
Performance Programing Module III: Parallel Optimization 124

Performance Programming: Theory, Practice and
Case Studies

Module III:
Optimizing Parallel Programs

Performance Programing Module III: Parallel Optimization 125

OutlineOutline

� Process and Thread Parallel Models
� Multithreaded Programming Models
� Multithreading Support in UNIX OS's
� Tuning Multithreaded Programs
� True and False Data Sharing
� Synchronization and Locking
� Thread Creation, Stacksize Issues

� Support for Compiler Directed Multithreading

� Parallel Program Analysis Tools

� Message Passing Programming

� Summary

Performance Programing Module III: Parallel Optimization 126

Parallelism Using Processes & ThreadsParallelism Using Processes & Threads
� Multiple Processes or Heavyweight Process model
� Relies on the traditional process model used by the UNIX OS
� Any interprocess communication techniques supported in the OS

(shared memory, sockets, file input/output, memory map)
� Not limited by process memory size
� Higher overhead associated with process creation and destruction

� Multiple Threads or Lightweight Process (LWP) model
� This model is based on the concept of a thread, which is defined as an

independent flow of control within the program with its own context:
stack and a set of registers

� Conserves system resources as the threads share process data and
opened files; Lower overhead since thread creation and destruction
can be substantially faster

� Restricted to the shared address space abstraction
� Large number of threads can lead to high lock contention

� Hybrid Models (eg. MPI+OpenMP) possible

Performance Programing Module III: Parallel Optimization 127

Parallelization ModelsParallelization Models

� Multithreading Models
� Compiler Auto-Parallelization
� OpenMP Compiler Directives
� Explicit Multithreading Using P-threads

� Multi-Processing Models
� UNIX fork/exec Model
� MPI Message-Passing Model

� Hybrid Models
� MPI + OpenMP or MPI + P-threads

Performance Programing Module III: Parallel Optimization 128

OpenMP Compiler DirectivesOpenMP Compiler Directives
� Pragmas can be used to instruct the compiler what parts of the

program should be parallelized
...
!$omp parallel &
!$omp private(i,x), firstprivate(h,n), shared(sum)
!$omp do reduction(+:sum)
do i=1,n ! add points x=(i-0.5)*h x = (i-0.5d0)*h
 sum = sum + 1.0d0/(1.0+x*x)
enddo
!$omp end do
!$omp end parallel
...
The program can be compiled on Solaris as

example% f90 -fast -openmp example.f90 -o example

Similar compiler options available on other systems (discussed later)

� OMP_NUM_THREADS setting controls number of threads

example% setenv OMP_NUM_THREADS 2

Performance Programing Module III: Parallel Optimization 129

Explicit Multithreading Using P-threadsExplicit Multithreading Using P-threads

� Typically more complex than OpenMP

� Irregular, dynamic applications implemented efficiently; al-
lows finer user control on performance.

...
for (i=0;i<thr_count;i++) {
 pthread_create(&id_vec[i], &pt_attr[i],
 thr_sub, (void *)¶m_arr[i]);
}
for (i=0;i<thr_count;i++)
 pthread_join(id_vec[i], NULL);
for (i=0;i<thr_count;i++)
sum += param_arr[i].sumloc; picomp = 4.0*sum*h;
...
void *thr_sub(void *arg)
...
{
 for (i=ist;i<=ien;i++) {
 x = ((double)i+0.5)*h; sum += 1.0/(1.0+x*x);
 }
}

Performance Programing Module III: Parallel Optimization 130

OpenMP and P-threadsOpenMP and P-threads

� Parallelization of an existing program
� OpenMP: can be applied incrementally
� In P-threads approach, typically higher effort

� Thread-safety and data scoping
� OpenMP: thread-safety easy as variables can be scoped (shared

vs. private)
� P-threads: need to explicitly privatize variables

� Performance
� OpenMP: many performance enhancing features, such as

atomic, barrier and flush synchronization primitives. Different
loop scheduling schemes also supported

� P-threads: Specialized synchronization primitives need to be
build

Performance Programing Module III: Parallel Optimization 131

OpenMP and P-threads (contd.)OpenMP and P-threads (contd.)

� Irregular applications
� Currently, no support (in OpenMP specification) for dynami-

cally spawning/joining tasks.
� P-threads APIs are more suitable for this

� Exception and signal handling
� P-threads have better support for exception and signal handling
� OpenMP has no support for unstructured control flow/jumps

out of parallel constructs. Exception handling not supported di-
rectly in the standard

� Conclusion
� OpenMP and P-threads approaches are suited to different

classes of programs

Performance Programing Module III: Parallel Optimization 132

Explicit MultithreadingExplicit Multithreading

� Explicit multi-threading applicable to wide range of
applications
� Compute-intensive (CPU-bound)
� Client-Server, GUI, Signal-handlers...

