembered-sets that is actually in use and
not be wasted.

Utilization Ratio =
Bits actually used for store cards

Committed memory for remset in Bits
∗ 100%

4.6.2 Results & discussion

Remembered-set size is always changing during the execution of the program. Plus,
as the remembered-set refinement thread may still processing cards, the remembered-
set can be incomplete and may not remember all the corresponding cards. Because
in such situation some cards are still waiting to be processed and write to some
remembered-sets.

For this reason, I measure the remembered-set footprint at the start of each GC
pause, immediately after the stop-the-world remembered-set refinement is finished.
At this time the remembered-set footprint reaches a steady state, the remembered-set
is complete and contains all the corresponding cards under current heap state.
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Heap Size = 637MB
Footprint Committed Memory Utilization

Min Mean Max Min Mean Max

Garbage-first
Non-generational 2.88% 8.30%

±6.09% 30.64% 0.08% 2.35%
±7.60% 27.97%

Garbage-first
Generational

2.77% 8.69%
±6.68% 23.44% 0.09% 2.14%

±4.69% 19.70%

Heap Size = 939MB
Footprint Committed Memory Utilization

Min Mean Max Min Mean Max

Garbage-first
Non-generational 2.61% 8.98%

±9.08% 38.23% 0.07% 1.82%
±6.09% 21.53%

Garbage-first
Generational

2.26% 9.77%
±7.63% 26.08% 0.08% 2.19%

±4.81% 16.98%

Heap Size = 1414MB
Footprint Committed Memory Utilization

Min Mean Max Min Mean Max

Garbage-first
Non-generational 2.36% 7.98%

±6.10% 36.76% 0.03% 1.11%
±3.67% 21.50%

Garbage-first
Generational

3.18% 9.85%
±6.93% 23.62% 0.08% 2.00%

±4.02% 22.55%

Heap Size = 1971MB
Footprint Committed Memory Utilization

Min Mean Max Min Mean Max

Garbage-first
Non-generational 2.25% 7.98%

±6.02% 37.00% 0.03% 0.91%
±2.76% 20.85%

Garbage-first
Generational

3.22% 10.15%
±6.76% 21.72% 0.08% 2.81%

±6.64% 22.00%

Overall
Footprint Committed Memory Utilization

Min Mean Max Min Mean Max

Garbage-first
Non-generational 2.25% 8.36%

±6.99% 38.23% 0.03% 1.74%
±6.09% 27.97%

Garbage-first
Generational

2.26% 9.56%
±7.09% 26.08% 0.08% 2.27%

±5.14% 22.55%

Table 4.7: Remembered set footprint
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As shown in Table 4.7, I measured both proposed metrics on both non-generational
and generational G1 GC, with four different heap sizes. For each kind of G1 GC and
each heap size, I report the minimum value, maximum value and mean value with
95% confidence interval for both committed memory ratio and utilization ratio.

Based on the footprint data, we can see that for generational G1 Gc, an average
9.6% of the committed memory is allocated for building remembered-sets, with
a maximum proportion of 38.2%. For non-generational G1 GC the proportion of
committed memory is 8.4% on average. Which means that remembered-sets are
taking up too much memory in the heap. Also, the memory usage (i.e. utilization) for
remembered-sets is pretty low, only 2.3% of the memory allocated for remembered-
sets is actually used for remembering cards. Taking the high committed memory
ratio into consideration, this means that the space efficiency of the PerRegionTable
based remembered-sets is extremely low. Hence a lot of optimization works should
be done to further reduce the memory waste of remembered-sets.

4.7 Summary

This chapter discusses the measurement methodology and evaluation results of the
GC performance of the G1 family of garbage collectors. This includes the evaluation
of GC pause times and overhead of several concurrent phases. Also, the phenomenon
revealed in the measurement results is carefully discussed.

On the one hand, based on the measurement results, we can see that linear scan
based evacuation increases the work for each GC. Using concurrent marking, con-
current evacuation or remembered set based partial heap scanning can significantly
reduce the pause time for each GC. On the other hand, using concurrent algorithms
can largely increase the mutator throughput reduction.

Also, based on the measurement results, the generational G1 and Shenandoah
GC shows some disappointing performances on GC pause time and concurrency
overheads respectively. However, the time scope of this project is limited. In this way,
there are still much optimization jobs and other works to do in the future, which will
be discussed in Chapter 5.
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Chapter 5

Conclusion

This thesis aimed to identify and explore the underlying relationship among the G1
family of garbage collectors, as well as analyze the performance impact due to each
structural component. The explorations and discussions in the previous chapters have
successfully demonstrated that the relationship among the G1 family of collectors
exists and can impact the GC performance in both positive and negative ways. Hence
the pros and cons of each algorithm and the cause of these phenomena are discussed
based on the evaluation results.

