
Robust Record Linkage Blocking using Suffix Arrays

Timothy de Vries
School of I.T.

University of Sydney
NSW, Australia

timothy.devries@gmail.com

Hui Ke
School of I.T.

University of Sydney
NSW, Australia

hui.ke.it@gmail.com

Sanjay Chawla
School of I.T.

University of Sydney
NSW, Australia

chawla@it.usyd.edu.au

Peter Christen
Australian National University
Canberra ACT 0200, Australia
peter.christen@anu.edu.au

ABSTRACT

Record linkage is an important data integration task that
has many practical uses for matching, merging and dupli-
cate removal in large and diverse databases. However, a
quadratic scalability for the brute force approach necessi-
tates the design of appropriate indexing or blocking tech-
niques. We design and evaluate an efficient and highly scal-
able blocking approach based on suffix arrays. Our suffix
grouping technique exploits the ordering used by the index
to merge similar blocks at marginal extra cost, resulting in
a much higher accuracy while retaining the high scalability
of the base suffix array method. Efficiently grouping simi-
lar suffixes is carried out with the use of a sliding window
technique. We carry out an in-depth analysis of our method
and show results from experiments using real and synthetic
data, which highlights the importance of using efficient in-
dexing and blocking in real world applications where data
sets contain millions of records.

Categories and Subject Descriptors

H.3 [Information Storage And Retrieval]: Content Anal-
ysis and Indexing—Indexing methods

General Terms

Algorithms, Performance

Keywords

Record Linkage, Blocking, Suffix Arrays

1. INTRODUCTION
Record linkage is an essential data integration technique

that is increasing in importance as more and more data is
collected and stored. This technique can be applied to any
situation where two or more sets of data need to be linked

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CIKM’09, November 2–6, 2009, Hong Kong, China.
Copyright 2009 ACM 978-1-60558-512-3/09/11 ...$10.00.

together and there is an absence of a uniquely identifying
key across these data sets. Alternatively, the same link-
ing approaches can be used to find matches among records
in the same data set for the purposes of duplicate removal
[18]. In both of these cases, the main problem that must be
overcome is the presence of noise and small differences be-
tween records in the data that are to be matched together.
Record linkage is therefore an approximate matching tech-
nique, aiming to provide the best possible match given the
available information. These linkage tasks are common and
crucial early steps in most large data mining projects. Their
main use is to provide a wealth of information that is not
readily available under the standard practice of keeping mul-
tiple separate databases for archival or analysis purposes.

As the availability and quantity of data grows over time,
so do the number of databases that are created and ulti-
mately discarded as legacy systems. These are all useful
sources of information if effort is undertaken to link them
together. More specifically, record linkage can drastically
increase the information available for purposes such as large
medical health systems [9], business analytics, fraud detec-
tion [17], demographic tracking, government administration,
and even national security.

Record linkage systems typically consist of three main
parts. Blocking is first used to select candidate records to
match against the selected record. Record comparison is
then carried out, usually using specifically tailored similarity
functions. A classification model is then used to determine
whether the two records are a match or a non-match. The
matching process is by nature a very computationally inten-
sive task. For matches or duplicates to be found across two
data sets of size n, up to n2 comparisons may be required,
making a brute force nesting approach infeasible in prac-
tice with large data sets. It is therefore very important to
consider techniques to reduce the number of pairwise com-
parisons that must be made, by making some assumptions
about which factors of the data will almost always lead to
matches or non-matches. This indexing process is referred
to as blocking in the context of record linkage. Blocking
techniques can be tailored to favour either the accuracy or
efficiency of the linkage task, in a tradeoff manner. The main
aim is to make record linkage feasible on large data sets by
greatly reducing the number of record pair comparisons that
need to be carried out, at the cost of a usually small loss in
accuracy. The design of a robust blocking technique based
on suffix arrays is the focus of this paper.

A large variety of blocking methods have been created,
with each one providing at least a niche benefit for specific
data types. One of the first methods to be proposed uses a
basic exact-match index on a few key fields (chosen record
attributes), and for any one record that requires matching,
selects candidate records to match against based on exact
matches in one of these key fields. This approach is known as
‘traditional’ blocking [3]. This basic approach nevertheless
can boast a high accuracy, at the expense of a relatively low
matching efficiency. However, the high accuracy and simple
implementation make this the method of choice in many
industrial settings. The authors of this article are involved
with the production of a large-scale data mining system that
utilises record linkage in the industry. Traditional blocking
was chosen for this application, and labeled data is available
due to the model training process that has been carried out.
However, we are able to use this real labeled data to test
the performance of different blocking techniques in a direct
experimental comparison.

An important reason for choosing a non-traditional block-
ing technique is due to the ubiquitous presence of errors in
the data. The use of standard exact matches will miss a cor-
rect record match even with the slightest difference in field
values. To compensate for this, many indexed fields need
to be used, and the set of candidate record pairs rapidly in-
creases in size, adversely affecting the time required to carry
out the matching. The most important goal of record link-
age is to find these similar but non-identical matches with-
out adversely reducing performance by such a large amount,
and therefore specialised techniques designed to index data
of this kind are necessary. One such highly-efficient existing
blocking method is called Suffix Array blocking [1], which is
our basis for an improved blocking method that retains the
high efficiency of Suffix Array blocking while also increas-
ing accuracy to an acceptable level by avoiding the miss-
classification of records into incorrect blocks.

We give a small example to demonstrate our proposed im-
provement to the Suffix Array blocking method. Given two
records r1 = ‘John Smith, 10 Plum Road’ and r2 = ‘John
Snith, 10 Plom Rd.’ to match against each other, we select
given name and surname as the key blocking fields. Concate-
nating the values of these fields together results in the strings
b1 = ‘JohnSmith’ and b2 = ‘JohnSnith’. These strings are
called Blocking Key Values (BKVs) in the context of record
linkage. When the minimum suffix length parameter is set
to 4 (to be discussed in Section 2.2), Suffix Array blocking
will generate suffixes ‘mith’, ‘Smith’, ‘nSmith’, ‘hnSmith’,
etc. for b1, and similarly for b2. The suffixes are added to
the indexing structure and sorted, as shown in Table 1.