� Present discussion focuses on
� Compute-intensive applications
� Issues specific to UNIX platforms

Performance Programing Module III: Parallel Optimization 133

Multithreading ModelsMultithreading Models
� Performance issues
� Problem decomposition and granularity
� Load balancing
� Synchronization overhead
� Data sharing overhead

� Multi-threading Models
� Master-Slave model
� Worker-Crew model
� Pipeline model

Performance Programing Module III: Parallel Optimization 134

Master-Slave ModelMaster-Slave Model
� Master thread

initialization;
create N slave threads;

while (work to do) {

create work for slaves;
call barrier function;

slaves running,
master performs its
processing, if any;

call barrier and wait
for all slaves to arrive;

process results and check
if more work to do;
}

join slave threads;
finalize and perform
any other calculation

� Slave thread
while (work to do) {

call barrier function
and wait for master to create
work;

process its portion of work;

put results into global
memory or passed parameters;

call barrier and wait till
all slaves finish;
}
call thread exit;

Performance Programing Module III: Parallel Optimization 135

Master Slave Model (contd.)Master Slave Model (contd.)

� Only 2 barrier synchronizations required (if
slaves are all independent of each other)

� Simplest form: work known in advance and all
slaves perform equal chunks. In this case good
load balance also

� Often used in compiler parallelization libraries
(e.g. Solaris/SPARC OpenMP compiler)

Performance Programing Module III: Parallel Optimization 136

Worker-Crew ModelWorker-Crew Model

Main

Initialize task-queue and create worker threads;
wait for threads to exit;

Worker

for (;;) {
 t = get task from queue;
 if global-->done flag set then break;
 check if max task queue length reached or
 work finished;
 if true then set global->done flag
 (under protection of mutex lock);
 add new tasks to workpile if any (put task);
 check if t is valid task and perform the task;
}

Performance Programing Module III: Parallel Optimization 137

Worker Crew Model (contd.)Worker Crew Model (contd.)

� Can have static workpile or dynamic workpile (tasks
created at runtime)

� Achieves good load balancein irregular computations
but has higher lock contention and data sharing over-
head

� Example usage: sparse matrix computations, search al-
gorithms, divide and- conquer, loop parallelization
[schedule(dynamic) clause in OpenMP]

Performance Programing Module III: Parallel Optimization 138

Pipeline ModelPipeline Model

Pipeline

if stage = 0 { put work in queue 0; /* 0 <= stage <= NSTAGES */ }
for (;;) {
 if (stage > 0) {
 get work from queue (stage-1); /* wait if no work */
 if (task = EXIT or DONE) {
 if (stage < NSTAGES) put EXIT or DONE in queue (stage+1);
 break and then terminate;
 } /* end of if (task = EXIT or DONE) */
 } /* end of if (stage > 0) */
 Perform the work and update shared data;
 if (stage = 0) {
 check if all work done;
 if all work done {put DONE in queue 0; break and terminate;}
 if an error {put EXIT in queue 0; break and terminate;}
 put work in queue 0; }
 else if (stage > 0 and stage < NSTAGES) {
 put work in queue (stage + 1); /* wait if queue being
 accessed */
 } /* end of if (stage = 0) */
}

Performance Programing Module III: Parallel Optimization 139

Multithreading via P-ThreadsMultithreading via P-Threads
� Historically, vendor specific multithreading libraries (e.g. UI

threads on Solaris)
� Implementations differed making porting hard

� For UNIX systems, IEEE POSIX 1003.1c standard (1995)
was developed
� Implementation of this standard called P-threads or Posix

threads
� Adds following features to enable parallel programming
� Thread management functions
� Synchronization functions
� Thread Scheduling functions (including realtime)
� Thread-specific data functions
� Thread cancellation functions

� Nearly All UNIX systems offer it (Solaris, AIX, HPUX, IRIX,
Linux etc.) in addition to proprietary thread libraries

Performance Programing Module III: Parallel Optimization 140

Multithreading via P-Threads (contd.)Multithreading via P-Threads (contd.)

� Libraries
� libpthread (on most systems)
� libposix4 (on Solaris for Posix Semaphores)
� libc (on Solaris has empty stubs to facilitate program devel-

opment and debugging)

Performance Programing Module III: Parallel Optimization 141

Thread Scheduling ModelsThread Scheduling Models
User threadsUser threadsUser threads

Thread library

Kernel scheduler

Thread library Thread library

Kernel scheduler Kernel scheduler

User space

Kernel space

Kernel threads Kernel threads Kernel threads

MxN Model Nx1 Model 1x1 Model

Performance Programing Module III: Parallel Optimization 142

Thread Scheduling Models (contd.)Thread Scheduling Models (contd.)

� MxN and Nx1 models
� Commonly referred to as unbound threads (process scope); can

migrate within the pool of kernel threads in the process
� Nx1 is just a special case of MxN model and an intermediate

step in thread library evolution

� 1x1 model
� Also referred to as bound threads (system scope); user thread

sticks to a particular kernel thread for its lifetime

� Traditionally, thread creation and destruction faster in
MxN and Nx1 models compared to 1x1 model

� However, recent improvements in OS kernel make the
speed difference virtually insignificant
� Solaris 9 (for example) has switched to 1x1 model

Performance Programing Module III: Parallel Optimization 143

Building Threaded ProgramsBuilding Threaded Programs
� POSIX APIs developed for C programs (no direct support for For-

tran)
� POSIX function names: pthread_

� For POSIX thread programs include: pthread.h

#include <stdio.h>
#include <pthread.h>

void *thr_foo(void *);

pthread_attr_t t_attr;
pthread_t id;
int param=1;

pthread_attr_init(&t_attr);
pthread_attr_setscope(&t_attr, PTHREAD_SCOPE_SYSTEM);
pthread_attr_setstacksize(&t_attr, 1000);
pthread_create(&id, &t_attr, thr_foo, (void *)¶m);
pthread_join(id, NULL);