5.1 Future Work

Although this thesis has come to an end, the research on this topic is far from finished.
There is still much work to do after this research project. In general, a few typical
future works are: 1. Resolve a data race problem for Shenandoah GC. 2. Perform
some optimizations, 3. Exploring C4 GC and ZGC. 4. Further G1 related GC research.

5.1.1 Race problem for Shenandoah GC

Currently, the implementation of Shenandoah GC has a data race problem. The muta-
tor is not locking and releasing monitors properly during the concurrent evacuation
phase of the Shenandoah GC, when there can be two different copies of an object
exist in the heap.

I cannot solve this issue due to the time scope of this thesis. But currently, a
workaround is implemented in the Shenandoah GC, with a lower mutator perfor-
mance. This explains the bad performance of the concurrent evacuation overhead we
evaluated in Chapter 4. As the most urgent problem I am facing, I plan to solve this
issue immediately after this project.

5.1.2 Optimizations

As part of the mutator latency results discussed in Chapter 4, the generational G1 cur-
rently does not reveal too much performance gain compared to the non-generational
G1, except the decrease of full GC ratio. It is expected to have more optimizations and
parameter tuning to the generational G1 to make further performance improvements.

49
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I am also considering the possibility to make the implemented Garbage-first and
Shenandoah GC become production ready. One major missing part is the optimiza-
tion since the development of these garbage collectors was following the original
design of these collectors and did not have too many optimizations. After perform-
ing some optimizations on these collectors as well as some additional correctness
verification, the collector can have the possibility to become production ready.

5.1.3 C4 GC and ZGC

Due to the time scope of this project, I did not implement and measure C4 GC and
ZGC. In addition, since JikesRVM and MMTk only support the 32bit address space
but the pointer coloring process in ZGC requires the 64bit address space, which
makes the implementation of ZGC more difficult.

However, as the latest member of the Garbage-first family of collectors, C4 and
ZGC have better pause time performance than G1 GC and Shenandoah GC generally.
By performing most of the GC work concurrently, the pause time of C4 and ZGC are
not proportional to the heap size and are expected to be less than 10 milliseconds
even targeting 100 GB heaps according to Liden and Karlsson [2018]. In this way,
these two collectors are extremely worth for an exploration.

A detailed plan for resolving several hardware incompatibilities should be done
in the future, before starting the implementation of these two collectors.

5.1.4 Future G1 related GC research

The Garbage-first family of garbage collectors have been proved to have high GC
performance, in terms of GC latency and concurrency overheads. However, the
measurement results are still not perfect, which means there is a lot more can be done
to make further GC performance improvements.

For instance, a generational extension can be applied to the Shenandoah GC to
collect young garbage as early as possible to decrease the frequency of falling to
full GCs. This generational mode involves a remembered set to remember object
pointers in mature space pointing to the nursery space. In addition to using the table-
based remembered sets used in G1, the buffer-based remembered sets introduced
by Blackburn and McKinley [2008] can also be explored as a comparison to G1’s
remembered sets.

To summarize, there are still many details of G1 related garbage collection al-
gorithms can be explored. By performing more improvements over the existing
Garbage-first family of collectors (e.g. the Shenandoah GC), it is highly possible for
GC performance to have more improvements.

5.2 Summary

This thesis is aimed to identify and explore the underlying relationship among the
G1 family of garbage collectors, implement them as a series of collectors to reflect
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such relationships and analyze GC performance impact of different algorithmic com-
ponents.

As discussed in chapters 3, the potential relationships among the G1 family of
collectors are successfully identified and discussed. Based on these relationships, this
thesis produces the first implementation of the G1 family of collectors that reflect the
underlying algorithmic relationships. Most of my implementations result in a reason-
able or even exceptional performance in terms of GC pause time and concurrency
overheads. Based on these implementations and measurement results, the pros and
cons, as well as their underlying reasons, are explained and discussed. Hence, the ex-
plorations performed in this thesis can inspire GC designers to reconsider the design
and structure of region-based GC algorithms to make further valuable algorithmic
improvements.

In conclusion, the relationships among the G1 family of collectors exist and have
an impact on GC performance in many ways, including negative performance impacts.
This means that there is still a lot to improve and more research should be done in
this area.
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