While highly efficient, standard Suffix Array blocking is
not able to match records that exhibit qualities such as in
this example, where none of the suffixes from r1 and r2

match. Our proposed improvement takes effect when the
suffixes are added to the indexing structure. This structure
holds an alphabetically sorted list of suffixes to enable fast
querying for matches against any given input suffix, and is
used to find candidate records for matching against any new
record. The suffixes ‘nSmith’ and ‘nSnith’ as well as ‘hn-
Smith’ and ‘hnSnith’, among others, are adjacent to each
other in the ordered list for this example. By comparing
adjacent suffixes and grouping together those that exhibit a
high degree of similarity, we can carry out a form of cluster-
ing or grouping of the blocking result. By grouping similar

Suffix Record # Jaro similarity
hnSmith 1 0.809
hnSnith 2 0.756
JohnSmith 1 0.851
JohnSnith 2 0
mith 1 0.833
nith 2 0
nSmith 1 0.777
nSnith 2 0.722
ohnSmith 1 0.833
ohnSnith 2 0
Smith 1 0.733
Snith 2 -

Table 1: Suffixes generated from two blocking key
values (BKVs), where record 1 corresponds to the
BKV of ‘JohnSmith’ and record 2 to the BKV of
‘JohnSnith’. Minimum suffix length is 4. Jaro simi-
larity refers to the Jaro [13] measure as a similarity
function between the suffix string in one row and
the suffix in the following one.

suffixes from r1 and r2 we can ensure that these records are
added to the same block, which is the desired outcome and
and improvement over standard Suffix Array blocking. We
cover the improvement in more detail in Sections 3 and 4.

1.1 Contributions
Our main contribution is a substantial improvement to

the Suffix Array blocking technique [1], together with an
in-depth analysis and experimental results showing the ef-
fectiveness of the technique on real and synthetic data. We
compare the improved technique against the base technique
of Suffix Array blocking, as well as the well-known tradi-
tional blocking method. We show that Improved Suffix Ar-
ray blocking is able to attain a level of accuracy similar to
the highly accurate traditional blocking technique, as well
as being able to acquire this result by making many fewer
full comparisons between data records, comparable to the
highly efficient Suffix Array blocking method. More impor-
tantly, with careful parameter selection in our experiments,
we found that Improved Suffix Array blocking can attain a
20% increase in accuracy over standard Suffix Array block-
ing, with less than a 5% loss in efficiency. The accuracy
of Improved Suffix Array blocking also remains within 10%
of traditional blocking, while enjoying an efficiency increase
of more than 95% over this standard technique. A high
efficiency becomes more important as the data set used in-
creases in size, a critical point for data in the order of hun-
dreds of millions of records. Scenarios of this type are com-
mon in the industry, including the domain of the large-scale
record linkage project that we are comparing our results
against.

Section 2 introduces the relevant work related to record
linkage. In Section 3 we describe our proposed improve-
ments to standard Suffix Array blocking, and carry out a
more in-depth analysis in Section 4. Section 5 details our
experimental method and parameters, the results are dis-
cussed in Section 6, and we summarise our conclusions in
Section 7.

2. BACKGROUND
The term ‘record linkage’ was first used by Dunn [6] and

Marshall [15], and Fellegi and Sunter [8] proposed a theory
based on statistical classification.

Recent advances in record linkage were undertaken by
Aizawa [1], and processes for record linkage projects and
methods were improved by Christen [4]. Indexing tech-
niques, or blocking methods as they are known in the context
of record linkage, were quickly recognised as a key compo-
nent for efficiency purposes. Blocking algorithms typically
contain extra functionality over standard indexing, to solve
specific record linkage issues. Blocking is especially impor-
tant due to the inherently high n2 scalability of unoptimised
record linkage. Blocking solutions strive to reduce the num-
ber of candidate records for comparison as much as possible,
while still retaining an accurate result by ensuring that can-
didate records that would match the query record are not
left out of the candidate set due to the blocking rules.

A variety of blocking methods are currently used in record
linkage procedures, with the most well-known ones includ-
ing traditional blocking, sorted neighbourhood [11], Q-gram
based blocking [3], Canopy Clustering [16], string map based
blocking [14] and Suffix Array blocking [1].

All blocking methods define a set of key fields from the
data to be matched, that are used to determine which block
(or blocks) each record is to be placed into. Many of these
approaches require a single string to be used as the key on
which to find the correct block. Therefore, the values of the
key fields are typically concatenated together into one long
string. This string is called the Blocking Key Value (BKV)
[10]. The selection of key fields to include in the BKV as
well as the ordering of these fields is important to consider.
A suitable BKV should be the attribute or combination of
attributes which are as identifying as possible, uniformly
distributed, and having a low error probability.

Hernandez and Stolfo [11] proposed the sorted neighbour-
hood blocking method. This approach begins by sorting the
input data, then moves a sliding window of size w over the
data file, comparing records against each other if they exist
in the window at the same time. The time complexity of
the sorted neighbourhood method is O(n log n + wn) where
n is the number of records in each of the two data sets being
linked.

The Q-gram based blocking method is achieved by trans-
forming the blocking key values into lists of q-grams and
creating all combinations of sub-lists. Christen [3] proposed
that q-gram based blocking can achieve better blocking qual-
ity results than both standard blocking and the sorted neigh-
bourhood approach. However, the number of sub-lists gener-
ated depends upon the value of the parameter q, the length
of the sub-strings used. The time complexity of Q-gram

based blocking is O(n log n + n2

b
) where n is the number of

records in each of the two data sets, and b is the number of
generated blocks [3].

McCallum et al. [16] first proposed Canopy Clustering,
a solution for clustering large, high dimensional data sets.
This method can be applied to blocking by creating blocks
containing records which can be found within the same can-
opy cluster. Experimental results are shown for linking bib-
liographic citations from the reference sections of research
papers [16]. The time complexity of Canopy Clustering is

O(nkf2

c
), where n is the number of records, c is the number

of canopies, f is the average number of canopies a record be-
longs to, and k is the number of clusters searched for using
k-means (based on the original data) [3].

String map based blocking is based on mapping the block-
ing key values (assumed to be strings) to objects in a mul-
tidimensional Euclidean space. Jin et al. [14] modified the
FastMap algorithm to create StringMap, which has a linear
complexity in the number of strings to be mapped.

