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Abstract—Service Oriented Architecture (SOA) has been em-
braced in enterprise computing for several years. The scientific
community always felt the need of an SOA infrastructure not
only with the convenience of enterprise SOA but also with ex-
pected level of high performance capabilities. Our research has
produced an SOA middleware (ANU-SOAM) which supports
an already popular enterprise SOA middleware API (Platform
Symphony API) with the desired level of performance for
scientific computations such as a Conjugate Gradient Solver.
We have extended the compute services of ANU-SOAM with
a common data service (CDS) between client and the service
instances. The aim is to improve performance of applications
by reducing communications or communication cost between
the client and the service instances with the help of CDS. This is
achieved by enabling tasks to perform a deferred put operation
to the common data their service instances, with the results of
the put operation only being visible to the next generation of
tasks. These updates can be synchronised (committed) at CDS
at the direction of the client. This property enables applications
on ANU-SOAM to overcome latency of poor networks (or
‘cloud’) between client and service instances. Experimental
results on a small Gigabit ethernet cluster show that, for the
Conjugate Gradient Solver, the ANU-SOAM version suffers no
appreciable performance loss over MPI versions and the CDS
enhances N-Body Solver performance, with good scalability in
both cases.

I. INTRODUCTION

Scientists and researches are not necessarily computer
programmers. But, they are always at the receiving end
of needing high performance computing resources. The
conventional message passing paradigms like MPI (Message
Passing Interface) offer them a communication infrastructure
with necessary HPC capabilities, but with an undesirable
level of complexity and coding effort to develop applica-
tions. The SOA approach - computing paradigm that consid-
ers services as building blocks for applications [1] - seems to
be more appealing to the scientific community with its easy
to understand architecture and programming interface. En-
terprise SOA middlewares (SOAM) like Platform Symphony
have worked well for financial applications and its general
architecture and API are very well accepted by even amateur
programmers [2]. However, there are great challenges in
performance, when those enterprise solutions are adopted for
high performance scientific computing (HPSC) applications
as they are suited for financial applications (which are

generally embarrassingly parallel) rather than for scientific
applications [3].

One of the major challenges in implementing impor-
tant scientific computations, such as the Conjugate Gra-
dient Solver (CGS) or N-Body Solver (NBS), is the
inter-dependency of some of its underlying computational
tasks. When such applications are parallelized, this inter-
dependency shall compel atomic work units (called tasks
in SOA) to progress in phases (which can be called gen-
erations) and may decrease task granularity in many cases.
Decreased task granularity will result in increased commu-
nication and the communication cost along with it.

Our research is aimed at providing an efficient high
performance SOA paradigm to solve these medium to fine
grained and communication intensive scientific applications.
In order to achieve the goal, we developed a SOA mid-
dleware (ANU-SOAM) and added a common data service
(CDS) with its compute services. The experimental results
show that ANU-SOAM applications perform as well as
any other HPC paradigms such as MPI (Message Pass-
ing Interface) but with the added advantage of the SOA
paradigm and its simpler API. The CDS enables applications
to initiate generations of tasks which can get common data
and put updates to it without losing meaning of data for a
specific generation of tasks. This allows consumers to do
more work at service instances with less communication
costs, especially over low latency networks or clouds. A
performance analysis of NBS application using the gener-
ation approach on ANU-SOAM indicates promising results
over traditional SOA approach. The ANU-SOAM CGS and
NBS applications also scale well, under our experimental
conditions.

The rest of the paper is organized as follows: the next
section gives a short background to SOA model for scientific
applications, with sub-sections II-B and III-D giving more
insights into challenges to SOA for HPSC and proposed
CDS solution. Section III discusses the design of ANU-
SOAM with its CDS. Section IV analyzes the performance
of ANU-SOAM against MPI with a conjugate gradient
solver. The same section also evaluates the experimental
results of N-body solver application using generation of
tasks approach with CDS against N-body solver application
using traditional SOA on ANU-SOAM. Section V gives an
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Figure 1. Traditional SOA Model

account of related works in this area. The paper ends with
conclusions and expected future functionalities of ANU-
SOAM.

II. THE SOA MODEL FOR SCIENTIFIC APPLICATIONS

Tan Foster observed in [4] that the role of scientists is to
convert data into insight. He also noted that with the help
of advancements in Information Technology, especially with
the help of SOA approach, scientists could automate many
of those time consuming ‘insight creating’ jobs. He coined
the word Service Oriented Science, which considers those
‘insight creating’ jobs as atomic blocks called services [4].
Efforts have been made from then on to make scientific
applications run on SOA platforms. Later on, SOA was
tried over grids which has given the notion of Service
Oriented Grids (SOG) [5] and Global Grid Forum produced
the Open Grid Services Architecture (OGSA) document to
define standards for SOG [6].

