
Table of Contents.

1. Introduction . 1
2. Entries, states, sequences and streams 1
3. Overview of autoson commands 7
4. The auadd and aumod commands 8
5. The aurun command . 11
6. The auzap command . 15
7. The aulook command . 16
8. The aulock command . 18
9. Host groups . 19

10. Macro characters and freezing 20
11. Path rewriting . 22
12. The yawn protocol . 25
13. Environment variables . 26
14. The format of the queuefile 26
15. Special jobs . 28
16. Output formats . 29
17. Special considerations for multiuser mode 30
18. System notes . 31
19. The startaurun script . 31
20. The splat program . 32
21. Getting started . 33

Appendix A. Formats for aulook 35

Some of the development of autoson was performed within the Advanced Computa-
tion Systems Cooperative Research Centre, Numerical Algorithms project.

autoson is subject to copyright protection. See the notice on the last page.

The latest version of autoson, including this manual, will always be available via my
home page: http://cs.anu.edu.au/~bdm/index.html

1. Introduction.

autoson is a tool for scheduling processes across a network of UNIX workstations.
It provides a type of distributed batch queue that enables execution of a stream of
processes in a flexible and convenient manner with minimum impact on interactive
users.

autoson can be compiled in two “modes”. In single-user mode, support is given
for a single user who wishes to execute processes on one or more workstations. In
multiuser mode, several users can cooperatively use the same queue.

autoson can execute independent processes on heterogeneous and/or unreliable
processors. It does not provide a parallel environment that allows processes to com-
municate, it just executes them and waits for them to finish. If you want closely
cooperating processes you need to use some other product.

The flavours of UNIX that support version 1.3 of autoson are:

(i) Solaris One and Solaris Two on Sun workstations;

(ii) IRIX on Silicon Graphics mips workstations;

(iii) OSF1 on Dec Alpha workstations;

(iv) ULTRIX on Decstations;

(v) Hewlett-Packard HP-UX computers;

(vi) The Linux operating system.

autoson can exist happily on a network containing any mixture of these.

autoson is the son of a program called automan, which ran on a cluster of VAXes.
It was named after a short-lived American television series which featured an elec-
tronic super-hero.

2. Entries, states, sequences and streams.

autoson works by maintaining a file called the “queuefile”. In single-user mode, the
queuefile is usually called autoson.queue and resides in your home directory. In
multiuser mode, the name of the queuefile is fixed at compile time. Both of these
conventions can be changed.

The queuefile must be visible from all the machines on which you intend to run
autoson. The queuefile contains a queue of tasks called “entries”. Each entry has a
unique entry number and is in one of six states:

PENDING : The entry is ready to run, unless it is waiting for other entries to finish.

HOLDING : The entry is on hold indefinitely.

WAITING : The entry is waiting for a particular time to arrive, at which moment it
will be moved to state PENDING.

CURRENT : The entry is being executed.

LOST : The entry was discovered in state CURRENT but the processes that were
running it appear to have vanished. Usually this is due to a machine crash.

SICK : The entry could not be run due to an error. Currently the errors detected
are: bad directory, bad logfile, and exit(101) executed by child process. These
are explained more below.

Usually we abbreviate the state names to four characters.

1

The basic mode of operation is as follows. On each machine in the network, the
program aurun runs continuously. It repeatedly selects one entry from the queue and
executes it. When it finishes, it selects another, and so on. Entries can be inserted
into the queue from any machine.

In general, an entry represents one or more jobs to run, as determined by the
parameters cycle, step and limit. It defines a “sequence” of jobs which are the
same except that they have a “sequence number” that runs through the list cycle,
cycle+step, . . . , limit. You can control the number of members of a sequence that
can execute at once. The program that is actually run can be made to depend on the
value of the sequence number.

Entries have a large number of “attributes”. Below is a complete list, even though
the meanings of some will not become clear until later. In each case we give the
attribute name, the type of its value, the default (if it has one) and a brief description.
The type unsigned means a non-negative integer. Some of the defaults can be changed
during compilation.

entrynumber (unsigned)
This is just a number that identifies the entry. Entry numbers are never reused,
unless you edit the queuefile manually.

state (state)
The state, one of the six possibilities described above.

cycle (unsigned, default=1)
step (integer, default=1)
limit (unsigned or ∞, default=cycle)
oldlimit (unsigned or ∞)

These four attributes describe parameters of the sequence to which the entry
belongs, and the position of this entry in the sequence. When a new entry is
created by the user, cycle is set to the first cycle number of the sequence, and
limit and oldlimit are both set to the last cycle number (or to ∞ if there is no
last). When aurun selects a PEND entry to run, the value of cycle becomes the
value of the macro character # (see Section 10). If step ≥ 0 and cycle+ step ≤
limit, or step < 0 and cycle+ step ≥ limit, a new entry like this one is then
created, with state PEND (or WAIT—see resubdelay) and cycle incremented
by step. It belongs to the same sequence. Then the original entry is put into
CURR state with limit set equal to cycle. oldlimit is not changed, so normally
it will remain equal to the initial value of limit. The purpose of oldlimit is
merely to remember the initial value of limit, for use with the = macro character
(Section 10).

stream (string, default=none)
If this attribute has a non-empty value, it is the name of a stream to which the
entry belongs. A “stream” is a set of entries with no particular structure except
having the same stream name. Streams have two significant uses. One is that
the number of simultaneously executing members of a stream can be limited (see
maximum), and the other is that aurun can be asked to restrict itself to one stream.
If the value of stream is the empty string, the entry is not regarded as belonging
to any stream.

2

username (string)
This is the username of the user who created the entry. In single-user mode, it
is not used for anything; entries are executed using the uid of the aurun process.
In multiuser mode, it defines who has permission to modify the entry and the uid
used for running it. More details are given in Section MU.

priority (unsigned, default=10)
This is the priority for the autoson queue. All else being equal, the entry with
the greatest priority will be executed first. If there is more than one, the lowest
entry number is preferred.

schedtime (unsigned)
serialize ({no, maybe, yes}, default=maybe)

These are attributes used for scheduling in multiuser mode. The value of the
schedtime attribute is taken from a global counter G, which increases monotoni-
cally over the life of the queue. When an entry is created, its schedtime attribute
is initialized to the current value of G. When an entry is selected for execution,
and it either has serialize = 1, or it has serialize = 0 and the aurun process
has -serialize, then all entries in states PEND, WAIT, HOLD or LOST owned
by the same user have their schedtime attributes set to the current value of G.
The usage of schedtime is as follows. When an entry is to be chosen for exe-
cution and there is more than one that are eligible but have the same priority
attribute, one with those with the lowest schedtime is chosen. If there is still
more than one choice, the one with the lowest entrynumber is chosen.

nice (unsigned, default=20)
This is the UNIX niceness that will be used when the entry is run. It is an
increment relative to the niceness of the aurun process, in the manner of the shell
command nice. Larger values mean less urgent.

maximum (unsigned, default=0)
In order for an entry in PEND to be selected for running, the number of CURR
or LOST entries in the same sequence or same stream must be less than maximum.
However a value of 0 indicates that there is no restriction.

resubdelay (unsigned, default=0)
When a new member of a sequence is automatically created as described under
cycle, it is put into state PEND only if resubdelay=0. Otherwise, it is put into
state WAIT until resubdelay seconds have passed.

logfile (string, default=˜/autoson.@@.log)
actlogfile (string)

These attributes refer to the file, called the “logfile”, which receives the output
(stdout and stderr combined) of the entry when it is executed. Every entry has
the logfile attribute, but only entries in state CURR, LOST or SICK have the
actlogfile attribute. The value of logfile is a string which becomes the name
of the logfile when the macro characters are replaced by their values. (For example
@@ is the name of the machine executing the entry, followed by the last character
from the name of the aurun process.) It is relative to the directory given by the
directory attribute unless it begins with ~ or /. The value of actlogfile is
the fully-expanded name of the logfile in actual use. The relationship between
logfile and actlogfile is explained in detail in Sections 10 and 11.

3

append (boolean, default=false)
This specifies whether an existing logfile should be appended to or overwritten.

umask (integer, default=−1)
This is the value of umask used for creation of the entry logfile. It is also the
initial umask value for the processes that will run the entry. A value of −1 means
to inherit umask from the aurun process. Only the low-order 9 bits are used.
umask is a UNIX parameter affecting the permissions on files. See your friendly
UNIX manual.

directory (string)
actdirectory (string)

These attributes refer to the initial directory to be in when the entry is executed,
and the directory to which logfile is relative unless it is an absolute path name.
Every entry has the directory attribute, but only entries in state CURR, LOST
or SICK have the actdirectory attribute. The value of directory is a string
which becomes the directory name when macro characters are replaced by their
values. It is relative to your home directory unless it begins with ~ or /. The
default is the directory which you are in when you create a new entry using
the auadd command. The value of actdirectory is the fully-expanded actual
directory name. aurun will “cd” to there when it runs the entry. The relation-
ship between directory and actdirectory is explained in detail in Sections 10
and 11.

submittime (time)
timestamp (time)

These are two times associated with the entry. submittime is the time when the
entry was created, whether manually by auadd or aumod -copy, or automatically
as described under cycle. timestamp is initially equal to submittime, but if the
entry is in state WAIT it gives the time which it is waiting for. It is also reset to
the current time when an entry is selected for running.

prerequisites (entry-list, default=empty)
This attribute specifies the entry numbers of entries which must be gone from
the queuefile before this entry can be executed. If the entry number of this entry
itself is present, it has no effect.

identification (string, default=empty)
This is just a string that has no effect except to label the entry if you display the
queue.

hosts (hostgroup, default=empty)
This specifies a set of machines that are allowed to run this entry. The default is
that any machine can run it. The value is a structured set called a “host group”
which is defined in detail in Sections 10 and 11.