Christen [4] compared and evaluated these blocking tech-
niques, and modified two of them to make them more robust
with regards to parameter settings, an important considera-
tion for any algorithm that is to be considered for real-world
applications. The experimental results showed that there
are large differences in the number of true matched candi-
date record pairs generated by the different techniques, when
tested using the same data sets. It was also discovered that
many of these algorithms were unstable with the selection of
the parameter values. We limit the introduction of new pa-
rameters with our proposed improvement in order to avoid
this potential problem.

Record linkage is a large research area containing many
important aspects [2][12]. Our paper focuses exclusively on
the sub-area of finding effective blocking techniques.

2.1 Traditional Blocking
Traditional blocking is well-known and is often used in

practical applications. This approach works by only compar-
ing against records that have the same blocking key value,
for example, only comparing records that have the same
postcode [13]. The blocking keys are usually chosen to be
very general in order to produce a high quality result, while
also producing a reasonable reduction in the amount of data
required to compare against for each record to be matched.
Usually more than one key field is chosen to build the block-
ing key value. In the industrial record linkage application
used for comparison, the selected key fields are given name,
surname, and date of birth. When carrying our matches
with the record ‘John Smith, 01/01/1960, 10 Plum Road’,
traditional blocking will select all candidate records that ex-
actly match with ‘John’ on given name, plus all candidate
records that exactly match with ‘Smith’ on surname, plus
all records that exactly match with ‘01/01/1960’ on date of
birth. A common modification to add a degree of ‘fuzziness’
to the matching is done by applying phonetic encoding (such
as Soundex) to the key fields.

One major weakness of traditional blocking is that errors
in all of the blocking key values will result in records being
inserted into the wrong block. Secondly, the size of each
block is generally quite large, causing many unnecessary
comparisons to be carried out. Finally, another drawback
is that the sizes of the blocks generated depend upon the
frequency distributions of each individual field used in the
the blocking key value [4]. When fields are combined into
a BKV such as for regular Suffix Array blocking, a drastic
reduction in block size is typically encountered. The time
complexity of traditional blocking is O(dn log n) where n is
the number of records in each of the two data sets that are
being matched and d is the number of key fields chosen [7].

2.2 Suffix Array Blocking
Akiko Aizawa and Keizo Oyama [1] proposed the Suffix

Array blocking technique as a fast and efficient blocking
method for large scale record linkage. We utilise the Suf-

fix Array Blocking plus Key Blocking approach from this
paper, with an additional adjustment to handle string char-
acters as the individual tokens. Analysis of this technique
against many recent alternatives [4] found that the efficiency
gain is very high for this method, but the accuracy can suffer
with standard data sets and when the blocking key value is
chosen by concatenating several key fields, as is the standard
for comparison.

The main idea of Suffix Array blocking is to insert block-
ing key values and their variable length suffixes into a suffix
array based inverted index [4]. For example, when the min-
imum suffix length parameter (lms) is 4, a BKV of ‘John-
Smith’ will be decomposed into the suffix array containing
the suffixes ‘mith’, ‘Smith’, ‘nSmith’, ‘hnSmith’, ‘ohnSmith’
and ‘JohnSmith’. These suffixes are then inserted into the
indexing structure and sorted in alphabetical order. An ex-
ample inverted index containing suffixes generated from the
BKVs of ‘JohnSmith’ and ‘JohnSnith’ is shown in Table 1.
The purpose of the indexing structure is to find a set of
references to original records that contain a certain suffix,
when queried with that suffix.

After generating BKVs, generating suffix arrays from these
BKVs, and inserting the suffixes from these suffix arrays into
the indexing structure, one further optimisation step is car-
ried out. An additional parameter is introduced for this pur-
pose, maximum block size (lmbs). The problem that can be
introduced with low values of lms is that some words may all
feature a common suffix (e.g. ‘ing’ in the English language).
This occurrence can result in the block for common suffixes
to be extremely large, and this has a significant adverse effect
of the efficiency of standard Suffix Array blocking. There-
fore, a blanket rule is introduced to remove any particu-
lar block entirely if it contains references to more than lmbs

records. The technique retains accuracy by allowing the cor-
rect blocking of records that share short but rare suffixes,
while excluding matching short suffixes that are common.
Since each input BKV is decomposed into multiple suffixes,
the removal of one of many redundant ‘sub-blocks’ does not
adversely affect the recall of the result.

Former studies [1] have found that Suffix Array blocking is
efficient primarily due to the small but highly relevant set of
candidate record pairs that are produced. Another reason is
the low complexity of the Suffix Array algorithm compared
to some traditional blocking method implementations [7]. A
further advantage of Suffix Array blocking over traditional
blocking is that it is not prone to blocking key value errors
that appear near the beginning of the BKV. If errors occur,
usually not all of the suffixes of these BKVs will change,
only some of the longer ones. One record will be inserted
into several blocks, adding a form of redundancy to try to
ensure that true matched record pairs are grouped into the
same block.

Suffix Array blocking is able to solve the problem of fields
with a large frequency in the database, and avoid exces-
sive processing times for these records [4]. One example
of this occurs when matching against the record with high
frequency values of ‘John’ and ‘Smith’. When traditional
blocking is used, the candidate set will consist of all records
that have a first name of ‘John’, as well as all records that
have a surname of ‘Smith’. This can be an extremely large
set when large real world databases are used, with the in-
trinsic problem due to common occurrence of these records.
There do exist a few solutions that help to improve the exces-

sive time taken for records of this type, however. The process
of combining more than one field for use as the blocking key
causes the candidate set for ‘John Smith’ to be greatly re-
duced from the traditional blocking method approach, as the
number of records highly similar to ‘John Smith’ is always
much less than the number of records with ‘John’ as first
name plus the number of records with ‘Smith’ as last name
in most normal data sets. Improved Suffix Array blocking
inherits these benefits. In practical terms, this functional-
ity is important in near-realtime systems where a user may
query for records that match a specific input. In situations
like these, it can be disadvantageous for a query consisting
of common terms to take an excessively longer time than
normal, as would be the case with traditional blocking.