SOG empowered scientists and researchers to address
specific computational challenges in their own disciplines
by providing custom built grid solutions. As a result there
emerged a number of grid middlewares and tools which
helped scientific community to use the extraordinary com-
puting power of grids. Globus - an open source software
toolkit that facilitates construction of computational grids
and grid based applications, Unicore - a vertically integrated
Java based grid computing environment, Legion - an object
based meta-middleware system, Gridbus (recently renames
as Cloudbus) - a set of grid services that support resource
sharing, management and scheduling (including Alchemy
and Aneka) are some examples which provided SOG so-
lutions towards specific scientific needs [7], [8]. These SOA
grid models are academic in nature.

Another major stream is enterprise grid solutions that
use SOA paradigm mainly in financial sector. Platform
Symphony is one of those widely used enterprise SOA
middlewares. The general features of SOA on the basis of
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Figure 2. SOA Model with Data Service

our investigation on Platform Symphony is explained in the
next sub section.

A. Traditional SOA Model

In the traditional SOA model, as we have investigated in
Platform Symphony, a consumer is called a client who is
requesting services from compute nodes for an application.
The client and service are pieces of software that run on
hardware nodes as process instances. A client process can
access (or even generate) a number of service processes
that provides the same service. These service processes are
called service instances (SI). Requests of client to SIs for a
particular service along with its input data is called fasks.
A group of tasks that share common characteristics, such as
being part of a single application, constitute a session. An
SI can accept any number of tasks within a session. Tasks
are processed at SIs and results are send back to the client.
Task results are collected at client process to produce final
outcome. These actions constitute the compute services of
general SOA middleware [9], [10].

Service providers can host and publish network-accessible
service modules within their compute nodes. The client
discovers these services with the help of a resource manage-
ment module. The resource manager is also responsible for
resource allocation and load-balancing of each application
and its runtime needs. Using this mechanism, the client and
the service instances orchestrate conversations to conduct
long-lived flexible transactions [11] (Fig. 1).

B. Challenges and Possible Solution

The traditional approach of academic and enterprise SOA
middlewares like Aneka of Gridbus (now, Cloudbus) and
Symphony of Platform Computing work well for coarse-
grained and ‘embarrassingly parallel’ applications [2], [12].
However, the challenges posed by many scientific appli-
cations with finer task granularity which result in higher
communication costs, are not addressed by these existing
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approaches [3], [12]. This is because, as task granularity
decreases (as in medium to fine grained applications) periods
of communication which separate periods of computation
increases. This could lead to scenarios where the communi-
cation costs of parallelizing the application outperforms the
computational advantages. This issue was very well reported
in [12] with a block-based square matrix multiplication
experiment. This problem will be acute if the consumer
(client) tries to access computing power of SIs over a busy
or slow network - to that matter ‘a cloud’.

We believe that this problem can be addressed with the
help of a flexible common data service (CDS) which allows
SIs to communicate each other without tight coupling. This
is done by updates of common data, where each SI merges
changes made to the common data by recent service tasks
run on each SI. This can reduce communications between
client and SIs in many applications. The use of common
data can also reduce input data size for the service task,
thus further reducing communication costs.

The concept of CDS evolves from common data function-
ality in Platform Symphony. Using common data function,
application programmer defined arrays or data elements
common to all tasks could be set from a client to all SIs.
This data is replicated at all compute nodes and persistent
through out the life of a session and can be accessed by all
SIs. The common data can also be updated with new values
from the client side in between the application process.
However common data function in Platform Symphony does
not provide any mechanism to manipulate data from service
side (from SIs). The ANU-SOAM CDS extends this function
and provides add, get and put common data functions to
the service tasks run by the SlIs, but without losing data
consistency for the current generation of tasks. The CDS
also allows the client to control the synchronization of these
updates. The implementation details of CDS are discussed
in Section III-D and a graphic impression is given in Figure
2.

III. DESIGN AND IMPLEMENTATION OF ANU-SOAM
WITH COMMON DATA SERVICE

ANU SOAM implementation includes 3 major blocks -
client, service and resource manager. We retain most of the
Platform Symphony API with no or minimal changes. This
API is exposed to application programmers which can be
used to develop client and service application codes to run on
ANU-SOAM. This approach helps already existing Platform
Symphony applications to be easily ported to ANU-SOAM.
MPI dynamic process creation techniques are used to create
client and service processes. MPI point-to-point communi-
cations are used to communicate between client and service
processes and collective calls are used to implement CDS.