nexthosts (string, default=none)
If this entry is moved to PEND or LOST as a result of being found abandoned,
the value of the hosts attribute will be modified if this attribute is non-null. If
the value is “=same”, hosts is set equal to the name of the current host. This
will force further executions to continue on the same machine. If the value of
nexthosts is “=different”, hosts has the group “~host”, where host is the

4

name of the current host, prepended. This will force further executions to take
place on anywhere that was previously allowed, except for the current host. Any
other value of nexthosts must be a host name, a host group name starting with
@ or =, or one of those preceded by ~. In that case, its value replaces the value of
hosts.

yawn ({no,maybe,yes}, default=maybe)
grace (unsigned, default=10)
cautious (boolean, default=true)
loadfactor (real, default=1.0)

“yawn” is a protocol for controlling the execution of processes according to the
interactive activity on a a particular machine. Section 12 contains a detailed
description. In the case yawn=maybe, the use of yawn is determined by the
presence of the flags -yawn or -noyawn on the aurun command. If neither is
present, yawn is used unless the executing host belongs to the hostgroup @noyawn.
If the yawn protocol is used, grace seconds are waited first to give you time to
log out before it sees you. An alternative is to tell yawn to ignore you always, as
described in Section 12.
If the cautious attribute is true, aurun will not start an entry if it determines
that yawn would immediately suspend it. However, the test is imperfect in that
it ignores grace. More discussion appears in Section 5.
The attribute loadfactor is used by the yawn protocol in time class LOAD. It
represents the additional load average that a machine can expect when it executes
this entry. A more precise description is given in Section 12.

stopped ({0, 1, 2})
When an entry is in state CURR, this indicates whether it is running or stopped,
as far determined from which signals have been sent by the yawn protocol or by
auzap. Value 0 means running under aurun control. Value 1 means stopped
under aurun control. Value 2 means that apparently this entry still exists but no
aurun process is controlling it.
For SICK and LOST entries, the value is preserved from the last time the entry
was in state CURR. Entries in other states do not have a stopped attribute.

last (boolean, default=false)
When aurun finishes executing this entry, it will exit if last=true.

once (boolean, default=false)
If once=true each aurun process will execute at most one member of the sequence
to which this entry belongs.

verbose (boolean, default=true)
If this attribute is false, nothing except the output from the entry will appear
in the logfile. Otherwise, aurun will add some information in brief header and
trailer, such as the machine name and cpu time. A more complete description
appears in Section 16.

retries (−1, unsigned or ∞, default=0)
Due to machine crashes or other factors, an entry might be left in the queuefile
in state CURR even though the processes running it have vanished. If aurun
notices such an entry, it will process it according to the value of retries. If

5

retries=−1, the entry will be deleted. If retries=0, the entry will be moved
into state LOST. If retries>0, the entry will be moved into state PEND with the
value of retries decremented. In other words, non-negative values of retries
specify one less than the total number of attempts which can be made to execute
an entry before giving up. The attribute limit will be set equal to cycle in all
cases.

freeze (special-string, default=none)
The value is a string, either none, all or a string over the alphabet {c, d, l}.
These characters refer to the command, directory and logfile parameters. The act
of “freezing” involves setting the value of a “generic” attribute (such as logfile)
equal to the value of the “actual” attribute (such as actlogfile), and the value
of freeze determines which attributes are frozen in particular circumstances.
The most important time this decision is made is when an entry is selected for
running. A fuller description appears in Section 10.

runninghost (string)
runningpid (unsigned)
aurunpid (unsigned)

These attributes are only defined for entries in state CURR, LOST or SICK. They
give the name of the machine executing the entry, the group-id of the processes
executing it, and the pid of the aurun process.

command (string-list)
actcommand (string-list)
commandverb (string)
arguments (string-list)

The attributes command and actcommand refer to the command and its argu-
ments, i.e. the UNIX command to be executed on behalf of this entry. The
attribute command, held by all entries, contains a list of strings that will become
the command and its arguments once macro characters are replaced by their val-
ues. The actual command and arguments appear in actcommand, but only for
entries in state CURR, LOST or SICK. commandverb and arguments are alter-
native names for the first word, and the remaining words of command A more
complete description appears in Section 10.

sickness (unsigned)
immunity (unsigned, default=0)

The sickness attribute is only defined for entries in state SICK, and indicates
the reason for that state. Values defined at the moment are these:
1 = Could not “cd” to the entry directory (see directory);
2 = Could not open entry logfile for writing (see logfile);
3 = The exit status 101 was returned by the subprocess (see Section 5).
The value of immunity is the number of SICK entries allowed in the same stream
or sequence. If this limit has been reached or exceeded, this entry will not be
executed.

requeuetime (time, default=0)
This is a time-valued token used to pass a message from auzap to aurun in the
event that -requeue is used. It contains the time that the entry processes were
signalled. If it is less than 60 seconds before the present when the entry finishes

6

executing, aurun will put the entry into PEND state instead of deleting it. Most
other operations on an entry will zero this attribute.

3. Overview of autoson commands.

There are six commands implemented as links to the executable file autoson. These
are:

auadd add new entries to the queue
aumod modify existing entries
auzap kill the processes running entries
aurun execute entries
aulook examine the queue
aulock lock the queuefile and maybe edit it

There is actually no command aurun, but there can be any number of commands
whose names consist of “aurun” plus one more character. The usual convention is to
use names aurun0, aurun1, etc.. This is done to distinguish between multiple servers
on the same machine. Throughout this manual, when we refer to “aurun”, we mean
any of those processes.

Commands take switches that begin with -.

The names of switches can be abbreviated as far as they are still unique. For
example, -current can be given as -curr or even -cu. If a switch needs an argument,
it is not appended to the switch name but given as the next command parameter. If
it allows several arguments (a list) they are separated by commas without spaces, for
example: -host sun1,sun2.

Many switches have positive and negative forms, like -holding and -nohold. It
is permitted to use the same switch several times, or both the positive and negative
forms, in which case the rightmost version wins. This is useful if you want to define
aliases.

There is one switch allowed on all autoson commands, provided that run-time
selecting of the queuefile has been enabled. Usually this is enabled for single-user
mode and disabled for multiuser mode.

-queuefile string
The name of the queuefile is determined as follows. Start with the value of
-queuefile, if present, or the environment variable AUTOSON QUEUE, if it
exists. If neither exists, take the string “autoson.queue”. Then, if the string
does not begin with ‘~’ or ‘/’, prepend the name of the login directory of the user
running this process.

If run-time selection of the queuefile has been disabled, -queuefile is illegal.

7

4. The auadd and aumod commands.

The auadd command adds one entry to the queuefile. You can put it into state PEND
(default), WAIT (-after) or HOLD (-holding).

auadd 〈switches〉 command [argument]...

The aumod command changes an existing entry, or a copy of an existing entry
(-copy). The -entry switch is compulsory.

aumod 〈switches〉 [command [argument]...]

The switches available for auadd and aumod are listed below. To understand
our description of them, it may sometimes be necessary to consult the list of entry
attributes in Section 2.

-append, -noappend
-cautious, -nocautious
-freeze string , -nofreeze
-grace unsigned , -nograce
-identification string , -noidentification
-immunity unsigned , -noimmunity
-last, -nolast
-loadfactor real
-logfile string , -nologfile
-maximum unsigned , -nomaximum
-nexthosts string , -nonexthosts
-nice unsigned
-once, -noonce
-priority unsigned
-resubdelay unsigned , -noresubdelay
-serialize, -noserialize
-stream string , -nostream
-umask octal , -noumask
-verbose, -noverbose
-yawn, -noyawn

These switches specify the values of the entry attributes of the same names.
-nologfile is the same as -logfile /dev/null; otherwise the meanings of the
negative switches should be clear. The argument of -stream can be null, but can
not contain spaces.

-cycle unsigned
-limit unsigned , -nolimit
-step integer
-keeplimit,
-nokeeplimit

If -nokeeplimit is present (which it is by default), -cycle sets the values of
cycle, limit and oldlimit. If -keeplimit is present, -cycle only sets cycle.
-limit (done after -cycle irrespective of which one you give first) changes limit
and oldlimit. -nolimit is the same as -limit ∞.

8

-directory string
Set the value of directory. If the value is “.” or starts with “./”, the period is
replaced by the full path name of the current directory. If it does not then start
with / or ~, it is assumed relative to your home directory.

-prerequisites entry-list , -noprerequisites
Set the value of prerequisites, which is a list of entry numbers. The format of
the argument is the same as for -entry (see below). Recall that an entry is never
a prerequisite for itself; this means you can use -pre : to make it wait until
it is alone in the queue. (“:” specifies all entries, see the description of -entry
below). Example: -pre 34,45:62,99:

-hosts hostgroup, -nohosts
Define the value of the hosts attribute. The format of the argument is a comma-
separated list with no embedded spaces. Formally it is a host group, with the
understanding that an empty list means that every machine is ok. -nohosts
means the same. See Section 9 for a complete description of host groups. Exam-
ple: -hosts sun1,=alpha,~alpha3

-after time
Put the entry into state WAIT until the specified time. The syntax of the ar-
gument is very flexible. Examples: 17:00, 5pm, "3am tomorrow", "next week"
"3:30:13 Aug 9", "3/13/1997", "2 hours 15 min" (from now), "2am aest"
(Australian Eastern Standard Time). Note that quotes are needed if there are
embedded spaces.

-holding
-noholding (aumod only)

-holding will put the entry into state HOLD, and -noholding will put it into
state PEND. The default for aurun is PEND. For aumod, the default if PEND
if -copy is specified, and no change of state otherwise. To move an entry from
LOST to PEND, it is better to use -nolost.

-nowaiting (aumod only)
If the entry is in state WAIT, move it to state PEND. Otherwise, do nothing.