2.3 Blocking Measurement
Accuracy measurement for blocking tasks is usually car-

ried out with the use of the pairs completeness measure (PC)
[4]. This measure is the ratio of the number of true matches
that the blocking algorithm correctly includes in the candi-
date set to be matched, and the total number of true matches
that exist in the dataset and that would all be found when
no blocking is used. If true matches are denoted by Nm,
blocking denoted matches by Sm, and blocking denoted non-
matches by Su, then pairs completeness is given as:

PC =
Sm

Nm

Pairs completeness measures the recall of the blocking
technique. In [4], the pairs quality measure (PQ) is pro-
posed as a way to measure the ‘reduction ratio’ or efficiency
of the blocking technique. Pairs quality is a measure of pre-
cision, measuring the proportion of chosen candidates for
matching that actually correspond to true matches. It is
given as:

PQ =
Sm

Sm + Su

3. AN IMPROVEMENT FOR SUFFIX AR-

RAY BLOCKING
Suffix Array blocking is designed for efficiency, with the

ability to select a very concise set of candidates for match-
ing. However, this comes at the expense of the accuracy,
or pairs completeness, of the result. The main weakness of
this technique is due to the creation of the array of suffixes.
Under standard Suffix Array blocking, the chosen key fields
are concatenated into the BKV string. An array of suffixes
is then generated from the BKV by taking suffixes of in-
creasing length. Since every suffix created from the BKV
includes the last character of this string, a difference at the
last position of a BKV when compared to an original BKV
will cause standard Suffix Array blocking to place the differ-
ing record into a separate block than the original, causing a
valid comparison to be left out of the candidate set for the
matching step. An extension of this problem occurs when
the minimum suffix length parameter lms is too large. An
example of this can be seen in Table 1 when minimum suffix
length is 4. Careful selection of this parameter’s value is
therefore essential.

3.1 Improving Suffix Array Using Grouping
The Suffix Array blocking method is suitable for a wide

range of applications, but has one large limitation. If two
BKV substrings are identical apart from an error positioned
less than lms characters away from the end of the BKV
string, standard Suffix Array blocking will fail to group these
records into the same block. The ‘JohnSmith’ and ‘John-
Snith’ example shown in Table 1 contains this property when
the minimum suffix length parameter lms is 4. However, it is
clear from this example that many of these adjacent suffixes
share a high degree of similarity.

We propose an approach towards solving this problem,
by carrying out a grouping operation on similar suffixes in
the ordered suffix index list. Many methods can be used
for grouping or clustering these suffixes. However, the time
complexity of the indexing method is important to consider
in order to avoid an overall scalability decrease for the record
linkage problem. In particular, we have to avoid a large
number of comparisons between the BKV suffixes. In the
worst case, we can expect nk BKV suffixes when matching
among n records where the average BKV length is k (larger
values of lms will reduce this). A full comparison among all
of these records will therefore result in a time complexity of
O((kn)2) for the suffix grouping operation. In a way, the
problem we now face is very similar to the original goal of
reducing the number of comparisons we have to carry out
among the n original records, by instead needing to find a
way to reduce the number of comparisons we have to make
for the task of linking together kn suffixes.

However, we can utilise the nature of suffix generation
along with the necessary step of building the indexing struc-
ture for linkage to greatly optimise this process. In the ex-
ample in Table 1 we want to avoid comparisons among suf-
fixes that were generated from the same BKV. However, we
would like to carry out comparisons between similar suffixes
that were generated from different BKVs. Each suffix in
the suffix array generated from a single BKV will be similar
to the other suffixes from that BKV, with the differences
occurring near the start of the suffix. As it turns out, the
suffixes are required to be ordered before they can be used in
the indexing structure which is used to select candidates for
matching, and indeed, the ordering is usually carried out by
the data structure employed. This requirement therefore au-
tomatically disperses suffixes that were generated from the
same BKV throughout the list. This behaviour can be seen
in Table 1, where the record number of each row alternates
between 1 and 2, the identifiers for the BKVs of ‘JohnSmith’
and ‘JohnSnith’ respectively.

It can also be seen from this example that the indexing
structure has a tendency to place similar suffixes from dif-
ferent BKVs next to each other. This is useful from an
efficiency point of view when attempting to group together
similar BKV suffixes. A simple method for grouping that
does not cause adverse scalability reductions can be imple-
mented by only checking directly neighbouring records when
carrying out the grouping. When a close match is found, the
blocks can be merged together. There exists an option to
use a larger sliding window [11] when processing the suffixes,
to compare suffixes that may match closely but be separated
by one or two alphabetically similar suffixes. For efficiency,
we group only neighbouring suffixes in our experiments, ef-
fectively using a window size of 1. Larger values may be se-
lected to increase accuracy with diminishing returns at the

Algorithm 1 Improved Suffix Array Blocking

Input:
1. Rp and Rq, the sets of records to find matches between.
2. The suffix comparison function similarity threshold jt.
3. The mimimum suffix length lms and the maximum block
size lmbs.

Let II be the inverted index structure used.
Let Ci be the resulting set of candidates to be used when
matching with a record rpi

// Index construction:
For record rqi ∈ Rq:

Construct BKV bqi by concatenating key fields
Generate suffixes aqi from bqi, where
aqi = {sq1, sq2, . . . , sqy}, |aqi| = y = |bqi| − lms + 1
and sqj = bqi.substring(|bqi| − lms − j + 1, |bqi|)
For suffix sqij ∈ aqi :

Insert sqij and a reference to rqi into II

// Large Block Removal
For every unique suffix sf in II :

If the number of record references paired with sf > lmbs:
Remove all suffix-reference pairs where the suffix is sf

// Suffix grouping (Improved Suffix Array only)
For each unique suffix sf in II (sorted alphabetically):

Compare sf to the previous suffix sg using
the chosen comparison function (e.g. Jaro)
If Jaro(sf , sg) > jt: (highly similar)

Group together the suffix-reference pairs
corresponding to sf and sg using
set join on the two sets of references

// Querying to gather candidate sets for matching:
For record rpi ∈ Rp:

Construct BKV bpi by concatenating key fields
Generate suffixes api from bpi, where
api = {sp1, sp2, . . . , spy}, |api| = y = |bpi| − lms + 1
and spj = bpi.substring(|bpi| − lms − j + 1, |bpi|)
For suffix spj ∈ api :

Query II for a list of record references that match spj

Add these references to the set Ci (no duplicates)

cost of efficiency. The grouping technique therefore exploits
the alphabetical ordering required by the indexing structure.
This technique cannot be easily applied to the highly similar
prefix array blocking method, unless the prefix strings or the
ordering comparison function are inverted. Our approach is
detailed in Algorithm 1. The standard Suffix Array algo-
rithm is equivalent to this one, minus the grouping step.

