Welcome to COMP2300 – Introduction to Computer Systems

UltraSPARC T2
(Niagara-2)
multicore chip layout

a rather advanced computer system!
(courtesy of T. Okazaki, Flickr)

Course Contact

- course web site: http://cs.anu.edu.au/Student/comp2300
- course coordinator & lecturer:
 Peter Strazdins
 CSIT N219, 6125-5140, comp2300@cs
- course tutors: Jie Cai, Peter Strazdins and Li Zhou
- forums accessible by StReAMS:
 - Announcements: postings from lecturers only
 - Discussion: for your use

Course Schedule

- lectures: three one hour lectures per week, five modules:
 - Digital building blocks (4)
 - C language (4)
 - PeANUt or “Assembly Level Machine Organisation” (9)
 - Memory Systems and Modern Machines (5)
 - Operating System Concepts (4)
 - Interconnection Networks (1)
- other lectures: 1 introductory, mid-semester exam, and 1 exam preparation.
- tutorial/laboratories: 9 supervised, and 1 unsupervised
 - register NOW via http://cs.anu.edu.au/streams
 - important to come prepared! will contain examinable material!
- assignments: 3
- more details on the course schedule page

Lecture Slides

- this year’s lectures slides will be made available on the COMP2300 web site on the day before the corresponding lecture
 - can use last year’s if need them earlier
- we advise you to print (the 4-up) lectures slides and bring them to the lectures
- printing lectures slides after lectures and learning from them may not be very useful (deliberately terse and incompl. . .)
- rather, annotate your notes onto lectures slides during the lectures
- reading from texts etc is necessary for developing your understanding
Course Assessment

● see the assessment web page

● designed to promote engagement; test understanding rather than rote learning

● Tute/Lab Marks: 10%

● Assignments: due weeks 6, 9 and 12 30%

■ this year’s theme: the ‘out-shuffle’

■ note plagiarism issues and unacceptable vs acceptable collaboration:
 producing a solution with the aid of another’s solution is cheating!

● redeemable Mid-Semester Exam: tentatively Thu wk 7; covers D & C modules 20%

● Final Exam: 40%

■ 2+1 hours, 1 page A4 notes (both sides, printed or hand written), no calculator

■ former exam papers available from course web page;
 note that not all questions are still applicable

● to obtain a D or HD, you will be expected to have read around the course
 e.g. from the text books & further links on web site

Discussion: Your Views: What are ‘Computer Systems’

we will record your thoughts in these notes:

● what comes into your mind when you hear the term ‘computer systems’?

● what aspects of computing/IT would you classify as ‘computer systems’?

● what kind of tasks would you expect work in ‘computer systems’ to involve?

● what kind of skills would you expect to be required?

References and Text Books

● Specification of the PeANUt Computer 2009 (or 2004–8) free this year!

■ why is a hardcopy useful?

● a reference book on C programming strongly recommended

■ Pure C Programming, Amir Afzal, 1999

■ The C Programming Language, Brian Kernighan and Dennis Ritchie, 1988

■ C Programming Made Simple by Conor Sexton, 1997

■ probably any other ANSI (i.e. relatively modern!) C programming text

● a book on Computer Architecture strongly recommended

■ Computer Systems: A Programmers Perspective*, Bryant and O’Hallaron, 2003

■ Structured Computer Organization, A.S. Tanenbaum, 2005 (5th ed)

● further details (publishers, ISBNs) from course text web page

What’s the Course all about?

● the hardware-software interface

● how the computer works

● system-oriented programming

● low-level programming

● programmer’s view of computer hardware

● field of computer systems is based on 2 fundamental concepts:

■ abstraction: multiple levels of detail/description;
 ◆ manage complexity, interfaces, standards

■ virtualization: give the appearance of a capability or service; decouple services
 from underlying physical resources
 ◆ simplicity, flexibility, better resource sharing

● the computer systems mind-set:

■ real systems are very COMPLEX!

■ discern which parts are essential (for task-at-hand) first;
 (only) understand in detail those
Why Study Computer Systems?

- from IEEE/ACM Computing Curricula 2001, on the course web page:
 - better understanding of how computers work
 - machine-oriented programming
 - operating system oriented programming
 - middleware programming (e.g. JVM)
 - better programmer
 - faster programs
 - safer programs
 - complex software systems
 - disruptive technologies are now emerging, potentially affecting all of IT

What now... things to do

- register for a laboratory group with http://cs.anu.edu.au/streams
- select texts (C, computer systems)
- have a look at the course’s web site
- inspect the course Discussion forum
- have a look at number systems (link on web site)

What do we cover?

1. Digital Building Blocks
 - number systems, data representation, logic gates, machine code, architectures, history, ...

2. C Programming
 - functions, compiling, system oriented (Unix, Linux), ...

3. PeANUT computer
 - architecture, registers, machine and assembly language, procedures, exceptions...

4. Memory Systems and Modern Architectures
 - virtual memory, page replacement, latency, cache, instruction set design, ...

5. Operating System Concepts
 - processes, scheduling, devices, file systems ...

6. Interconnection Networks
 - communication model, switched/packet, Ethernet