-nolost (aumod only)
Move an entry from state LOST to state PEND. Only the entries in state LOST
are considered, so you can process all the LOST entries at once using
aumod -ent : -nolost .

-show, -peek, -some
-show and -peek display the queue in verbose and brief format, respectively.
Without -some the entire queue is displayed, otherwise only interesting entries
such as the entries you just inserted or modified. -some is ignored unless you
have -show or -peek. The brief format is user-definable, see Section 7.

-silent
This turns off informational messages like “modified entry xx”.

-volatile, -novolatile
-rerun, -norerun
-retries unsigned , -noretries

These set the attribute retries to −1, 0, ∞, 0, the value of the argument, and

9

0, respectively.

-entry entry-list (aumod only)
This is compulsory for the aumod command, and specifies the entries which are to
be modified or copied. The argument is a comma-separated list with no imbedded
spaces. Each item can be an entry number or a range of entry numbers. A
range has one of the forms 10:20 (all entries numbered from 10 to 20), :30
(all entries numbered up to 30), 40: (all entries numbered 40 or more) or : (all
entries). Each item in the list must refer to at least one existing entry. Example:
-entry 10,20:23,60: .

-user string , -mine (aumod only)
Limit the set of entries specified by -entry to those owned by the specified user.

-copy (aumod only)
Instead of modifying an existing entry (the default behaviour), make a copy of
the entry (replacing state CURR by PEND if necessary) then modify the copy.

-newsequence, -nonewsequence (aumod only)
Sequences are identified by an internal attribute isn constructed from the entry
number and time when the first entry in a sequence is created. This is copied to
all entries formed from that one, including entries formed by aumod -copy. The
switch -newsequence causes isn to be recomputed rather than copied.

-renumber (aumod only)
After performing any other changes that are requested, renumber all the entries
except those in state CURR as entries 1, 2, New entries will have num-
bers in the new low sequence, so it is important that existing CURR entries are
gone before the entry numbers build up to overtake them. Prerequisites are only
renumbered if they are simple numbers, not ranges. In other words, this facility is
rather dangerous. It is still required to use -entry, for consistency, but its value
is ignored.

-delete (aumod only)
-really (aumod only)

Delete the specified entries. Normally you can’t delete a CURR entry, but if you
use -delete -really you can delete anything. Deleting CURR entries from the
queue will not stop them running. -delete -really is intended for those bad
moments when autoson won’t delete something that it should.

Any other parameters are a command and arguments, setting the entry attribute
command. The command name and arguments must be separate arguments to auadd
and aumod, and cannot contain commas unless they are escaped (as “\,”).

Specifying a command and arguments with aumod will cause the previous ones to
be replaced completely. There is no way to change just some part of them.

Examples:

auadd -peek -some -log out cmd arg1 arg2 arg3
The command cmd arg1 arg2 arg3 will be run, with output going the file out in
the current directory. After inserting it in the queue, display it in brief format.

auadd -cyc 1 -lim 100 -max 3 -noapp -log xyz.#.out doxyz #
For # taking the values 1, 2, . . . , 100, the command doxyz # will be executed with the

10

output going to the file xyz.#.out in the current directory, overwriting any existing
file of that name. However, at most three of these 100 jobs will be executed at once.

auadd -log pipe.out -nice 0 sh -c ’cmd1 arg; cmd2 | cmd3 >file’
This example shows how to run a sequence or pipe. Of course, you can also do it by
writing a shell script and running that. In this example the sequence will be executed
at interactive priority. The quotes are essential. (In multiuser mode, you can omit
the “sh -c” from this command.)

aumod -ent 43,44 -pri 11
Change the priority attribute of entries 43 and 44 to 11.

aumod -ent 399 -copy -hold -cyc 100 -lim 200
Take a copy of entry 399, change its cycle, limit and oldlimit attributes, and put
it into state HOLD.

aumod -ent 76 newcomm newarg
Change the command attribute of entry 76.

aumod -ent 400:500 -delete
Delete all entries numbered from 400 to 500.

5. The aurun command.

aurun is our generic name for the program which controls entry execution. In reality,
the name will be aurun0, aurun1, or in general any 6-character name starting with
“aurun”. The normal mode of operation is to have it running continuously. You
can run any number of them as background processes on machines that can see the
queuefile. It is valid to run more than one on the same machine, provided they have
different names.

The operation of aurun is to repeatedly select the most eligible entry from the
queue and execute it. The criterion for an entry to to be eligible for running is that
all these conditions are satisfied:
(1) state=PEND;
(2) the values of stream and identification match the values of -stream and

-identification on the aurun command (if any);
(3) aurun does not have the -only switch, or the argument of -only equals the value

of entrynumber;
(4) hosts=empty, or the current machine is in the host group hosts;
(5) prerequisites=empty, or there is no entry in the queue (whatever state, but

ignoring this entry) matching any term;
(6) maximum=0, or there are fewer than maximum entries in states CURR or LOST

that belong to the same sequence or same stream as this one;

(7) there are not more than immunity SICK entries in the same stream or sequence;
(8) once=false, or this aurun process has not previously run an entry in the same

sequence which had once=true;
(9) either yawn 6=yes, or cautious=false, or this entry would not be immediately

stopped (ignoring grace) by the yawn protocol.

Amongst those entries eligible for running, the most preferred is the one that has
the least entrynumber amongst those with the least schedtime amongst those with
the greatest priority.

11

aurun will continue executing entries or waiting for an entry to execute until one
of these occurs:

(1) it runs an entry with last=true;

(2) it runs the single entry specified with -only;

(3) it runs as many entries as specified with -maximum;

(4) it has the -clear switch and there are no entries that could be run even if they
had cautious=false.

While aurun has nothing to run it sleeps for periods whose duration can be up to
20 minutes depending on how long it has been since there was anything to do. You
can make it wake up straight away by sending it a SIGHUP signal.

The process of running an entry is like this:

(1) If step ≥ 0 and cycle+step ≤ limit, or step < 0 and cycle+step ≥ limit,
create a new entry in this sequence in state PEND or WAIT, as described in
Section 2 (attribute cycle).

(2) Compute the values of actdirectory, actlogfile and actcommand, as ex-
plained in Section 11.

(3) Open a file actlogfile for writing, creating it if it doesn’t exists already. If that
cannot be done, put the entry into state SICK with sickness=2 and give up
trying to run this entry.

(4) Go to the directory actdirectory. If that cannot be done, put the entry into
state SICK with sickness=2 and give up running this entry.

(5) Start the command actcommand in a subprocess. (More details at the end of this
section.)

(6) Wait for the command to finish, using the yawn protocol if appropriate. If it
finishes with exit status 101, put the entry into state SICK with sickness=3;
otherwise, if it has a requeuetime value less than 60 seconds old, put the entry
into state PEND with last=false; otherwise, delete the entry.

The main use of exit status 101 in step (7) is by aurun itself, in the event that
you try to execute a nonexistent command, or one without execute permission. Due
to timing details, it is possible that several members of a sequence are unsuccessfully
tried before the whole sequence is halted. (Recall that entries are not run if they
belong to the same sequence or stream as too many entries in state SICK.)

It is best to execute aurun at or near interactive priority, as it uses few resources
but must deal with the queuefile quickly. The UNIX priority of entries themselves is
determined by their nice attribute.

The available switches for aurun are as follows.

-logfile string , -nologfile
This specifies a file to receive the master log for this aurun. The default is
~/autoson.@.run; i.e., autoson.〈hostname〉.run in your home directory. The
contents of this file are explained in Section 16. It is best to use a full path name
for the argument. -nologfile is the same as -logfile /dev/null.

12

-only unsigned
The argument is an entry number. Just run that entry and exit. If there is no
such entry, exit as soon as abandoned entries are checked for. (See the description
of retries in Section 2.)

-silent
Turn off informational messages, such as messages about entries being found
abandoned. These are written to stderr when aurun starts up.

-maximum unsigned , -nomaximum
Specify how many entries can be run before aurun exits. The default is to have
no limit, which is the effect of either -nomaximum or -maximum 0. Note that there
is no connection between this switch and the maximum attribute of entries.

-stream string , -nostream
-identification string , -noidentification

Restrict this aurun to entries with the given identification and/or stream. In
both cases, the argument can be an empty string. An empty stream name means
no stream. The default behaviour is that there is no restriction.

-append, -noappend
Specify whether an existing master log is overwritten or appended to. The default
is to append.

-yawn, -noyawn
Specify yawn default for entries with yawn=maybe. See the description of the
yawn attribute, and Section 12, for more details.

-clear
If ever aurun finds that there is nothing in the queue which it is allowed to run,
it will exit. However, it will not exit if it could run something but for it having
cautious=true.

-umask octal , -noumask
This defines the default umask value for entries which do not specify one. The
argument is an octal number between 0 and 777. -noumask (the default) requests
aurun to continue using the umask value in effect when it is started.

-serialize, -noserialize
Set serialization on or off for those entries which have serialize=maybe. The
default is -serialize in multiuser mode and -noserialize in single-user mode.

The startaurun script is a convenient way to start aurun. See Section 19 for
details.

The actual process of running an entry differs in single-user and multiuser modes,
though it is intended that the results be close.

In single-user mode, all of the environment (such as $PATH) and process privileges
are inherited from the aurun process. The command arguments are presented to the
subprocess as they appear in actcommand, except that the escape sequences \~, \#,
\=, \@, \^ and \, are replaced by their unescaped single characters.

In multiuser mode, a basic context is constructed for the user who owns the entry.
The uid and primary gid of the user are adopted, as well as any supplementary groups

13

to which the user might belong. A simple environment is constructed:
USER = the username of the user
HOME = the home directory of the user
SHELL = the name of the login shell of the user
PATH = /bin:/usr/bin:/usr/sbin.