We carried out experiments using the Jaro string compar-
ison function [13] as well as the Longest Common Subse-
quence (LCS) operator as the similarity metric used to de-
cide whether to merge two BKVs together. We found that
if a specific comparison function is used in the full compar-
ison of two records, this function may be a good choice for
the grouping operation as well. The Jaro string comparison
function was found to be more well-suited to our problem,
and we show only the experiments that were run using this
similarity measure.

If, however, LCS is desired as a similarity function, it
can be incorporated without the requirement of an extra
parameter. If s1 and s2 are the two input suffixes, l1 and
l2 are the lengths of these suffixes, llcs is the length of any
result of the LCS operation, and lms is the minimum suffix
length parameter, then we can define the grouping result as:

Grouping(s1, s2) =

{

1 if max(l1, l2) − llcs < lms

0 otherwise

(1)
Allowing up to a difference in length of lms between the
longest BKV string and the LCS result has the effect of al-
lowing groupings between records that would be erroneously
omitted due to errors in the last lms characters of the BKV
under standard Suffix Array blocking, while avoiding spuri-
ous grouping results that decrease pairs quality unnecessar-
ily and which would likely be removed in the record linkage
full comparison step due to low similarity.

3.2 Complexity
Pairs completeness and pairs quality are not the only mea-

surements of interest for comparing different blocking tech-
niques. These measurements do not take into account the
computational complexity underlying the algorithm used.
We analyse the computational complexity changes intro-
duced due to the grouping technique in this section.

Standard Suffix Array blocking will generate gn suffixes
on average, if k is the average BKV length, g = k − lms + 1
and n is the number of records to match with one another.
An indexing structure is used to allow for O(gn log gn) con-
struction and O(log gn) query time for a single record. In
the worst case of lms = 1 and every suffix being grouped to-
gether, the indexing structure will contain k suffix keys, each
referencing n data set items, causing query time for a single
record to equal O(kn log kn). However, with a normal data
set, the indexing structure is usually able to separate records
into distinct blocks and allow for an O(b log nk) query time,
where b is a value that depends on the data set used, with
data containing more potential linkages having a higher b.

The addition of the grouping operation has an effect on
both the construction of the indexing structure as well as the
query operation. For index construction, the list of suffixes
of length kn must be traversed once. Grouping results can
be stored by modifying the inverted index on the fly. While
the time taken to construct the indexing structure may be
slightly longer in practice due to grouping, it does not affect
the intrinsic computational complexity that is required.

The time complexity of the querying stage is usually more
important than index construction, and the grouping result
has an effect on this stage as well. For any set of suffixes
generated from the query BKV, the goal is to extract the
set of record identifiers to be used to select the candidate
record set for matching. Each suffix query of the indexing
structure takes an expected O(log gn) time. Grouping adds
extra record identifier results to this step, but the computa-
tional complexity is not modified if the window size is fixed
(in our experiments it is fixed to 1). Under our proposed
technique, the number of additional grouping results is lim-
ited to the chosen window size. Therefore, the time taken
may be slowed by this small constant factor at this stage due
to grouping, but again, the time complexity with regards to
n or k is unchanged.

Figure 1: An example showing suffix exclusion due
to lms and lmbs. Ordering sensitivity is also shown.

4. ANALYSIS
We carry out a more thorough analysis into the time

complexity of the proposed Improved Suffix Array block-
ing method, as well as adding insight into why it is effective
and where it may fall short. We describe the approach in
detail in Algorithm 1, which includes definitions for each
component used in this section.

Standard Suffix Array will miss a correct blocking if there
is a mistake within the last lms characters of the duplicate
BKV. It will also miss a correct blocking if the mistake oc-
curs within a suffix that is common enough to be excluded
due to the maximum block size condition. This condition
acts as a way to dynamically extend the minimum suffix
length based on the rarity of the suffixes towards the end of
each specific word. If one suffix is excluded due to the maxi-
mum block size condition, all smaller suffixes from the same
word are excluded as well. These two suffix exclusion rules
combine to exclude a continuous set of suffixes from one po-
sition up to the end of the BKV string. This behaviour is
shown with an example in Figure 1.

We can build a model to estimate the probability of vari-
ous types of errors that can occur between a true BKV and
a ‘dirty’ duplicate, such as character replacement, insertion,
deletion, or swapping. Given the definitions above, we can
simplify our model by assuming that the true BKV bp and
the dirty duplicate bq have the same length. We can then as-
sume that the probability for a difference between bp and bq

to occur at any character position to be c. The ‘lmbs exclu-
sions’ area in Figure 1 acts as a way to dynamically extend
lms based on the rarity of the suffixes towards the end of the
BKV, and changes in size in different BKVs. However, we
can simplify our model by assuming that the average length
of the longest suffix excluded due to the maximum block size
condition is lse over all record BKVs in the data set, where
lse ≥ lms and lse can be visualised as the combined length of
the ‘lmbs exclusions’ and ‘lms’ regions in Figure 1. We then
have the probability for standard Suffix Array blocking to
miss a potential match between two records as:

Psuffix-miss(bp, bq) = 1 − (1 − ci)
lse (2)

Improved Suffix Array blocking is able to solve this prob-
lem under two conditions. The main requirement is that at
least one suffix from each of the two BKVs being compared
must be adjacent to each other in the ordered suffix list used
in the inverted index structure. With a sliding window ap-
proach instead of a strict adjacency rule, we can extend the
rule to allow ‘closeness’ given by half of the window length
instead of strict adjacency. The probability for Improved
Suffix Array blocking to miss a grouping is difficult to quan-

tify, as it depends on the type of data used. However, the
act of generating multiple suffixes from a single BKV results
in a significant amount of redundancy that we can exploit.
It turns out that in the vast majority of cases, at least one
suffix from each BKV end up close together, allowing the
grouping of the two BKVs to occur. This redundancy is a
key to the robustness of the grouping approach, as the pro-
cess is able to handle multiple errors in the BKV strings, and
multiple missed suffix groupings, as long as only one suffix
from each BKV matches up. Examples of BKVs producing
suffixes that are dispersed throughout the alphabetically or-
dered inverted index are shown in Tables 1 and 2. From
these examples it is clear that highly related suffixes from
each BKV end up close to each other in the inverted index
list.