Performance Programing Module III: Parallel Optimization 144

Building Threaded ProgramsBuilding Threaded Programs
� Usually several ways to compile and link P-thread programs

For example on Solaris any of following will work:

example% cc -D_POSIX_C_SOURCE=199506L
 example_thread.c -lpthread \
 -o example_thread

example% cc -D_REENTRANT example_thread.c
 -lthread -o example_thread

example% cc -mt example_thread.c -o example_thread

On Linux, following can be used:

example% gcc example_thread.c -o example_thread \
 -lpthread

Performance Programing Module III: Parallel Optimization 145

Data SharingData Sharing
� Data sharing
� True sharing: inevitable in multi-threaded programs
� False sharing: consequence of cache-line granularity based

cache coherence

� True sharing
� Complete elimination rarely possible
� Leads to synchronization as protected access to shared data re-

quired
� Restructure program or change algorithm to decrease

� False sharing
� Leads to performance degradation
� Can be completely eliminated in many cases with program re-

structuring, data structure changes, loop scheduling modifica-
tions

Performance Programing Module III: Parallel Optimization 146

False Data SharingFalse Data Sharing

Multiple copies of the same cache line may exist in the MP system

Cache coherency ensures correct cache line (hence data) is used

Shared lines may cause False sharing of data and performance loss
 - Increase in number of cache misses
 - Increased miss penalty due to contention for cache line ownership

Performance Programing Module III: Parallel Optimization 147

Eliminating False sharingEliminating False sharing

� Restructure program loops and constructs

� Changing data structures

� Data duplication

� Changing loop scheduling parameters

double array[SIZE][4], sum, s[4] ;
...
s[mynum] = 0.0;
for(iter1=0;iter1<MAXITER;iter1++){
 for (j1=0;j1<SIZE;j1++){
 s[mynum] += array[j1][mynum];
 /* False Sharing Occurs */
 }
}

Performance Programing Module III: Parallel Optimization 148

False Sharing (contd.)False Sharing (contd.)

� Compiling and running on a Sun Enterprise 4500
example% cc -mt example_false_sharing.c -o
example_false_sharing
example% example_false_sharing
sum = 20838169.391802
RUNTIME (One thread) : 3.2394 Seconds
sum = 20838169.391788
RUNTIME (Four threads) : 8.8611 Seconds

� What happens?
� Cache line containing array s repeatedly invalidated

causing increase in memory traffic
� Measure cache snooping (can be done on Solaris systems

using cputrack or cpustat tools)

Performance Programing Module III: Parallel Optimization 149

False Sharing (contd.)False Sharing (contd.)

Examining EC_snoop_inv and EC_snoop_cb events
0.045 4326 3 tick 18 16
2.093 4326 1 tick 100 107
2.014 4326 2 tick 0 0
0.045 4326 3 tick 0 0
...
3.474 4326 8 tick 0 0
3.457 4326 1 tick 0 0
6.014 4326 2 tick 0 0
3.474 4326 3 tick 0 0
6.093 4326 4 tick 1023090 1019874
6.093 4326 5 tick 1023104 1019008
6.094 4326 6 tick 1023361 1020391
6.094 4326 7 tick 1023328 1019657
3.474 4326 8 tick 0 0
3.457 4326 1 tick 0 0
7.014 4326 2 tick 0 0
3.474 4326 3 tick 0 0
7.104 4326 4 tick 1024083 1021300
7.104 4326 5 tick 1023743 1019784
7.104 4326 6 tick 1024498 1021366
7.103 4326 7 tick 1024398 1020483

Performance Programing Module III: Parallel Optimization 150

False Sharing (contd.)False Sharing (contd.)

� Padding Array s
double array[SIZE][4], sum, s[4][8];

...
1.071 4380 1 tick 320 339
1.011 4380 2 tick 4 3
0.048 4380 3 tick 19 15
2.091 4380 1 tick 194 206
2.011 4380 2 tick 0 0
0.048 4380 3 tick 0 0
...
3.483 4380 1 tick 22 187
4.001 4380 2 tick 0 0
3.501 4380 3 tick 18 250
4.091 4380 4 tick 260 19788
4.091 4380 5 tick 381 2167
4.091 4380 6 tick 275 295
4.091 4380 7 tick 112 162
3.501 4380 8 tick 12 2

Performance Programing Module III: Parallel Optimization 151

False Sharing (contd.)False Sharing (contd.)