The process run in multiuser mode is the login shell of the user owning the entry,
in the following manner:

〈login-shell〉 -c 〈command-string〉
Here, 〈command-string〉 is a string made up thus:

〈initialization-string〉 〈commandverb〉 "〈arg1〉" "〈arg2〉" . . .

The value of 〈initialization-string〉 is exec by default, but it can be changed by
means of initialization records in the queuefile, as described below. In forming the
command verb and arguments in 〈command-string〉, the escape sequences \~, \#, \=,
\^, \@, and \, are replaced by their unescaped single characters.

The value of 〈initialization-string〉 can be changed on the basis of which machine
is running the entry, and what 〈login-shell〉 is. The format of initialization records is
thus: I hostgroup shellname arg0 initstring

hostgroup is the name of a host group or a hostname, optionally preceded by ~.
shellname is a login shell name, exactly as it appears in password files (usually a full
path like “/bin/csh”). shellname can also be “*”, which matches all shell names.

arg0 is a string to be used as the 0-th argument when the shell is invoked. Some
shells take note of this; for example /bin/csh will do a full login for a user if invoked
with -csh as the 0-th argument. If arg0 is given as “*”, the 0-th argument is the
final component of the login shell. (For example, if 〈login-shell〉=/bin/csh, then the
0-th argument is “csh”.) This is also the default behaviour if there is no matching
initialization record.

Apart from one leading space, everything on the line from arg0 to the end is
initstring. It is recommended that the initialization string ends in “exec”.

Sample initialization records:
I =sun /bin/csh csh source $HOME/.login ; exec
I =sun * * exec

The order of the initialization records matters: the first one which matches the
current machine and the login shell name of the user applies, if any.

14

6. The auzap command.

The auzap command sends a UNIX signal to the processes running an entry, or to
an aurun process.

If the job is running on another machine, an attempt will be made to contact
that machine using a remote shell command (usually rsh). This will fail if rsh has
been disabled or you don’t have necessary permissions (.rhosts entry or similar).

aurun establishes a process group for each CURR entry. Unless your jobs do
things with process group numbers, auzap will send the same signal to every process
in that group.

The special jobs described in Section 15 can’t be signalled, because they are not
separate processes.

The switches available for auzap are as follows.

-entry entry-list
This switch is compulsory. The syntax is like for auadd, except that each item in
the list (entry number or range) must specify at least one entry in CURR state,
and all other entries are ignored.

-last, -nolast
Before sending any signals, modify the last attribute of the entries. For a remote
host, this is only done if the attempt to reach that host is successful. See Section 5
for more information. Ignored if -aurun is present.

-requeue, -norequeue
Before sending any signals, set the requeuetime attribute of the entries. For a
remote host, this is only done if the attempt to reach that host is successful. See
Section 5 for more information. Ignored if -aurun is present.

-signal signal
Specify which UNIX signal to send. This can be one of the strings KILL, STOP,
CONT, QUIT, TERM, INT, HUP, or one of those strings with the prefix SIG (e.g.
SIGSTOP). It can also be a number. Be aware that different versions of UNIX use
different numbers for the same signal, so is it safer to use the name if you want
to send a signal to a process on another machine. The default is -signal KILL.

-aurun
Send the signal to the aurun process instead of the processes running the entry.
This is not much use. The preferred way to close down one aurun process and
the entry it is running is auzap -last. aurun is designed to exit gracefully on
receipt of SIGINT signals, so -signal INT is recommended if you need to kill
aurun with a direct signal.

-overlap unsigned , -nooverlap
In order to speed throughput, auzap will run multiple rsh processes at the same
time. The normal limit is 5, but you can change it with this switch. A value of
0 or 1 (or -nooverlap) will force it to do one at a time. Too much overlap risks
running into system limits on the number of processes or open files.

-silent
Turn off informational messages.

15

-user string , -mine (aumod only)
Limit the set of entries specified by -entry to those owned by the specified user.

When autoson is compiled, there is an option of having two different remote
shell commands available. For example, the “normal” one might be ssh and the
“alternate” one might be rsh. In this case, the alternate command is used when the
remote host is in the host group @altrsh. Note that host groups whose names start
with “=” are not interpretted correctly in @altrsh.

Examples.

auzap -ent 34
Send a SIGKILL signal to entry 34.

auzap -ent 57 -last -requeue
Kill entry 57, and instruct the controlling aurun process to put it back into state
PEND before dying.

7. The aulook command.

The aulook command displays the contents of the queuefile or part of it.

The normal use is to display some or all entries. There are two formats, called
peek (brief default format) and show (complete details). The format for output from
the peek version is user-definable, as described below.

The switches -groups, -formats, -rewrites, -speed and -initializations
make aulook behave completely differently (with no entries displayed at all).

-entry entry-list
Specify which entries to display. The default is to display all entries. The format
of the argument is the same as for auadd.

-waiting, -nowaiting
-pending, -nopending
-current, -nocurrent
-holding, -noholding
-lost, -nolost
-sick, -nosick

Specify states that entries must have, or must not have, before being displayed.
By default there is no restriction on state.

-peek, -show
Specify brief or complete display. The default is -peek.

-user string , -mine (aumod only)
Limit the set of entries specified by -entry to those owned by the specified user.

-groups
Don’t display any entries, but display the host group definitions. See Section 9 for
a description of host groups. An asterisk indicates those host groups the current
machine belongs to. Apart from the special host groups (those starting with =),
host groups are defined by lines in the queuefile, as described in Section 14.

16

-formats
Don’t display any entries, but display the formats for peek. “PCWHLS” refer to
entry states. For each state, the default format is displayed, then on the next line
the user-defined format is displayed (if any). See below for the meaning.

-rewrites
Don’t display any entries, but display the rewriting rules given in the queuefile.
See Section 11 for the meaning.

-speed
Don’t display any entries, but display the speed factor of the current machine,
according to the T lines in the queuefile (Section 16).

-initializations
Don’t display any entries, but display the initialization records in the queuefile.
See Section 5 for the meaning.

-nolock
Display the queue without gaining exclusive access to the queuefile first. This can
be useful, for example, if the lock file exists due to malfunction, or it you don’t
have write permission on the directory containing the queuefile. Failure to seek
exclusive access might mean that you catch the queuefile in some intermediate
state, so try again if it is claimed to be empty or invalid. This is not dangerous,
as the queue is only read, not written.

The output layout for the aulook command is intended to be reasonably friendly
already, but you can change it if you like, individually for each state. The details are
given in Appendix A. In the default formats, the “state” of CURR entries is shown as
STOP if stopped=1 (the entry has been stopped under aurun control) and ORPH
if stopped=2 (the controlling aurun has vanished).

We will give some sample displays using the default layouts. Lines starting with
% are commands typed by the user. This sequence was produced by user bdm on a
computer tyl in the directory /home/bdm/autotest. The queuefile is initially empty.

% auadd -log xx#.out -cyc 2 -step 2 -lim 8 sleep 100
added new entry 33

% aulook
33/bdm PEND cyc=2[2]/8 nomax sleep 100

% aulook -sh
33 PEND pri=10 nice=19 cyc=2[2]8(8) retr=0 app cau grace=10 max=0
submitted Tue Mar 12 17:42:18 1996; timestamp Tue Mar 12 17:42:18 1996
isn=e650021 dir=/home/bdm/autotest logfile=xx#.out id=
user=bdm stime=105 umask=77 nexthosts= imm=0 loadf=1.00
command = sleep 100

% aulook (rm some time later)
33/bdm CURR[tyl ,Mar 12 17:44:37] cyc=2[2] cmd=sleep
34/bdm PEND cyc=4[2]/8 nomax sleep 100

17

% aulook -ent 33 -sh
33 CURR[tyl:242,245] pri=10 nice=19 cyc=2[2]2(8) retr=0 app cau

(first line continued) grace=10 max=0
submitted Tue Mar 12 17:42:18 1996; timestamp Tue Mar 12 17:44:37 1996
isn=e650021 dir=/home/bdm/autotest logfile=xx#.out id=
user=bdm stime=105 umask=77 nexthosts= imm=0 loadf=1.00
actdir=/home/bdm/autotest actlog=/home/bdm/autotest/xx2.out stop=0
command = sleep 100
actcommand = sleep 100

8. The aulock command.

This is a rarely used command for managing the queuefile. There are four basic
functions, in order of priority:

aulock -unlock unlock the queue
aulock -nocommand lock the queue and wait for EOF or RETURN
aulock -edit lock the queue and edit it
aulock lock the queue and run a subprocess

The fourth function is performed if none of -unlock, -edit or -nocommand is
present.

The locking is performed by creating a lock file whose name is obtained by ap-
pending “.lock” to the name of the queuefile. It is created using link(), which fails
if the file already exists. All autoson utilities use this mechanism to serialize access
to the queuefile, except for aulook -nolock. The lockfile contains the name of the
machine and command that created it, and a reason code. This information is not
used except for debugging purposes.

-unlock
-older unsigned

If the queue is not locked, exit silently. If it is locked and -older is absent,
report how long it has been locked for and ask permission to unlock it. If -older
is present and the queue has been locked for at least that number of seconds,
unlock the queue with an informative message (without asking).
-unlock is intended only for those abnormal times when the queue is locked but
shouldn’t be. This can happen due to system glitches, or if you kill an autoson
utility at the wrong instant. -unlock takes precedent over all other switches.

-command string
If -edit is present, this should be the name of a program which can take the name
of the queuefile as an argument. Otherwise, it should be a program that can be ex-
ecuted as is. The argument might be compound, for example -command "vi -r"
is fine but the quotes are needed. If a program name is needed (i.e. neither
-unlock nor -nocommand is present), but -command is absent, the name of the
program will be:
With -edit: environment variable EDITOR if defined, else vi.
Without -edit: environment variable SHELL if defined, else your login shell.