We define complete grouping separation as the effect that
can occur when grouping fails. A simple example occurs
when selecting the two BKVs ‘handbag’ and ‘handtag’, the
latter of which is a misspelling of the first. If there exists
other BKVs that are ordered alphabetically between these
two BKVs, such as the string ‘handlebars’, there exists the
potential to separate some of the suffix strings ordered in-
dexing structure. However, each BKV will have many suf-
fixes, all of which are compared to their alphabetically sorted
neighbors for grouping. For complete grouping separation to
occur, separation must occur for every single suffix and the
neighbor we would like to group it with. The example given
above exhibits these characteristics, with the suffix ‘andle-
bars’ separating ‘andbag’ and ‘andtag’, and the suffix ‘nd-
bar’ separates ‘ndbag’ and ‘ndbar’, etc, as can be seen in
Table 2. Nevertheless, this type of scenario is very unlikely
to occur in practice, as the BKV which carries out the sep-
aration requires three characteristics. Firstly, the beginning
of the separating BKV must be identical to the two BKVs
that should have been grouped together. This type of be-
haviour is usually quite rare, typically occurring when words
are constructed from multiple parts (‘hand’ and ‘bag’), and
especially uncommon when records consist mostly of names
(in the case of identity matching). Secondly, the differences
in the two BKVs that should be grouped must occur within
the last lms characters, otherwise they will be grouped due
to sharing a common suffix. Thirdly, the end of the separat-
ing BKV must be significantly different from both of the two
BKVs that should have been grouped together. It can be
seen from Table 2 that even in this specifically constructed
example, the similarity is quite high, and grouping could still
occur if the similarity threshold for grouping is reduced.

Complete grouping separation, while rare, can be reduced
even further by extending the window size of the grouping
operation. In our experiments, the result is good even when
the window size is limited to 1. Extending the window size
will increase the number of candidate selected for matching,
usually reducing the pairs quality. Additionally, the time
complexity of the grouping operation is O(nk) when the win-
dow size w = 1, but w = 2 will cause the grouping operation
to double in cost compared to w = 1, so for practical appli-
cations, lower values of this parameter are necessary to allow
for a rapid grouping operation. More complex window-based
techniques can also be used, such as the approach described
by Yan et al. [19].

The second requirement for grouping to successfully occur
is simply that the two BKVs being compared must exhibit
enough similarity to pass the similarity check that the group-

Suffix Record # Jaro similarity
...
andbag 1 0.796
andlebars 3 0.703
andtag 2 -
...
dbag 1 0
dlebars 3 0
dtag 2 -
...
ndbag 1 0.766
ndlebars 3 0.658
ndtag 2 -
...

Table 2: An occurrence of complete grouping sepa-

ration. Two BKVs that should be blocked together
are ‘handbag’ and ‘handtag’. However, the suffixes
of a third BKV ‘handlebars’ will separate all suffixes
of the original two BKVs, causing complete separa-
tion and therefore Improved Suffix Array will not be
able to improve its result over standard suffix array,
due to the optimisation that only allows grouping
of adjacent suffixes. Minimum suffix length (lms)
must be 3 or more for this condition to occur for
this example. Jaro similarity refers to the similarity
between the suffix string on one line and the suffix
on the following one.

ing operation carries out. The process is robust to multiple
errors in the dirty duplicate BKV, allowing grouping if only
one suffix matches up to a suffix from the clean BKV. How-
ever, this suffix match must pass the string similarity check
(e.g. Jaro similarity). In some examples, all suffix compar-
isons may contain too many errors to be grouped together.
This loss of a true match is typically unavoidable, as every
blocking method will find it difficult to block together two
records with these characteristics, and even if the records
are entered into the same block, the full record comparison
carried out by the record linkage process would likely dis-
card the two records as a non-match, or at least assign a
very low similarity score.

Finally, the use of the grouping technique guarantees that
no loss in pairs completeness will occur compared to stan-
dard Suffix Array blocking.

Lemma 1. The pairs completeness (recall) of Improved
Suffix Array blocking (ISAB) is always greater than or equal
to that of Standard Suffix Array blocking (SSAB).

Proof. Let Ti be the true matching records of record
ri. Let Cssa

i and Cisa
i be the candidate records matched by

SSAB and ISAB respectively. Then PCssa(ri) =
|Cssa

i
∩Ti|

|Ti|

and PCisa(ri) =
|Cisa

i
∩Ti|

|Ti|
Now, as SSAB groups on exact

matching suffixes, and ISAB adds approximate suffixes to
this result, Cssa ⊆ Cisa. Thus, PCisa(ri) ≥ PCssa(ri)

The reverse is not true for pairs quality. In most cases, a
slight loss in pairs quality will occur when utilising grouping.
However, as is evident in some of our results using synthetic
data, some situations do occur where both pairs complete-
ness and pairs quality is higher when using Improved Suffix
Array over standard Suffix Array blocking (E.g. Figure 5).

5. EXPERIMENTS
Our experiments are designed to compare Improved Suf-

fix Array blocking against standard Suffix Array blocking
as well as traditional blocking, primarily using the measure-
ments of pairs completeness and pairs quality. We run the
experiments on two real data sets as well as a synthetic one.
The real data sets are sourced from an insurance company
where a large-scale record linkage module exists as part of
a larger surveillance system. The ‘identity’ data set con-
sists of personally identifying information such as names
and addresses. The synthetic data set was generated us-
ing the Febrl [5] tool with standard settings. Even though
the source for the real data contains millions of records, ex-
amples need to be hand labeled to produce accurate test
data sets. Therefore, we were only able to obtain n = 4135
records for the real identity data set. For our results to be
comparable, we used n = 5000 records for the synthetic data
set. We use larger data sets in our performance comparison
experiments.