Times on a Sun Enterprise 4500 system (Solaris 8)

Performance Programing Module III: Parallel Optimization 152

False Sharing (contd.)False Sharing (contd.)
� False Sharing in Mutex Locks
� Avoid static vector of mutexes

typedef struct {
pthread_mutex_t sync_mutex;
#ifdef PAD
char pad[PADSZ];
#endif
} mutexlock;
mutexlock syncarr[MAXTHREAD];

� PAD_SZ depends on E-cache line/block size and size of structure
pthread_mutex_t; some L2-cache line sizes

UltraSPARC-II/III: 64-bytes
Power-4: 128-bytes
Itanium-2: 128-bytes
Intel Xeon: 32-bytes
Alpha 21264: 64-bytes

Performance Programing Module III: Parallel Optimization 153

Synchronization & LockingSynchronization & Locking
� Threads communicate via shared data
� Communication is very efficient due to shared address space
� Shared data access may require synchronization

� POSIX threads provide many Synchronization functions
� Mutex locks, semaphores, condition vars, thread join
� Primitives such as barrier can be built using these

� Synchronization overhead
� Latency of synchronization (cost of executing synchronization

function)
� Waits induced by synchronization (contention to access shared

resource)

� To decrease synchronization overhead important to under-
stand how they are implemented and interact with underlying
hardware

Performance Programing Module III: Parallel Optimization 154

Synchronization & Locking (contd.)Synchronization & Locking (contd.)

� Hardware considerations
� Atomic memory operations
� Global data visibility & memory consistency model

� Atomic memory operations
� An operation that is indivisible. Once started is guar-

anteed to finish without any interruptions
� Performed at level of machine instruction but can also

correspond to execution of a statement in a high level
language.

Performance Programing Module III: Parallel Optimization 155

Synchronization & Locking (contd.)Synchronization & Locking (contd.)

� Global data visibility: effects of instruction reorder-
ing and load (store) buffers as specified by the mem-
ory consistency model implemented in processor ar-
chitecture
� Memory model: A set of rules that constrains order of

completion of loads and stores with respect to each other
� Cache coherency relates to consistency of same memory

locations in different caches
� Memory consistency relates to consistent ordering of

memory operations to different location.

Performance Programing Module III: Parallel Optimization 156

Synchronization & Locking (contd.)Synchronization & Locking (contd.)

� Atomic Instructions
� SPARC V9
� Atomic Test and Set (ldstub)
� Compare and Swap (cas) : SPARC V9 (more powerful, can

be used to implement wait-free synchronization)
� Atomic Exchange (swap)

� IA-64 (Semaphore instructions)
� Exchange/Compare and Exchange (cmpxchg)
� Fetch and Add – Immediate (fetchadd)

Performance Programing Module III: Parallel Optimization 157

Synchronization & Locking (contd.)Synchronization & Locking (contd.)

� Memory Ordering Instructions
� SPARC V9
� Store Barrier (stbar)
� Memory Barrier (membar): can to used to order loads and stores

with respect to each other
� Current UltraSPARC/Solaris systems implement Total Store Or-

der (TSO) memory model
� IA-64
� Sync/Serialize (sync, srlz)
� Fence (mf, inva, mwb)

Performance Programing Module III: Parallel Optimization 158

Synchronization & Locking (contd.)Synchronization & Locking (contd.)

� Pseudo code for Mutex lock (using SPARC ldstub in-
struction)

Lock_function
membar #StoreLoad ! assume TSO model

 ! load 1 byte from location

 ! 'adress' & store 1’s into it.
retry: ldstub address, register
cmp register, 0 ! check if loaded value is 0
beq gotit ! if value is 0, we got the lock
call delay ! if value is 1, then lock is held
 ! by someone else. Go to sleep
 ! before retrying
jmp retry ! Wake up and rety to acquire lock
gotit: return

Unlock_function
membar #StoreStore ! Ensure all prior stores completed
stub 0, address ! Store 0 in ‘address’ byte

Performance Programing Module III: Parallel Optimization 159

Synchronization & Locking (contd.)Synchronization & Locking (contd.)

Locking Under contention: cas vs. mutex_lock for fetch_and_add
counter = counter + 1 ; /(fetch & add primitive) */

Times on E10000, 64-cpus, 400MHz US-II, Solaris 8

Performance Programing Module III: Parallel Optimization 160

Synchronization & Locking (contd.)Synchronization & Locking (contd.)
� Contention for shared lock scales faster than linear with

number of threads

� Avoid small and frequent critical sections
� Merge them into larger critical sections
� Consider using fast atomic synchronization wherever applica-

ble
� Difficult to prescribe a recipe for optimum size of critical sec-

tion

� Avoid use of "Self-Synchronization"
/* THE FOLLOWING SHOULD NEVER BE DONE */
volatile int mylock = 0;
while (mylock != 0) ;
mylock = 1;
......execute critical region code.......
mylock = 0;

Performance Programing Module III: Parallel Optimization 161

Thread Creation IssuesThread Creation Issues

� Common questions related to thread creation and manage-
ment
� How many threads to create?
� Whether to use bound or unbound threads?
� Whether to create threads statically or dynamically?
� Whether to use pool of threads?

� For compute intensive applications
� Number of threads less than number of processors on system
� Use bound threads
� If amount of work known in advance use static thread creation oth-

erwise use dynamic thread creation (i.e. create threads as needed)
� If threads perform small amount of work, then overhead of creation/-

joining could be high and pool of threads should be considered.
Used often in Parallelizing Compilers.

Performance Programing Module III: Parallel Optimization 162

Thread Creation Issues (contd.)Thread Creation Issues (contd.)