-nocommand
After locking the queue, wait until EOF or RETURN is received from the standard
input, then unlock the queue and exit. -edit is ignored.

18

-edit
aulock will lock the queue and run a subprocess “〈command〉 〈queuefile〉”, where
〈command〉 is determined as described under -command. If this switch is absent,
the subprocess to run is just “〈command〉”, which is typically a shell. In all cases,
the queue is unlocked when the subprocess exits.

Examples:

aulock -edit
Lock the queue and open the queuefile for editing with vi (or another editor named
by the environment variable EDITOR). When finished, unlock the queue.

aulock -edit -command less
Lock the queue and display the queuefile using less. When finished, unlock the
queue.

9. Host groups.

A host group is a set of machines. The most important use is with the hosts attribute
of entries, to specify which machines are permitted to run them.

There are three types of host group:

(a) A single machine, identified by its name, is a host group.

(b) Some sets of machines, defined by hardware and operating system, are predefined
“special” host groups. They are identified by a name beginning with =.

=sun Sun computer
=sun3 Sun3 computer
=sun4 Sun4 computer
=sunos Solaris 1 operating system (such as 4.1.3)
=solaris Solaris 2 operating system (such as 5.2)
=sgi Silicon Graphics mips computer running IRIX
=alpha Alpha computer
=dec Digital ULTRIX workstation
=hpux Hewlett Packard HP-UX computer
=linux Linux operating system
=all Every computer

(c) The user can define a host group in terms of other host groups, by inserting
definitions in the queuefile. These groups are identified by a name beginning with
@. For example:

H @mine sun1 sun2 sun3 sun4 (one of sun1..sun4)
H @group1 ~=alpha sun2 sun3 (sun2 or sun3, but not an Alpha)
H @digital =alpha =dec ~@mine (an Alpha or a Dec, but not sun1..sun4)
H @notsgi ~=sgi (anything not an SGI)

The character ~ indicates complementation. The order of the list is insignificant.
Suppose the definition of @G is like this:
H @G P1 P2 . . . Pp ˜N1 ˜N2 . . . ˜Nn

Suppose h is an actual machine, and define the propositions P = (h ∈ P1 ∪ · · · ∪ Pp)
and N = (h /∈ N1 ∪ · · · ∪Nn). Then h ∈ @G if and only if N ∧ (P ∨ (p = 0 ∧ n > 0)).

19

Undefined host groups are treated as empty. The value of the switch -hosts
is interpretted in the same way as a host group definition, except that an empty
definition (or the absence of the switch) indicates that every machine can run the
entry.

There is no command to add host groups. You need to use an editor on the
queuefile (see aulock -edit).

Three user-defined host groups have special meaning. The group @noyawn is used
to disable use of yawn on specified machines. This host group can also contain items
of the form user:〈username〉. See Section 12 for an explanation.

The group @disabled also has special meaning. If aurun sees the name of its
own machine in there, it will immediately exit. However, it doesn’t look while it has
an entry running.

Finally, @altrsh is used to select an alternate remote shell for auzap; see Sec-
tion 6.

10. Macro characters and freezing.

Some characters have special meanings when present in the directory, logfile or
command attributes of entries. These “macro characters” and their meanings are as
follows:

^ : one character indicating the system type
(sun3=3, sun4=4, SGI=s, Alpha=a, Dec=d, HP=h, Linux=l)

^^ : a string indicating the system, the first of these that applies:
alpha dec sgi solaris sun4 sun3 hpux linux sun

% : The value of entrynumber.

: The value of cycle.

= : The value of oldlimit (a number or nolimit).

@ : The value of runninghost.

@@ : The value of runninghost followed by the last character of the name of the
aurun command. For example, if aurun0 is running on host tyl, then @@ is tyl0.

~ : The name of your home directory, provided it is at the start of a string and is
followed by the end of the string or /. (autoson does not know about the ~user
construct, but see the examples in Section 11 for a way to handle it.)

In the case of numbers (%, #, non-infinite =), a minimum field width can be spec-
ified by repeating the macro character. Leading zeros are used for padding. For ex-
ample, with cycle=37, the string “# ## ### ####” represents “37 37 037 0037”.

As described in Section 2, entries in state CURR, LOST or SICK have “actual”
attributes actdirectory, actlogfile and actcommand, in addition to the “generic”
attributes directory, logfile and command that all entries have. We will now
describe the relationship between these.

When an entry is initially created, the specified values are stored in the generic
attributes (there are no others, in fact, as entries cannot be created in CURR, LOST
or SICK state).

When an entry is chosen for running by aurun, each actual attribute is set equal
to the result of applying path rewriting (see Section 11) and macro substitution to

20

the corresponding generic attribute. Then, those attributes specified for freezing by
the freeze attribute are frozen: this means that the generic value is set equal to the
actual value, permanently losing the old generic value. The actual values are used
to execute the entry, and if execution completes satisfactorily the generic value plays
no further role. However, if the entry is discovered abandoned and moved to state
LOST, both the generic and actual values are preserved in the LOST entry.

In making any modification to an entry, as by using aumod, the presence of any
-freeze/-nofreeze switch overrides the entry freeze attribute. If the initial state
of the entry is CURR, LOST or SICK, the attributes specified by the (possibly over-
ridden) freeze attribute are frozen first, before other modifications are done. Any
use of -logfile, -directory, or a command on the aumod command changes only
the generic attribute. If the state is changed from CURR, LOST or SICK to PEND,
WAIT or HOLD, the generic parameter is the one preserved.

If a running entry is discovered abandoned but put straight into PEND due to
having retries>0, the result should be the same as if it was put into LOST then
manually moved to PEND using aumod -nolost.

For example, suppose you have SGI and Dec machines and create an entry using
auadd -log ^^/test.log -freeze l ^^/cmd arg .
If this is selected for running by an aurun process on an SGI machine, it is moved to
CURR with attributes thus:

logfile=sgi/test.log, actlogfile=sgi/test.log

command=^^/cmd arg, actcommand=sgi/cmd arg.

Because the freeze attribute of the entry specified “l”, logfile was set equal
to actlogfile. If this entry later is found abandoned and put into state LOST,
the attributes will still be like that. If it is then moved to state PEND, the generic
attributes only are preserved: logfile=sgi/test.log, command=^^/cmd arg.
If a Dec machine runs it now, the CURR entry will appear thus:

logfile=sgi/test.log, actlogfile=sgi/test.log

command=^^/cmd arg, actcommand=dec/cmd arg.

Thus, the same logfile will be used even though another executable is chosen. If
no -freeze parameter had been given on the initial auadd command, the logfile
attribute would have remained ^^/test.log, so the second execution would have
started a new logfile called dec/test.log.

The expansion of macro characters can be disabled by escaping them with \. For
example, “\#” is a normal, non-macro, #. Note that \ is special to the shell, so when
you type it in you need to quote it.

21

11. Path rewriting.

This facility is provided to ease the difficulty of working in a network where file names
vary from one machine to another, or where multiple links to directories can cause
paths to be legal on one machine but not on another. By means of lines in the
queuefile (see Section 14) the directory, and logfile and commandverb attributes
can be systematically editted (but not the command arguments).

The general form of a rewriting rule is like this:

R when attr hostgroup inpattern outpattern

when is an integer, 0 to indicate rewriting at entry creation, 1 to indicate rewriting
at entry running, or 2 to indicate both. attr is either all or none or a nonempty
string over {c, d, l}. all is equivalent to cld. These characters indicate a subset of
{commandverb, directory, logfile}. hostgroup is the name of a host group or its
complement. inpattern and outpattern are arbitrary non-empty strings, or the word
NULL to indicate the empty string.

inpattern is a pattern consisting of ordinary characters plus possible wild cards.
The meanings of the wild cards are:
? : match any single character except ‘/’
** : match zero or more characters (as little as possible)
* : (except **) match zero or more characters other than ‘/’ (as much as possible).

In addition, inpattern may end with $, which matches zero characters at the end
of the input string. (Any $ not at the right end of inpattern is just an ordinary
character.)

outpattern is a string consisting of ordinary characters plus possibly the escape
sequences \0, \1, These escape sequences represent the substrings matched by
the wild cards in inpattern.

In addition to the string represented by outpattern, the part of the input string
not matched by inpattern (necessarily a suffix) is copied unchanged to the output.
Note that matching always starts at the first character of the input string.

We continue with some examples:

inpattern: /tmp mnt/
outpattern: /
input: /tmp mnt/home/bdm
output: /home/bdm
input: /etc/tmp mnt/xyz
output: match fails (must start at first character)

inpattern: **/MACH
outpattern: \0/SUN
input: /home/bdm/MACH
output: /home/bdm/SUN
input: /home/bdm/MACH/etc
output: /home/bdm/SUN/etc

inpattern: **/MACH$
outpattern: \0/SUN

22

input: /home/bdm/MACH
output: /home/bdm/SUN
input: /home/bdm/MACH/etc
output: match fails (the $ only matches the end of the input)

inpattern: /home/*/SUN?/*$
outpattern: /fac/\0/SUN\1
input: /home/bdm/SUN3/tmp
output: /fac/bdm/SUN3
input: /home/SUN2/SUN3/SUN4
output: /fac/SUN2/SUN3
input: /home/bdm/etc/SUN3
output: match mails (* can’t match a string with ‘/’)

inpattern: ~?*
outpattern: /home/\0\1
input: ~/etc
output: match fails (? won’t match ‘/’)
input: ~freddy/dir/file
output: /home/freddy/dir/file

Consider for example a hypothetical network of Suns and SGIs, with the feature
that directories which appear as /home/... on Suns appear as /fac/home/... on
SGIs. Moreover the string /tmp mnt sometimes appears on the name of the current
directory even though not all machines in the network understand it. We can handle
this situation with these rewriting rules:

R 0 =all all /tmp mnt/ /
R 1 =sun all /fac/home/ /home/
R 1 =sgi all /home/ /fac/home/

The flag when=0 indicates a rewriting rule to be applied immediately when an
entry is created or when the logfile, directory or command attributes are changed
using aumod. So, the first rule says that the prefix “/tmp mnt/” is to be replaced by
“/” at that time. The rule could also be written

R 0 =all all /tmp mnt NULL

but then it would incorrectly edit “/tmp mnt1/xx” into “1/xx”. Rules with when=0
affect the generic attributes only.