Our experiments are conducted as follows:

1. We vary lms while keeping lmbs = 12.

2. We vary lmbs while keeping lms = 6.

3. We utilise a large scale database implementation to
measure the performance of all methods on a large set
of data from the real identity database, with parame-
ter values of lms = 6 and lmbs = 12. Desktop Specifi-
cations: Intel Xeon 3.6GHz, 3.25GB RAM. Database
Server: Intel Xeon X5460 3.16GHz, 8GB RAM.

4. We vary the BKV composition to demonstrate that our
results are consistent for different BKV compositions,
using the parameter values of lms = 6 and lmbs = 12.

All experiment results shown use Jaro for the grouping sim-
ilarity function, and the threshold for determining Jaro sim-
ilarity between two strings is set at 0.85 for all experiments.

6. RESULTS
The results from varying lms can be seen in Figures 2

and 3. The results from varying lmbs are displayed in Fig-
ures 4 and 5. It is clear that for a good selection of lms

we can obtain a very high pairs completeness (accuracy),
while achieving a pairs quality (efficiency) very similar to
the highly efficient standard Suffix Array blocking. It is
also clear from the pairs quality results that a large time
saving can be achieved by utilising Improved Suffix Array
blocking over the traditional blocking method, while experi-
encing only a slight loss in accuracy or pairs completeness.
The advantages for using Improved Suffix Array blocking
over standard Suffix Array blocking are most notable in the
experiments using synthetic data, which turned out to be
more ‘dirty’ with a higher frequency of errors compared to
the real data. This shows the robustness of Improved Suf-
fix Array blocking as it is able to gracefully handle data
with more errors and mistakes. This quality may be a key
advantage in some data environments where error-sensitive
techniques cannot be used.

Our performance experiment over a large selection from
the real identity data set is shown in Figure 6. It is clear that
the scalability of both Suffix Array techniques out-perform
traditional blocking. Also of interest is the extremely low

amount of extra processing required to carry out the group-
ing aspect of Improved Suffix Array blocking, both in index
construction and querying.

Results from our experiments where we changed the fea-
ture set of fields used to construct the BKV are shown in
Figure 7 and 8. Different BKV combinations show consis-
tent results. Of interest here are the results achieved from
the feature selections which contain ‘suburb’ at the end of
the concatenated BKV. For the synthetic data, the suburb
field contained errors that may occur typographically if the
field is captured in the real dataset using free text entry.
However, our real dataset utilises a list of suburbs that con-
tains fixed entries, and the operator must select the correct
suburb from this list. Therefore, there are no typographi-
cal errors in the suburb field of our real dataset. Therefore,
when ‘suburb’ is used as the last string to be concatenated
into the BKV, most of the short suffixes generated from
different records are exactly the same. The suburb field
therefore does not have enough discriminating power to be
used at the most important position in the concatenation of
strings to form the BKV for the real dataset.

2 4 6 8 10 12 14 16 18 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Minimum Suffix Length

P
ai

rs
 C

om
pl

et
en

es
s

an
d

P
ai

rs
 Q

ua
lit

y

Traditional PC
Traditional PQ
Standard suffix PC
Standard suffix PQ
Improved suffix PC
Improved suffix PQ

Figure 2: Pairs completeness and pairs quality ob-
tained while varying minimum suffix length (lms) on
the real identity data set.

2 4 6 8 10 12 14 16 18 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Minimum Suffix Length

P
ai

rs
 C

om
pl

et
en

es
s

an
d

P
ai

rs
 Q

ua
lit

y

Traditional PC
Traditional PQ
Standard suffix PC
Standard suffix PQ
Improved suffix PC
Improved suffix PQ

Figure 3: Pairs completeness and pairs quality ob-
tained while varying minimum suffix length (lms) on
the synthetic data set.

2 4 6 8 10 12 14 16 18 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Maximum Block Size

P
ai

rs
 C

om
pl

et
en

es
s

an
d

P
ai

rs
 Q

ua
lit

y

Traditional PC
Traditional PQ
Standard suffix PC
Standard suffix PQ
Improved suffix PC
Improved suffix PQ

Figure 4: Pairs completeness and pairs quality ob-
tained while varying maximum block size (lmbs) on
the real identity data set.

2 4 6 8 10 12 14 16 18 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Maximum Block Size

P
ai

rs
 C

om
pl

et
en

es
s

an
d

P
ai

rs
 Q

ua
lit

y

Traditional PC
Traditional PQ
Standard suffix PC
Standard suffix PQ
Improved suffix PC
Improved suffix PQ

Figure 5: Pairs completeness and pairs quality ob-
tained while varying maximum block size (lmbs) on
the synthetic data set.

0 1 2 3 4 5 6

x 10
5

0

1

2

3

4

5

6
x 10

7

Number of records (n)

T
im

e
ta

ke
n

(m
s)

Traditional querying
Standard suffix querying
Improved suffix querying
Standard suffix index building
Improved suffix index building

Figure 6: Overall running time on a large set of real
identity data. Both Suffix Array techniques require
an index construction step as shown.

0.7

0.75

0.8

0.85

0.9

0.95

1

d
o

b
+ g

iv
e

n
_n

a
m

e
 + s
u

rn
a

m
e

g
iv

e
n

_n
a

m
e

 + d
o

b
+ s
u

rn
a

m
e

s
u

rn
a

m
e

 + g
iv

e
n

_n
a

m
e

 + d
o

b

g
iv

e
n

_n
a

m
e

+s
u

rn
a

m
e

+p
o

s
tc

o
d

e
+s
u

b
u

rb

d
o

b
 + g
iv

e
n

_n
a

m
e

 +s
u

rn
a

m
e

+s
u

b
u

rb

BKV definition

Pa
ir

s
 Co

mple
te

n
e

s
s

suffix array

improved suffix array

traditional

Figure 7: Pairs completeness for different BKV com-
binations, using the real identity data set.