� Example extracted from a discrete event simulation
� small amount of work (extracted from event queues)
� thread create/join
� thread pool using Semaphores

� Thread create/join
real 1:06.560
user 47.560
Sys 1:13.837

� Thread pool using Semaphores
real 44.471
user 31.086
sys 1:30.778

(Time on 12-cpu Enterprise 4500, Solaris 8)

Performance Programing Module III: Parallel Optimization 163

Thread Stack Size Thread Stack Size

� Changing thread stack size
� Many threads created/destroyed in the program: smaller

stacksize if allowed leads to more efficient memory usage.
� Requirement of system libraries (most require at least 8 KB

stack size) and function call depth.
� Increasing thread stack size: impact on virtual memory usage

of process and overhead

� Default Stack Size
� Varies (on Solaris 9: 1 MB for 32-bit, 2 MB for 64-bit)

Performance Programing Module III: Parallel Optimization 164

Thread stack size (contd.)Thread stack size (contd.)

Effect of stacksize on system scope thread creation/join
30 threads on 12-cpu E4500 (400MHz US-II, Solaris 8)

Performance Programing Module III: Parallel Optimization 165

Compiler ParallelizationCompiler Parallelization
� Automatic Parallelization
� Based on automatic dependence and alias analysis compiler re-

structures the program for parallel processing with no user inter-
vention

� Can parallelize “well-behaved” loops effectively but not very
flexible in handling more complex cases

� Directive-based Parallelization
� Proprietary vendor-specific directives
� OpenMP directives (Industry standard, portable)
� Directives can substantially enhance applicability and efficiency of

compiler parallelization model

Performance Programing Module III: Parallel Optimization 166

Compiler Parallelization (contd.)Compiler Parallelization (contd.)

� Porting from vendor-specific directives to OpenMP
� Vendor directives usually have a one-to-one mapping to OpenMP

(most vendors provide porting documentation; E.g. Sun ONE Studio
Compiler Collection 7 OpenMP API User's Guide)

� Some things to watch for
� All variables need to be explicitly scoped in OpenMP (vendor directives

may assume different defaults for shared and private variables)
� Since some vendor directives do not have one-to-one mapping to

OpenMP directives, unpredictable effects may occur if OpenMP and
vendor-specific directives are mixed in the same program

� OpenMP provides a powerful and rich parallelization model. It might be
possible to get better performance by exploiting OpenMP features not
available in vendor directive set

Performance Programing Module III: Parallel Optimization 167

Compiler Parallelization (contd.)Compiler Parallelization (contd.)

� Porting from vendor-specific directives to OpenMP (an ex-
ample)

Sun Fortran Directive Equivalent OpenMP Directive

C$ PAR DOALL [qualifiers] !$omp parallel do [qualifiers]

c$par doserial No exact equivalent, Can use

!$omp master ... loop... !$omp end master

c$par taskcommon block[,...] !$omp threadprivate (/block/[,...])

SCHEDTYPE(FACTORING(m)) No OpenMP Equivalent

SCHEDTYPE(GSS(m)) schedule(guided, m) default m is 1

SGI Fortran Directive Equivalent OpenMP Directive

c$doacross !$omp parallel do

c$par parallel !$omp parallel

c$par pdo !$omp do

Performance Programing Module III: Parallel Optimization 168

Compiler Parallelization LibraryCompiler Parallelization Library

Program
Timeline

Master thread Pool of slave threads created

Serial Portion (slaves idle)

Parallel
Construct 1

Last Parallel
Construct

Slave threads join master; it
terminates program

Performance Programing Module III: Parallel Optimization 169

Compiler Parallelization Library (contd.)Compiler Parallelization Library (contd.)

� This approach is used in many compilers (eg. Sun compiler,
KAI guide library)

� Pool of threads using master-slave model

� Slave threads are created once, when the first parallel region
is encountered, and then used in all parallel regions of the
program.

� The body of the parallel construct is then extracted and
placed in a separate subroutine called an outlined function.

� The compiler then inserts a call to a driver routine executed
by the master thread in place of the original parallel region

Performance Programing Module III: Parallel Optimization 170

Compiler Parallelization (contd.)Compiler Parallelization (contd.)
� Automatic parallelization options in many compilers for Fortran

(77, 90/95), C and C++ programs
� Sun compilers: -xautopar, -xparallel
� HP compilers: +Oparallel, +Oautopar
� Compaq compilers: -hpf
� SGI MIPSpro compilers: -apo (or -pca , -pfa)

� Some caveats about automatic parallelization
� Usually outermost loop in a loop-nest auto-parallelized
� Usually additional options required (eg. For Sun compilers -xO3 required

and -xdepend, -xrestrict, -xalias_level help)
� Parallelization usually disabled/suppressed in following cases:

� Function call or I/O in loop
� Conditional exit from loop (goto statement)
� Loop iterations change the variable aliased through a pointer or an

EQUIVALENCE statement.
� Loops whose iterations update the same scalar variable do not get

parallelized. Exception: reduction (a computation that transforms a vector
into a scalar); E.g. For Sun compilers option -xreduction required.