The flag when=1 indicates a rewriting rule to be applied when an entry is selected
for running. This is done at the same time as the actdirectory, actlogfile and
actcommand attributes are created, but before expansion of macro characters (see
Section 10). The actual order is like this:

(1) Apply legal rewriting rules to a copy of the value of directory.

(2) If the resulting string does not now start with / or ~, prepend the name of the
home directory.

(3) Expand macro characters and assign the result to actdirectory.

(4) Apply legal rewriting rules to a copy of the value of logfile.

23

(5) If the resulting string does not now start with / or ~, prepend the value of
actdirectory.

(6) Expand macro characters and assign the result to actlogfile.

(7) Apply legal rewriting rules to a copy of the value of commandverb.

(8) Expand macro characters in the resulting string, and in the value of arguments.
Assign the results to actcommand.

(9) Perform any required freezing operation (see Section 10).

Note that the values of directory, logfile and command are unchanged except
perhaps in step (9). In our example, if the machine that runs the entry is a Sun,
paths /fac/home/... are rewritten as /home/..., and if it is an SGI, /home/... is
rewritten as /fac/home/... .

The item hostgroup is any host group, user-defined or special, or the complement
of one (for example, ~=alpha). As always, undefined host groups are implicitly empty.
In all cases, the rewriting rules are executed repeatedly in circular order until none
apply, with the limit that no rule is executed more than once.

The rewriting feature provides a nice way to change directories automatically
between different types of machines. Suppose you run a mixture of SUN and SGI
machines, as before. Suppose your executables reside in subdirectories SUN and SGI.
Define these rules:

R 1 =sun all WORK/ SUN/
R 1 =sgi all WORK/ SGI/

Then auadd WORK/command arg1 arg2 will find the right executable. However,
auadd etc/WORK/command arg1 arg2 will not work because the pattern matching
always starts at the beginning of the string. That more general case is handled by
rules like these:

R 1 =sun all */WORK/ \0/SUN/
R 1 =sgi all */WORK/ \0/SGI/

and then auadd etc/WORK/command arg1 arg2 will work. Many variations on this
are possible.

24

12. The yawn protocol.

If the yawn protocol is selected as described above (see the attribute yawn in Sec-
tion 2), the machine is monitored for activity to reduce the impact of your processes
on other users.

According to rules you provide in a “yawn times file”, each moment in a week
is classified into five “time classes”. These classes may overlap. Their names and
meanings are as follows.

ALWAYS: jobs are allowed to run

NEVER: jobs are not allowed to run

MAYBE: jobs are not allowed to run if there has been less than 10 minutes since
the last use of the the keyboard or mouse, or of a terminal device other than
/dev/console belonging to a logged-in user. The utmp or utmpx file is used to
find these terminal devices, so sessions not recorded there will be ignored.

CONSOLE: jobs are not allowed to run if it has been less than 10 minutes since the
last use of the the keyboard or mouse, or if someone is logged into the console
(regardless of activity).

LOAD: jobs are stopped if the system load average is above a given upper limit, and
allowed to run again if the load average drops below a given lower limit.

Class NEVER overrides any of the other classes. Similarly, any class overrides
class ALWAYS. Otherwise, any particular time of day can be in any combination of
classes at once, and jobs are only allowed to run if all the requirements of each class
are met.

The periods belonging to each time class are specified in a “yawn times file”,
which will be the first of these four that exists and is readable:

$HOME/yawn.〈hostname〉
YAWNDIR/yawn.〈hostname〉
$HOME/yawn.default
YAWNDIR/yawn.default

In these names, “YAWNDIR” is the name of a directory that can be specified
when autoson is compiled. The two possible names involving $HOME are omitted
in multiuser mode.

The yawn times file contains lines, of which these are examples:

weekday 0900 1700 never
weekend 0900 1800 load 0.6 1.1
all 0000 0900 always

The first field is one of sun, mon, . . . , sat, weekend, weekday, and all. The next
two fields are starting and finishing times as hhmm (from 0000 to 2359). The fourth
field is one of never, maybe, always, load and console. In the case of load, two
real numbers x and y also need to be given. These are used in conjunction with the
loadfactor f of the current entry. If the system load is at most x when the entry is
not running, it is allowed to run. If the load is more than x + f ∗ y when the entry is
running, it is stopped.

25

The time class is monitored periodically, and SIGSTOP/SIGCONT signals are
sent appropriately. While the job is running in class MAYBE, the devices are mon-
itored every 30 seconds so on average a new interactive user will be seen within 15
seconds.

The yawn times file may be editted while a job is running, and will take effect
before very long. Actually, what happens is that a change to the modification time of
the current yawn times file will cause aurun to reread the yawn times files as described
above. For example, if it is using yawn.default but you want it to use a new file
yawn.〈hostname〉, just “touch” yawn.default when yawn.〈hostname〉 is ready.

Finally, there is a mechanism to tell yawn to ignore terminal lines in use by
particular users. Include in the @noyawn host group an item like user:〈username〉.
This will also cause console logins by 〈username〉 to be ignored, but will not stop
yawn from looking at the keyboard and mouse.

13. Environment variables.

The environment variables HOME and PWD are no longer used.

A non-standard name for the queuefile can be specified in the environment vari-
able AUTOSON QUEUE. This is described in Section 3.

The only other environment variables which autoson might use are EDITOR and
SHELL, as described in Section 8.

14. The format of the queuefile.

The queuefile is an ascii text file, divided into “records” whose type is indicated by
the first character.

N Next entry number record (1 line)
S Global clock record (1 line)
H Host group definition record (1 line)
F Format definition record (1 line)
R Rewriting rule record (1 line)
I Initialization record (1 line)
E Entry record (6 or 8 lines)
T Machine speed record (1 line)

These are described one at a time below.

Next entry number record:
N unsigned

When the next new entry is created, this is the entrynumber it will have.

Global clock record:
S unsigned

This is the counter used by by the schedtime attributes of entries. See Section 2
for an explanation.

Format definition record:
F char string

The character is one of C, P, W, H, L and S. The string is a layout for the state
indicated by the character. The details are given in Appendix A.

26

Host group definition record:
H string hostgroup

The string is the name of a host group being defined, and must begin with the
character @. The host group is a space-separated list of host groups. Any names
beginning with @ or = must have been previously defined. The semantics are given in
detail in Section 9.

Rewriting rule record:
R unsigned string string string string

This gives a rule for rewriting file names. A full description appears in Section 11.

Initialization record:
I string string string string

This defines an initialization string used when an entry is run in multiuser mode.
A full description appears in Section 5.

Machine speed record:
T string realnumber

This defines a relative speed factor for a class of machines. The string is a host
group or the complement of a host group. The realnumber is any floating point
number. Each machine has relative speed factor equal to the number given on the
first T line which matches it, or 1 if there are none that match. It doesn’t need to
correspond to reality. Currently the only use of the relative speed factor is to compute
the scaled cpu time displayed in logfiles (see Section 16).

Entry record:

This type of record has 7 lines (PEND, WAIT, HOLD) or 9 lines (CURR, LOST,
SICK). It contains the values of each attribute of one entry. We will give the contents
line by line. Boolean values are given as 0 or 1. Times are given as integers, as for
the UNIX system call time(). The value ∞ appears as 231 − 1. Some strings are
written with the character X in front, so that null strings are visible.

(1) E entrynumber isn state priority nice submittime timestamp cycle limit
oldlimit grace tries maximum freeze append cautious
States are encoded thus: 1=CURR, 2=PEND, 3=WAIT, 4=HOLD, 5=LOST,
6=SICK. isn is an internal attribute used to uniquely identify sequences. freeze
is a non-null string.

(2) Xstream directory logfile last resubdelay yawn verbose once sickness
The three values of yawn are encoded as −1, 0, 1.

(3) Xusername Xnexthosts X schedtime serialize immunity umask loadfactor
step−1 requeutime 0
The three values of yawn are encoded as −1, 0, 1. The value of umask is written
in decimal, with −1 meaning “none”. The isolated X and 0 are placeholders for
future use.

(4) runninghost runningpid aurunpid stopped actdirectory actlogfile
This line only appears if the state is CURR, LOST or SICK.

(5) hosts
This is a blank separated list of strings.

27

(6) prerequisites
This is a comma-separated list of items, each integer or integer:integer.

(7) identification
All of this line is the value, empty or not.

(8) command
This is a list of one or more strings, comma separated.

(9) actcommand
This is like line (7), but only appears for state CURR, LOST or SICK.

15. Special jobs.

There are a small number of “special jobs” known to aurun, identified by their
commandverb attribute. The selection of special jobs to run is carried out exactly
the same as for ordinary jobs, but instead of running a program provided by the user,
aurun performs some action itself.

reset
This job causes aurun to restart. This involves closing and reopening the aurun
logfile, and looking for devices used by yawn (Section 12). Arguments noappend and
append override any aurun switches, so reset noappend is a way to truncate a
aurun logfile that has become too long.

getlost
This job causes aurun to look for abandoned entries on the current machine, and for
entries for which the controlling aurun appears to have vanished. Normally this is
only done when aurun starts up. Messages about any that are found will appear in
the aurun logfile.

Example:

auadd -once -nolim -nolog reset noappend
Truncate all aurun logfiles on all machines. Don’t forget to delete it when it has run
on every machine.

