Welcome to COMP2300 – Introduction to Computer Systems

UltraSPARC T2
(Niagara-2)
multicore chip layout

a rather advanced computer system!
(courtesy of T. Okazaki, Flickr)
Course Contact

- **course web site**: http://cs.anu.edu.au/Student/comp2300
- **course coordinator & lecturer**: Peter Strazdins CSIT N219, 6125-5140, comp2300@cs
- **course tutors**: Jie Cai, Peter Strazdins and Li Zhou
- **forums accessible by StReAMS**:
 - Annoucements: postings from lecturers only
 - Discussion: for your use
Course Schedule

- lectures: three one hour lectures per week, five modules:
 - Digital building blocks (4)
 - C language (4)
 - PeANUt or “Assembly Level Machine Organisation” (9)
 - Memory Systems and Modern Machines (5)
 - Operating System Concepts (4)
 - Interconnection Networks (1)
- other lectures: 1 introductory, mid-semester exam, and 1 exam preparation.
- tutorial/laboratories: 9 supervised, and 1 unsupervised
 - register NOW via http://cs.anu.edu.au/streams
 - important to come prepared! will contain examinable material!
- assignments: 3
- more details on the course schedule page
Lecture Slides

- this year’s lectures slides will be made available on the COMP2300 web site on the **day before** the corresponding lecture
 - can use last year’s if need them earlier
- we advise you to print (the 4-up) lectures slides and bring them to the lectures
- printing lectures slides after lectures and learning from them may not be very useful (deliberately terse and incompl. . .)
- rather, annotate your notes onto lectures slides during the lectures
- reading from texts etc is necessary for developing your understanding
Course Assessment

- see the assessment web page
- designed to promote engagement; test understanding rather than rote learning
- Tute/Lab Marks: 10%
- Assignments: due weeks 6, 9 and 12 30%
 - this year's theme: the ‘out-shuffle’
 - note plagiarism issues and unacceptable vs acceptable collaboration: producing a solution with the aid of another’s solution is cheating!
- redeemable Mid-Semester Exam: tentatively Thu wk 7; covers D & C modules 20%
- Final Exam: 40%
 - 2+1 hours, 1 page A4 notes (both sides, printed or hand written), no calculator
 - former exam papers available from course web page; note that not all questions are still applicable
- to obtain a D or HD, you will be expected to have read around the course
e.g. from the text books & further links on web site
References and Text Books

- Specification of the PeANUt Computer *2009 (or 2004–8)*
 - why is a hardcopy useful?
- a reference book on C programming
 - Pure C Programming, Amir Afzal, 1999
 - The C Programming Language, Brian Kernighan and Dennis Ritchie, 1988
 - C Programming Made Simple by Conor Sexton, 1997
 - probably any other ANSI (i.e. relatively modern!) C programming text
- a book on Computer Architecture
 - Computer Systems: A Programmers Perspective*, Bryant and O’Hallaron, 2003
 - Structured Computer Organization, A.S. Tanenbaum, 2005 (5th ed)
- further details (publishers, ISBNs) from course text web page
Discussion: Your Views: What are ‘Computer Systems’

we will record your thoughts in these notes:

- what comes into your mind when you hear the term ‘computer systems’?
- what aspects of computing/IT would you classify as ‘computer systems’?
- what kind of tasks would you expect work in ‘computer systems’ to involve?
- what kind of skills would you expect to be required?
What’s the Course all about?

- the hardware-software interface
- how the computer works
- system-oriented programming
- low-level programming
- programmer’s view of computer hardware
- field of computer systems is based on 2 fundamental concepts:
 - abstraction: multiple levels of detail/description;
 - manage complexity, interfaces, standards
 - virtualization: give the appearance of a capability or service; decouple services from underlying physical resources
 - simplicity, flexibility, better resource sharing
- the computer systems mind-set:
 - real systems are very COMPLEX!
 - discern which parts are essential (for task-at-hand) first;
 (only) understand in detail those
Why Study Computer Systems?

- from IEEE/ACM Computing Curricula 2001, on the course web page:
 - better understanding of how computers work
 - machine-oriented programming
 - operating system oriented programming
 - middleware programming (e.g. JVM)
 - better programmer
 - faster programs
 - safer programs
 - complex software systems
 - disruptive technologies are now emerging, potentially affecting all of IT
What do we cover?

1. Digital Building Blocks
 - number systems, data representation, logic gates, machine code, architectures, history, ...

2. C Programming
 - functions, compiling, system oriented (Unix, Linux), ...

3. PeANUT computer
 - architecture, registers, machine and assembly language, procedures, exceptions...

4. Memory Systems and Modern Architectures
 - virtual memory, page replacement, latency, cache, instruction set design, ...

5. Operating System Concepts
 - processes, scheduling, devices, file systems ...

6. Interconnection Networks
 - communication model, switched/packet, Ethernet
What now...things to do

- register for a laboratory group with http://cs.anu.edu.au/streams
- select texts (C, computer systems)
- have a look at the course’s web site
- inspect the course Discussion forum
- have a look at number systems (link on web site)