Performance Programing Module III: Parallel Optimization 171

OpenMP Compilation OptionsOpenMP Compilation Options

Compiler Fortran C/C++

Sun ONE SCC7 (Solaris/SPARC) -openmp -xopenmp

HP Compiler (HPUX11i/Itanium-2) +Oopenmp +Oopenmp

HP Compiler (HPUX11i/PA-RISC) +Oopenmp +Oopenmp

Compaq Compiler (TRU64/Alpha 21264) -omp -omp

SGI MIPSpro 7.3 (IRIX/MIPS R14000) -mp -mp

Performance Programing Module III: Parallel Optimization 172

Runtime SettingsRuntime Settings
� Typically, environment variables to control number of

threads, thread stacksize, spin-wait behavior of threads,
thread placement etc.

� Number of threads
� OMP_NUM_THREADS envar used (part of OpenMP standard)
� OMP_DYNAMIC (to enable/disable dynamic thread adjustment)

� Stacksize of worker/slave threads
� Sun compiler: STACKSIZE envar

setenv STACKSIZE 8192 (8MB stacksize)
Default is 2MB (32-bit) and 4MB (64-bit)

� HP compiler (HPUX/PA-RISC): CPS_STACK_SIZE

Performance Programing Module III: Parallel Optimization 173

Runtime SettingsRuntime Settings
� Spin wait timeout: controls behavior of threads in idle por-

tions of the program
� Sun compiler: by default threads spin-wait. To set the wait

time to 10ms
setenv SUNW_MP_THR_IDLE 10ms

� HP compiler: MP_IDLE_THREAD_WAIT envar can be used
to achieve similar effect

� Compaq compiler: MP_SPIN_COUNT and
MP_YIELD_COUNT envars can be used for similar effect

� Thread placement: can have big impact on machines with
non-uniform memory access features
� Sun Solaris: MT_BIND_PROCESSOR envar
� SGI IRIX: _DSM_PLACEMENT envar

Performance Programing Module III: Parallel Optimization 174

Stair Stepping EffectStair Stepping Effect

� Parallel speedup can be limited (and non-linear) if number of it-
erations in a parallelized loop is low compared to number of
threads

c$par doall private(j) reduction(s)
do j=1,32
 call sleep(10)
 s=s+1
enddo

64-cpu Sun E1000 system
(Solaris 8)

Performance Programing Module III: Parallel Optimization 175

OpenMP Runtime Scheduling Type SettingOpenMP Runtime Scheduling Type Setting
Example: Triangular by Square Matrix Multiplication
!$omp parallel &
!$omp private(i,j,k), shared(a,b,c)
!$omp do schedule(runtime)
do j=1,idim
do i=1,idim
atmp=a(i,j)
do k=1,j
atmp = atmp+b(i,k)*c(k,j)
enddo
a(i,j)=atmp
enddo
enddo
!$omp end do
!$omp end parallel

Performance Programing Module III: Parallel Optimization 176

OpenMP Synchronization IssuesOpenMP Synchronization Issues
� The OpenMP specification includes critical, atomic,

flush, and barrier directives for synchronization pur-
poses

� Additionally, there are functions for user-inserted locks, in a
manner similar to mutex locks in P-threads library

� When using critical directive, it is recommended to associate
it with a name since all unnamed critical sections map to the
same name

� OpenMP flush directive guarantees the atomicity and mem-
ory consistency. In order to avoid false sharing, the variables
that are flushed should preferably be placed on different
cache lines by padding or not declaring them contiguously

Performance Programing Module III: Parallel Optimization 177

OpenMP Synchronization Issues (contd.)OpenMP Synchronization Issues (contd.)
� OpenMP ordered directive might be useful in a routine

where threads perform I/O or other library calls requiring
sequential order, but its use in a parallelizable do loop
should be avoided as much as possible

� Wherever the logic of the program allows, the nowait
qualifier should be used to eliminate the implicit barrier at
the end of the parallel do loop that is required by the stan-
dard

Performance Programing Module III: Parallel Optimization 178

Memory Bandwidth RequirementMemory Bandwidth Requirement
� As more threads are added in the parallel program, addi-

tional simultaneous requests for memory accesses (reads or
writes) are generated, increasing the traffic on the system in-
terconnect

� Overall speedup depends on the system being able to satisfy
the independent memory requests generated by the different
processors; A parallel application’s bandwidth requirement
might exceed what the hardware can deliver and the applica-
tion will no longer scale, even if more processors are used to
run it.

Performance Programing Module III: Parallel Optimization 179

Memory Bandwidth Requirement (contd.)Memory Bandwidth Requirement (contd.)