28

16. Output formats.

We now give an example of logfiles. Suppose you start aurun0 with a fresh logfile
and execute the command who. After it finishes, the logfile of the entry (as given by
the -logfile switch in the auadd command) might look like this:

Autoson entry 57, started at Mon Mar 18 19:17:53 1996 on tyl (solaris)

bdm console Feb 26 09:37
bdm pts/2 Feb 26 09:37
bdm pts/3 Feb 26 09:37
bdm pts/5 Feb 26 09:37
bdm pts/4 Feb 26 09:37

Entry 57 terminated on tyl at Mon Mar 18 19:17:54 1996 (status 0)
cpu=0.02u,0.09s,0.18x pf=118
--

The actual command output is visible in the center. Most of the rest should be
self-evident if you know that tyl is the name of the machine that executed the entry.
On the first line, solaris is the value of the macro ^^. On the last line, the cpu times
are in seconds. There are user-time, system-time and the sum of these two multiplied
by the relative speed factor for this machine (1.6), pf=118 means there were 118
page-faults, and (status 0) means that the process terminated using exit(0) or
equivalent; it would say (signal 9) if it was killed using signal number 9.

The contents of the master logfile for the aurun process which executed this entry
might look something like this:

Autoson Version 1.3; Mar 17, 1996 (single-user)
mouse=/dev/mouse keyboard=/dev/kbd console=/dev/console
@@=tyl0 ^=4 ^^=solaris

YAWN: using times file /home/bdm/yawn.default
Starting entry 57 on tyl at Mon Mar 18 19:17:53 1996
who
user=bdm dir=/home/bdm/autoson log=/home/bdm/autoson/who.out

Entry 57 terminated on tyl at Mon Mar 18 19:17:54 1996 (status 0)
cpu=0.02u,0.09s,0.18x pf=118
--

At the beginning there is some information about yawn devices and macro values.
Then there is some information about the entry, much of it a copy of things that ap-
pear in the entry logfile but also the values of actcommand, username, actdirectory
and actlogfile. The only other thing in this example is a message from yawn stat-
ing which times file it is using (not repeated unless it changes). In a longer running
case, there might be messages from yawn telling us what it is doing, for example like
this:

29

YAWN: stopped at Tue Feb 20 18:08:45 1996, reason=/dev/kbd
YAWN: continued at Tue Feb 20 18:50:46 1996, class=maybe
YAWN: stopped at Wed Feb 21 09:00:25 1996, reason=load
YAWN: continued at Wed Feb 21 17:27:25 1996, class=maybe&load

At 18:08:45, yawn stopped the job because the keyboard device was not idle.
At 18:50:46 all relevant devices were idle, so it started the job again and it ran until
9:00:25 the following morning, when the prescribed system load was exceeded. Finally,
at 17:27:25, the job was restarted again.

17. Special considerations for multiuser mode.

This section will summarize the special features of autoson when run in multiuser
mode.

The set of all possible users is divided into four classes.

(a) Supervisors are specified in a list compiled into the code. These users have access
to all the features of autoson.

(b) Entry owners are the users whose username matches the username attribute of
some entry. This class is only defined in the context of an entry.

(c) Authorized users are users whose username appears in the authorization file. The
name of the file is the same as the queuefile, plus a further extension .users.
The syntax of that file is free: usernames separated by blanks, tabs or newlines.

(d) Other users are everyone else.

These classes are not necessarily disjoint.

For users in the last class, the only available autoson facility is the use of aulook.

Only authorized users and supervisors can create entries. Only entry owners and
supervisors can modify existing entries or use auzap in regard to an entry.

Only supervisors can perform the following operations:

(a) use auzap -aurun to signal an aurun process;

(b) set the last attribute of entries;

(c) use the aulock command or the aurun command;

(d) use -cautious, -really, -renumber, -serialize, -yawn, or their negations.

(e) run special jobs (Section 15).

In addition, users other than supervisors are restricted to bounds on the values
of the priority, nice and loadfactor attributes, normally the same as the default
values.

30

18. System notes.

Sun:

You need to compile autoson separately on Solaris 1 (for example SunOS 4.1.3)
and Solaris 2 (for example 5.3) because the format of the utmp file is different and
signal numbers are different.

On Solaris 1, the cpu time written in the trailer is sometimes wrong for unknown
reasons. On Solaris 2, the page fault count always appears as 0.

HP-UX:

Both the cpu times and the page fault count appear as 0, because there seems to
be no way to get them.

Alpha, Dec:

I don’t know how to test for keyboard activity. I will add it if someone tells me
how and it isn’t too complicated.

SGI:

The mouse and keyboard devices are insufficient for monitoring their activity.
There is some code to do this using /dev/qcntl0, but it only works on newer versions
of the operating system and then only with root privilege. It is recommended that
single-user mode autoson NOT be installed with root privilege, for security reasons.
Use multiuser mode if it is essential that the mouse and keyboard be monitored.

19. The startaurun script.

There are two shell scripts, startaurun singleuser and startaurun multiuser,
which differ only in the parameters they use on the ps command. We will describe
them together as “startaurun”.

The normal operation of startaurun is to start aurun0 on the current machine
unless it is already running. It assumes the default name for the logfile, and copies
the last 200 lines of any previous logfile to a file of the same name except it has suffix
“oldrun” instead of “run”.

If you wish to run more than one aurun on some machines, create a file called
startaurun.cmds in your home directory. Then, for each such machine, insert a line
containing the name of the machine and one single character for each aurun you wish
to run. For example, to run aurun0 and aurun1 on machine fred, startaurun.cmds
should contain a line “fred 0 1”. There is no need to include machines for which
you want aurun0 only.

startaurun can be run manually or via crontab.

31

20. The splat program.

The program splat is completely independent of autoson, but is included here due
to its usefulness in managing jobs in a network environment. It can be used to execute
a command on each machine in a network, or some subset of those machines, using
multiple overlapping rsh processes for faster throughput.

Usage:
splat [-s] [-n] [-#] [-t timeout] [-f file] [-d] command...

This will execute the command command... on each machine listed in the file
file, or some subset of those indicated by the -# switch (# is a number).

Explanations of the switches:

-s : suppresses the “hostname:” header for each host output

-n : omit the current host

-# : specify a host mask (see below). # is an unsigned integer.

-f file : specify the host file (containing machine names, see below). The default
is $HOME/.splathosts. “-” means stdin.

-t timeout : specify a maximum number of seconds to wait The default is 34, but
you need to increase that if the network is very slow or if you are running a
command that takes a long time. There is a granularity of about 5 seconds.

-d : write some debugging information

command.. is a command to execute. It can consist of any number of arguments,
with escaping or quoting to avoid meddling by the shell. For example

splat ’ps | grep xyz’
splat ps \| grep xyz

have the same effect.

The argument to -f or -t can be either appended to the switch name or be a
separate parameter.

The output from each host is not necessarily in the same order as the hosts appear
in the hosts file, but the outputs are not intermingled.

The hosts file should contain a list of host names with white space separating, any
number per line. An optional mask can be associated with each host, for example
hawaii:2 gives the mask value 2, an unsigned decimal integer. The default mask
value is 1. Any name starting with the character #, and the remainder of that line,
is ignored.

The switch -# (where # is an unsigned decimal integer) can be used to select
hosts according to their masks.

(a) If #=0, all hosts are selected.

(b) If #>0, those hosts whose mask has bitwise AND with # are selected.

(c) The default value of # is ~0, which selects all hosts with nonzero masks.

32

21. Getting started.

In this section we describe the initial installation and testing of autoson. Version
1.3 of autoson is distributed as a compressed tar file autoson13.tar.Z. It an be
unpacked using one of these commands:

zcat autoson13.tar.Z | tar xvf -
uncompress autoson13.tar.Z ; tar xvf autoson13.tar.

The installation procedure is significantly different for single-user and multiuser
mode, so we will describe it separately for each.

Single-user mode installation

(a) Edit the file audefaults.h to select single-user mode and change any defaults
you wish. It is a good idea to read the entire file carefully, except the multiuser
mode section.

(b) Edit the first few lines of makefile if necessary, according to the instructions
that appear there.

(c) Type make all.
Unless some error occurs, this will make executable files autoson0 and autoson1,
and links to these called aulook, auadd, aumod, auzap, aulock, aurun0 and
aurun1. It will also make splat.

(d) Move the just-mentioned seven links to your bin directory (or add the current
directory to your path). Also move splat and startaurun singleuser there.

(e) (Omit this step for Linux and Alpha.) If you wish to use the LOAD class of the
yawn protocol, it is necessary that autoson0 can read the special file /dev/kmem.
Get a super-user to change the group owner of autoson0 to the same as the group
owner of /dev/kmem, which is usually sys or kmem. Then change the mode of
autoson0 to 2750. If you omit this step, the only thing that won’t work is the
LOAD class of yawn.

(f) Create an empty file autoson.queue in your home directory. Copy the file
yawn.default to your home directory, and edit it if necessary.

That completes the essential installation. If you type aulook now, it should
respond “The queue is empty.”. Now try adding a short sequence:

auadd -noyawn -lim 9 -log echo.#.out echo This is case #.
You will see it there if you use aulook again, but it won’t run yet because you haven’t
started aurun. This one entry represents a sequence of nine jobs, with cycle taking
the values 1, . . . , 9. So, start aurun0 using the command startaurun singleuser.

The command echo is of course very quick, so before you know it, the queue
will be empty again. Then you should find (in the same directory as where you were
when you executed the auadd command) output files echo.1.out, . . . , echo.9.out
containing the output of the nine jobs.

If that was successful, all that remains is to start aurun0 on your other machines
as well. Of course, you need to compile separate executables for each system type
(including separate executables for Solaris 1 and Solaris 2 if you have both). You
need to make sure your login files (.login, .cshrc, etc.) set PATH to select the
right ones.