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

d
o

b
+ g

iv
e

n
_n

a
m

e
 + s
u

rn
a

m
e

g
iv

e
n

_n
a

m
e

 + d
o

b
+ s
u

rn
a

m
e

s
u

rn
a

m
e

 + g
iv

e
n

_n
a

m
e

 + d
o

b

g
iv

e
n

_n
a

m
e

+s
u

rn
a

m
e

+p
o

s
tc

o
d

e
+s
u

b
u

rb

d
o

b
 + g
iv

e
n

_n
a

m
e

 +s
u

rn
a

m
e

+s
u

b
u

rb

BKV definition

Pa
ir

s
 Co

mple
te

n
e

s
s

suffix array

improved suffix array

traditional

Figure 8: Pairs completeness for different BKV com-
binations, using the synthetic data set.

7. CONCLUSION
Suffix Array blocking is highly efficient and able to out-

perform traditional methods in scalability, at the cost of a
significant amount of accuracy, depending on the attributes
of the data used. Our improvement inherits these qualities,
but significantly improves the accuracy at the cost of a very
small amount of extra processing. The qualities of Improved
Suffix Array blocking make it well-suited for large-scale ap-
plications of record linkage. Our experimental results show
that our approach is much more scalable than the traditional
approach for data sets containing millions of records. This
is a common situation in many industrial applications where
many large data sets exist, both current and archival, and
it is beneficial to bring data together from different sources
in order to increase the amount of knowledge that is avail-
able to inform and drive decisions. Scalability becomes a
matter of feasibility for very large scale record linkage tasks.
It is also a critical property for high-performance and real-
time applications. For this approach, the average query time
is also important, which may fluctuate significantly when
traditional blocking is used. A given example for identity
matching was that querying ‘John Smith’ will take much
longer than some rare names, often by several orders of mag-
nitude. Improved Suffix Array blocking is able to overcome
this problem and can avoid excessive query times for records
with common field values.

We have also shown that the accuracy or pairs complete-
ness of Improved Suffix Array blocking is much higher than
standard Suffix Array blocking for the data sets we used in
our experiments. In fact, Improved Suffix Array is able to
achieve a result highly similar to the highly accurate tra-
ditional blocking method. This shows the strength of the
additional grouping process that is carried out on the sorted
list of suffixes in the indexing structure, even when we limit
our implementation to an efficient one that does not take
into account the position of differences within the BKVs
being compared, and does not compare suffixes more than
one record away in the ordered suffix list. However, further
improvements could be designed to utilise these additional
sources of information.

8. ACKNOWLEDGEMENTS
Timothy de Vries and Sanjay Chawla acknowledge the

financial support of the Capital Markets CRC.

9. REFERENCES

[1] A. Aizawa and K. Oyama. A fast linkage detection
scheme for multi-source information integration. In
WIRI ’05: Proceedings of the International Workshop
on Challenges in Web Information Retrieval and
Integration, pages 30–39, Washington, DC, USA, 2005.

[2] C. R. Arvind Arasu and D. Suciu. Large-scale
deduplication with constraints using dedupalog. In
ICDE ’09: Proceedings of the 25th International
Conference on Data Engineering. IEEE Computer
Society, March 2009.

[3] R. Baxter, P. Christen, and T. Churches. A
comparison of fast blocking methods for record
linkage. In ACM SIGKDD’03 Workshop on Data
Cleaning, Record Linkage and Object Consolidation,
Washington DC, 2003.

[4] P. Christen. Towards parameter-free blocking for
scalable record linkage. Technical Report
TR-CS-07-03, Department of Computer Science, The
Australian National University, Canberra, 2007.

[5] P. Christen. Febrl – An open source data cleaning,
deduplication and record linkage system with a
graphical user interface (Demonstration Session). In
ACM International Conference on Knowledge
Discovery and Data Mining (SIGKDD’08), pages
1065–1068, Las Vegas, 2008.

[6] H. L. Dunn. Record linkage. In American Journal of
Public Health, pages 1412–1416, 1946.

[7] M. Elfeky, V. Verykios, and A. Elmagarmid. Tailor: a
record linkage toolbox. Data Engineering, 2002.
Proceedings. 18th International Conference on Data
Engineering, pages 17–28, 2002.

[8] I. P. Fellegi and A. B. Sunter. A theory for record
linkage. Journal of the American Statistical
Association, 64(328):1183–1210, 1969.

[9] L. Gill, M. Goldacre, H. Simmons, G. Bettley, and
M. Griffith. Computerised linking of medical records:
methodological guidelines. J Epidemiol Community
Health, 47(4):316–319, 1993.

[10] L. Gu, R. Baxter, D. Vickers, and C. Rainsford.
Record linkage: Current practice and future
directions. Technical report, CSIRO Mathematical and
Information Sciences, 2003.

[11] M. A. Hernandez and S. J. Stolfo. Real-world data is
dirty: Data cleansing and the merge/purge problem.
Data Mining and Knowledge Discovery, 2(1):9–37,
1998.

[12] L. Huang, L. Wang, and X. Li. Achieving both high
precision and high recall in near-duplicate detection.
In CIKM ’08: Proceeding of the 17th ACM conference
on Information and knowledge management, pages
63–72, New York, NY, USA, 2008. ACM.

[13] M. A. Jaro. Advances in record-linkage methodology
as applied to matching the 1985 census of tampa.
Journal of the American Statistical Association,
84(406):414–420, June 1989.

[14] L. Jin, C. Li, and S. Mehrotra. Efficient record linkage
in large data sets. In DASFAA ’03: Proceedings of the
Eighth International Conference on Database Systems
for Advanced Applications, page 137, 2003.

[15] J. T. Marshall. Canada’s national vital statistics
index. In Population Studies, pages 204–211, 1947.

[16] A. Mccallum, K. Nigam, and L. H. Ungar. Efficient
clustering of high-dimensional data sets with
application to reference matching. In Knowledge
Discovery and Data Mining, pages 169–178, 2000.

[17] H. B. Newcombe and J. M. Kennedy. Record linkage:
making maximum use of the discriminating power of
identifying information. Commun. ACM,
5(11):563–566, 1962.

[18] W. E. Winkler. Overview of record linkage and
current research directions. Technical Report
RR2006/02, US Bureau of the Census, 2006.

[19] S. Yan, D. Lee, M.-Y. Kan, and L. C. Giles. Adaptive
sorted neighborhood methods for efficient record
linkage. In JCDL ’07: Proceedings of the 7th
ACM/IEEE-CS joint conference on Digital libraries,
pages 185–194, New York, NY, USA, 2007. ACM.