Number of Measured STREAM Total STREAM
CPUs Copy B/W (GB/s) Copy B/W (GB/s)

1 0.29 0.44
2 0.57 0.85
4 0.99 1.49
6 1.25 1.88
8 1.44 2.16
10 1.53 2.3
12 1.53 2.3

Results on an Enterprise 4500 system (400MHz US-II, Solaris 8)

Performance Programing Module III: Parallel Optimization 180

Analysis Tools for OpenMP ProgramsAnalysis Tools for OpenMP Programs

� Difficult to create tools for parallel programs but now many ef-
fective tools (from different vendors) exist

� Correctness checking tools
� OpenMP programs have difficult correctness problems: variable scoping,

data storage conflicts, work distribution, data races and synchronization
conflicts

� Some good tools: Intel-KAI Assure (runtime checks), Forge Explorer
(from now defunct APR), static verification(-XlistMP) capability in
Sun Fortran-90 compiler

� Performance analysis tools
� PC-Sampling based (statistical) tools such as SGI perfex, Sun Perform-

ance Analyzer and others
� Instrumentation based tools (such as gprof, prof). These should be avoided

as intrusive and inaccurate results

Performance Programing Module III: Parallel Optimization 181

Example Sun Performance Analyzer (1 of 3)Example Sun Performance Analyzer (1 of 3)
� Tool can be used to obtain profile data for OpenMP and multithreaded pro-

grams (no recompilation/relinking required)

4 thread run on SunFire 68K. Tool shows time spent in OpenMP library functions
(__mt_xxx functions). Time in __mt_EndofTask_Barrier_ indicates load-imbalance

Performance Programing Module III: Parallel Optimization 182

Example Sun Performance Analyzer (2 of 3)Example Sun Performance Analyzer (2 of 3)

� Can obtain per-thread data to locate load-imbalance (use er_print com-
mand line version to see the 4-thread run data from previous slide)

(er_print) thread_list
Exp Sel Total
=== === =====
 1 1-6 6
(er_print) thread_select 1
Exp Sel Total
=== === =====
 1 1 6
(er_print) functions
Functions sorted by metric: Exclusive User CPU Time
Excl. Incl. Name
User CPU User CPU
 sec. sec.
1.961 1.961 <Total>
1.631 1.631 __mt_EndOfTask_Barrier_
0.290 1.921 _$d1A27.factk_full_

(er_print) thread_select 4
Exp Sel Total
=== === =====
 1 4 6
(er_print) functions
Functions sorted by metric: Exclusive User CPU Time
Excl. Incl. Name
User CPU User CPU
 sec. sec.
1.961 1.961 <Total>
0.981 0.981 __mt_EndOfTask_Barrier_
0.831 1.921 _$d1A27.factk_full_
(er_print)

Load Imbalance

Performance Programing Module III: Parallel Optimization 183

Example Sun Performance Analyzer (3 of 3)Example Sun Performance Analyzer (3 of 3)
� Timeline viewer: shows events recorded in the experiment as a function of

time (on a per-thread or per-MPI process basis) alongwith the callstack of the
program

Performance Programing Module III: Parallel Optimization 184

Example Intel-KAI Guideview Tool (1 of 2)Example Intel-KAI Guideview Tool (1 of 2)

� Graphical tool to analyzer performance of OpenMP programs

� Link the openmp program with guidestats library
guide{f77,f90,cc} $(FLAGS) *.o -Wgstats

� Run the program, guide.gvs (ascii file) generated, can be visualized
with guideview tool

guideview *.gvs

� Tool can be used to analyze files from multiple runs
� Sequential time, sequential overhead, synch. time, lock time, barrier time,

imbalance time, parallel overhead and parallel time for each thread can be
seen

� Times can be viewed as parallel region times or thread times
� Times can be viewed per each parallel region or omp do loop on a line by

line and function by function basis in the program and can be compared
side-by-side for the different runs (1P, 2P, 4P etc.)

� Times can also be viewed per thread

Performance Programing Module III: Parallel Optimization 185

Example Intel-KAI Guideview Tool (2 of 2)Example Intel-KAI Guideview Tool (2 of 2)
� Overall times for 1,2,4 threads � Region specific thread times (for a hot region)

Performance Programing Module III: Parallel Optimization 186

Message Passing ProgramsMessage Passing Programs
� Performance issues in message passing programs
� Organization of computing tasks
� Distribution of workload
� These two affect: implementation complexity, communication

and synchronization requirements, ratio of computation to
communication, load balance

� Communication requirements characterized by
� Volume (size and number of messages)
� Frequency of message passing (temporal aspect of communica-

tion)
� Communication pattern (nearest neighbor vs. global)
� Tolerance (ability to overlap communication with computation)

� Organization of Computing tasks: SPMD, MPMD, Hybrid

Performance Programing Module III: Parallel Optimization 187

Message Passing Programs (contd.)Message Passing Programs (contd.)
� Two approaches commonly used for workload distribution
� Functional decomposition: different functions/tasks performed in parallel
� Data decomposition: parallel tasks perform same computational function

but operate on different data portions

� Functional decomposition -
� May involve spawning new tasks dynamically or attaching to pre-existing

but separate tasks. Dynamic process management feature of MPI-2 stan-
dard facilitates this feature.

� Data decomposition
� More common approach in message passing scientific HPC applications
� Static data decomposition: workload of each task fixed during computation
� Dynamic data decomposition: workload dynamically varies at runtime -

Static data decomposition: more common in message passing scientific
HPC applications

� Static data decomposition equivalent to domain decomposition in many
applications such as arising in fluid dynamics, elasticity etc.