33

In some environments, you will need to add some rewriting rules before everything
works properly on a mixture of machine types. See Section 11 for instructions.

Multiuser mode installation

In multiuser mode, aurun and auzap require root privilege, and care must be
taken to avoid security holes. No known security problems exist with autoson if
correctly installed, but please notify the author immediately if you find one.

You need to create a new user account. I will call it autouser and suppose for pur-
pose of explanation that the home directory of autouser is called /home/autouser.

(a) Log in as autouser.

(b) Set the mode of /home/autouser to 755 and make a subdirectory private of
mode 700. Go to private and unpack the file autoson13.tar.Z there.

(c) Edit the file audefaults.h to select multiuser mode and set all defaults that you
wish. The defaults in there should be ok already, except that you should change
“autouser” and “/home/autouser” to what the real names are.

(d) Edit the first few lines of makefile if necessary, according to the instructions
that appear there.

(e) Type make all.
Unless some error occurs, this will make executable files autoson0 and autoson1,
and links to these called aulook, auadd, aumod, auzap, aulock, aurun0 and
aurun1. Set the ownership and modes of these files as follows:
autoson0: owner=root, mode=4755.
autoson1: owner=autouser, mode=4755.

Move all nine executable files to some place your users can see them.

(f) Repeat steps (d) and (e) for other system types, if you are running more than
one. Note that separate executables are needed for Solaris 1 and Solaris 2.

(g) Create an empty file /home/autouser/autoson.queue, owner=autouser,
mode=644.

(h) Copy yawn.default to /home/autouser, mode=644. Edit it as you like. You
can also make separate yawn times files for other machines; see Section 12.

(i) If necessary on your system, create a .rhosts file that enables autouser to use
rsh from any machine to any other. (If this is not possible, for example if you
have disabled rsh, auzap will only work on local entries. Everything else will
work.)

(j) Create a file /home/autouser/autoson.queue.users, mode 644, containing a
list of authorised users. The format is free: usernames separated by white space.

(k) Try running a test job, as described for single-user mode. Preferably try it for
several authorized users. Use startaurun multiuser to start aurun0. Note that
users other than supervisors are not allowed to use -noyawn.

(l) Start aurun0 on all desired machines.

34

Appendix A. Formats for aulook.

The brief output format used by aulook, or in response to the -peek switch on some
commands, can be configured freely. The default values are determined at compile
time according to the file audefaults.h, and these can be overridden by means of
lines in the queuefile. There is a different format used for each state. As the program
is distributed, the defaults are:

(1) For single-user mode:

CURR: %e %Y[%@|%-9s|,%T]%#%+%=%v%y%z%S%m|| max=%d| max=%d| %I

PEND: %e %s%#%+%=%p%v%y%z%h%P%f%S%m%1 %c %a

WAIT: %e %s[%T]%#%+%=%v%y%z%h%P%f%S%m%1 %i

HOLD: %e %s%#%+%=%p%v%y%z%h%P%f%S%m%1 %i

LOST: %e %Y[%@|%-9s|,%T]%#%+%=%v%y%z%S%m|| max=%d| max=%d| %I

SICK: %e %s[%@,%T]%#%+%=%v%y%z%S%m%1 %I\n%k

(2) For multiuser mode:

CURR: %e/%u %Y[%@|%-9s|,%T]%#%+%=%v%y%z%S%m|| max=%d| max=%d| %I

PEND: %e/%u %s%#%+%=%p%v%y%z%h%P%f%S%m%1 %c %a

WAIT: %e/%u %s[%T]%#%+%=%v%y%z%h%P%f%S%m%1 %i

HOLD: %e/%u %s%#%+%=%p%v%y%z%h%P%f%S%m%1 %i

LOST: %e/%u %Y[%@|%-9s|,%T]%#%+%=%v%y%z%S%m|| max=%d| max=%d| %I

SICK: %e/%u %s[%@,%T]%#%+%=%v%y%z%S%m%1 %I\n%k

The items permitted in a format are listed below.

\x
For any character x this just writes x, except that \t and \n write tab and newline
respectively.

x
Any character x except % or \ represents itself.

%x
For some characters x this writes an entry attribute. A complete list of these char-
acters is given below. In each case the output is defined by one or more formats,
here called F1, F2, Which format to use is determined by the rules given here.
The formats are used directly in fprintf statements (see fprintf(3)). For each
attribute there is a default set of formats, or you can specify your own in the
layout by appending them immediately.

For example, the default for %a (command arguments) is F1=“” (if no arguments),
F2=“%s” (for the first argument) and F3=“ %s” (for later arguments). If the ar-
guments are arg1 arg2 arg3, this will produce “arg1 arg2 arg3”. If you want
the output “args = arg1,arg2,arg3” instead, you can use
%a||args = %s|,%s|. You must give the same number of formats as in the
default, separated by vertical lines.

35

item attribute default meaning and values provided

%a arguments ||%s| %s| F1 for no arguments [none]
F2 for first argument [string]
F3 for later arguments [string]

%A same as %a, but using actcommand for state CURR, LOST or SICK

%c commandverb |%s| [string]
%C same as %c, but using actcommand for state CURR, LOST or SICK

%d directory |dir=%s| [string]
%D same as %d, but using actdirectory for state CURR, LOST or SICK

%e entrynumber |%d| [int]

%f freeze || fr=%s| fr=all| F1 if no freezing [string]
F2 if intermediate [string]
F3 if all [string]
The values are substrings of cdl.

%F loadfactor || lf=%3.2f| F1 if default (1.0) [double]
F2 if not default [double]

%g grace || gr=%d| F1 if default (10) [int]
F2 if not default [int]

%h hosts || host=%s|,%s| F1 if null [none]
F2 for first value [string]
F3 for later values [string]

%H nexthosts || nh=%s| F1 if null [none]
F2 if not null [string]

%i identification |id=%s|cmd=%s| F1 if non-null id [string]
or commandverb F2 if null id [string]

%I same as %i, but using actcommand for state CURR, LOST or SICK

%k sickness |sickness=%s| [string] (only SICK)
The string is a description of the reason.

%K immunity || imm=%d| F1 if default (0) [int]
F2 if not default [int]

%l logfile |log=%s| [string]
%L same as %l, but using actlogfile for state CURR, LOST or SICK

%m maximum | nomax|| max=%d| F1 if maximum=0 [int]
F2 if maximum=1 [int]
F3 if maximum>1 [int]

%n nice || nice=%d| F1 if default (1) [int]
F2 otherwise [int]

%o oldlimit ||(%d)|(-)| F1 if oldlimit≤cycle [int]
F2 if cycle<oldlimit<∞ [int]
F3 if oldlimit=∞ [int]

%p priority || pri=%d| F1 if default (10) [int]
F2 otherwise [int]

%P prerequisites ||:%d| pre=%d|,%d| F1 if none [none]

36

F2 for hi end of ranges [int]
F3 for first prerequisite [int]
F4 for later prerequisites [int]

%q cautious | nocau|| F1 if false [none]
F2 if true [none]

%r resubdelay || res=%d| F1 if zero [int]
F2 if non-zero [int]

%R serialize | noser|| ser| F1 if no [none]
F2 if maybe [none]
F3 if yes [none]

%s state |%4.4s| [string]

%S stream || str=%s| F1 if null [string]
F2 if not null [string]

%t submittime |%15.15s| [string]
eg. "Fri Oct 21 23:22:29 1994"

%T timestamp |%15.15s| [string] , as above

%u username |?|%s| F1 if unknown [none]
F2 if known [string]

%U umask || umsk=%03o| F1 if none [−1]
F2 if given [int]

%v retries | vol|| re=%d| rerun| F1 if −1 [int]
F2 if 0 [int]
F3 if > 0 [int]
F4 if ∞ [int]

%V verbose || verb| F1 if false [none]
F2 if true [none]

%w append | noapp|| F1 if false [none]
F2 if true [none]

%x runningpid |%d| [int] (only CURR, LOST or SICK)

%X aurunpid |%d| [int] (only CURR, LOST or SICK)

%y yawn | noyawn|| yawn| F1 if no [none]
F2 if maybe [none]
F3 if yes [none]

%Y state+stopped |STOP|%4.4s|ORPH| F1 if state=CURR and stopped=1 [string]
F3 if state=CURR and stopped=2 [string]
F2 otherwise [string]

The string is the state name.

%z last || last| F1 if false [none]
F2 if true [none]

%1 once || once| F1 if false [none]
F2 if true [none]

%# cycle || cyc=%d| F1 if cycle=limit=1 [int]
F2 otherwise [int]

37

%= limit ||/%d|/-| F1 if limit=cycle [int]
F2 if ∞ >limit 6=cycle [int]
F3 if limit=∞ [none]

%+ step ||[%d]| F1 if step=1 [int]
F2 otherwise [int]

%@ runninghost |%s| [string] (only CURR, LOST or SICK)

Acknowledgements.

Gunnar Brinkmann, Staszek Radziszowski and Stuart Ramsden were especially help-
ful in testing autoson and providing many valuable ideas for its development.

I also wish to acknowledge help from Clement Lam, Gordon Royle and Christoph von
Stuckrad.

Restrictions.

The following copyright notice appears in autoson.h.

Copyright (1994-6) Brendan McKay. All rights reserved.
Educational organizations may use this product for purposes of
research. All other use is forbidden without permission of
the author. You must not remove this copyright notice, and
you must document any changes you make to the code. This software
is subject to this copyright only, irrespective of any copyright
attached to a larger work of which this is a part.

Absolutely no guarantees or warranties are made concerning the
suitability, correctness, or any other aspect of this program.
In particular, you are advised that no proof of the soundness of
this product as regards system security exists nor is possible,
as with most complex software. Any use is at your own risk.

38