Performance Programing Module III: Parallel Optimization 188

Message Passing Programs (contd.)Message Passing Programs (contd.)
� Static Data Decomposition
� Structured mesh based applications
� Unstructured mesh based applications

� Partitioning in structured mesh/grid based applications
� Parallel by point
� Parallel by line
� Parallel by plane

� Partitioning in unstructured mesh/grid based applications
� Methods are based on graph theoretic approaches
� Problem is NP-complete and heuristic methods have been developed
� RCB: Recursive Coordinate Bisection
� RGB: Recursive Graph Bisection
� RSB: Recursive Spectral Bisection
� MLND: Multi-Level Nested Dissection

Performance Programing Module III: Parallel Optimization 189

MPIMPI
� MPI (Message Passing Interface) has become the de-facto

standard for message passing programming
� Provides a library of routines for interprocess communication

APIs support Fortran, C and C++. MPI 2.0 is the current stan-
dard (http://www.mpi-forum.org)

� Is the only reasonable way to program a cluster

� MPI features
� Communication: point-to-point, collective, synchronous,

blocking, non-blocking, buffered
� Synchronization: barrier, wait, waitall
� Parallel I/O
� One-sided communication
� Dynamic process management (spawning, connection)

Performance Programing Module III: Parallel Optimization 190

MPI (contd.)MPI (contd.)

� MPI Implementations
� Public-domain (eg. MPICH from ANL)
� Proprietary vendor-optimized (eg. Sun, IBM, HP, SGI others)
� Recommend using vendor optimized implementations as highly

tuned for underlying platform

� We will discuss some features of Sun MPI implementation as an
example

Performance Programing Module III: Parallel Optimization 191

Example Sun MPI ImplementationExample Sun MPI Implementation

� Highly optimized MPI implementation with support for C, C++,
Fortran 77 and Fortran 90 (full MPI 1.1 std. + MPI-2 std. subset
support)
� Thread-safety
� Support for the Cluster Runtime Environment (CRE), Load Sharing

Facility (LSF), Sun Grid Engine (SGE) and other job-scheduling
software tools

� Support for the Prism performance and debugging environment
� Optimized collective communication for SMP and clusters of SMPs
� Numerous environment variables for fine-tuning communication per-

formance
� Support for MPI-2 features (MPI I/O, dynamic process spawn, lim-

ited support of one-sided communication)
� Process yielding and coscheduling to decrease performance degrada-

tion in over-subscribed runs.

Performance Programing Module III: Parallel Optimization 192

Example Sun MPI Implementation (contd.)Example Sun MPI Implementation (contd.)
� Building and running programs using Sun MPI
� Default location is /opt/SUNWhpc
� commands in /opt/SUNWhpc/bin
� libraries in /opt/SUNWhpc/lib
� include files in /opt/SUNWhpc/include

� MPI library:
� 32-bit version in /opt/SUNWhpc/lib/libmpi
� 64-bit version in sparcv9 sub-dir
� thread-safe version: libmpi_mt
� Fortran programs: mpif.h include file
� C & C++ programs: mpi.h include file

� Use mpcc, mpf77, mpf90 and mpCC drivers for compilation and
linking. These pass right options to the compiler driver and linker

example% mpcc -fast example.c -lmpi
example% mpf90 -fast example.c -xarch=v9 -lmpi_mt

� Running MPI executables
example% mprun -np 4 sample_mpi_job
example% bsub -n 4 sample_mpi_job

Performance Programing Module III: Parallel Optimization 193

Example Sun MPI Implementation (contd.)Example Sun MPI Implementation (contd.)
� Sun MPI environment variables: many envars to tune message

passing programs
� These envars can be categorized into six general areas: informational, gen-

eral performance tuning, point-to-point performance tuning, numerics, tun-
ing rendezvous message exchange protocol, miscellaneous

� Some recommended settings
example% setenv MPI_PRINTENV 1 #print MPI envar values
example% setenv MPI_SHOW_ERRORS 1 #Show errors in MPI lib
example% setenv MPI_SPIN 1 #Spin during waits in MPI calls
example% setenv MPI_PROCBIND 1 # Bind MPI process to cpu
example% setenv MPI_SHM_CYCLESTART 0x7fffffff
 #Suppress cyclic msg. Passing
example% setenv MPI_POLLALL 0 #Suppress polling for sys. buffers
 #Increase msg buffer size
example% setenv MPI_SHM_SBPOOLSIZE 20000000
example% setenv MPI_SHM_NUMPOSTBOX 256
example% setenv MPI_EAGERONLY 0 #use rendezvous protocol

Performance Programing Module III: Parallel Optimization 194

SummarySummary

� Choice of parallel model important and should be done at
initial stages

� UNIX OS's provides extensive MT support (multiple
thread library implementations). Performance issues to con-
sider
� Data sharing overhead: true sharing inevitable, false sharing

can be eliminated
� Synchronization overhead: latency of synchronization and im-

pact of contention vs. size of critical section.
� Use spin locks and fast atomics based primitives where appli-

cable
� Thread creation: pool of threads over thread create/join
� Thread stack size: impact on program virtual memory usage

and overhead in thread creation/management

Performance Programing Module III: Parallel Optimization 195

Summary (contd.)Summary (contd.)

� Extensive compiler parallelization support (OpenMP for For-
tran and C)
� loop scheduling type, synchronization and variable scoping are

important for performance in OpenMP programs

� Performance analysis tools can be used to generate perform-
ance analysis and profile data of multi-threaded applications

� Extensive support for MPI programming
� Use optimized vendor MPI implementations