A. Client

The client process starts with an MPI process creation.
An API is provided to set session creation attributes, which
will define the nature of the session. These application
programmer defined session attributes include the name of
the service requested by the client, maximum number of
SIs (resources) expected by the client, path to the service
executable at compute nodes, etc. With these attributes,
the client initiates SIs using MPI dynamic process creation
techniques (see Listing 1). This constitute a session between
client and SIs and the SIs are ready to accept tasks from
client. Tasks are generated by the client within the persistent
session and send with the help of task input handle to
appropriate SIs assigned by resource manager. As the task
outputs return from service instances, they are accepted and
enumerated with the help of the task output handle at the
client. These results are made available to the application
programmer in a meaningful order. Once the client process
is over, it directs the service instances to die (or to hibernate)
and ends the session. The major client classes and their
relationships are given in Figure 3.

Listing 1. Session at Client

Session Connection:: createSession
(SessionCreationAttributes SesAttr){
Session session;

// spawning service instances
MPI_Comm_spawn( SesAttr —>name, ...);
MPI_Intercomm_merge (...);

session .setSessionComm (...);

return session;

B. Service

Service Instances that are initiated (or requested) by
the client, accept the parent communicator from client
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and create an inter-communicator. This inter-communicator
helps communication between the client and the service
instances. There is also another communicator which enables
communication between the spawned SIs alone (that is,
a second communicator which excludes client). Within a
session, service processes (SIs) are set to an infinite loop to
receive tasks and other instructions from the client. Looking
at the message tag, a service process decides the nature of
the client instruction (whether it is a task message or an
instruction to end the session, etc) and respond accordingly
(Listing 2). The SI can send back task results to the client
at the completion of a task and wait for new tasks from
the client. Major service classes and their relations are
represented in Figure 4.

Listing 2.  Session at Service Instances

void ServiceContainer ::run(){
MPI_Comm_get_parent (...);
MPI_Intercomm_merge (...);

// session as a loop

while (1){
MPI_Probe (...);
// get tag & switch to
// corresponding action
switch (tag){

}

C. Resource Manager

In the present version of ANU-SOAM, the resource man-
ager has to be supplied with prior knowledge of available
compute resources. The application programmer can choose
resource allocation policies like, random, round robin or

weighted round robin to distribute tasks among compute
nodes and SIs (a compute node can have more than one
SD.

D. Common Data Service

Data common to all SIs can be set (add) using this service.
The common data is replicated among all SIs and client
process. Even though it may give rise to memory scalability
issues’, it enables the CDS to be fault tolerant This common
data can be accessed (get) either by client or SIs. Updates to
this common data (put) can also be made by individual SIs
or client processes, without changing common data for the
current generation of tasks. That means, put is a deferred
operation in the CDS.

These updates (put) can be synchronised (sync) either
among SIs or between the SIs and the client process accord-
ing to application logic. The control of the sync operation
remains with the client. The cost of synchronizing common
data among Sls alone will be less compared to a global sync
between client and service processes. This cost may increase
considerably if the consumer(client) access those services
over slow networks (e.g. Internet ‘cloud’), which has high
latency. But for many generations of tasks, global sync is not
necessary in many scientific applications (e.g. CGS, NBS).
ANU-SOAM gives a choice to take that decision and thereby
making the application more efficient and cloud enabled.

Even though the nomenclature may look alike, add, get,
put and sync of CDS are different from similar function-
alities provided by many other paradigms. The CDS also
provides a variant of sync and get functions to deal with
synchronization event between SIs alone. They are explained
below:

The add function adds common data, which can either
be an element or an array of elements, but to be uniquely
identified by a name. We can have multiple common data
in a single application. When it is called by the client, the
client keeps a copy of it in its memory and send it to all
service processes to update their common data list. If it is
called at service side, ANU-SOAM assumes that it is only
a service specific common data and adds only to the service
side common data list.

The get function enables client of service process to
access a specific common data identified by its unique name.

The put is mostly a service specific function. It allows ser-
vice instances to put updates to any common data. However
unlike in other data services like Global Arrays, the updates
does not change the present common data until sync is called
by the client. In other words, data updates are remembered
by the service processes with its meta-data. This can also be
called by the client, then it instantaneously updates common
data at the client and service sides.

1t may be noted that competing approaches, such as cluster OpenMP,
suffer from similar limitations [13].
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The sync function synchronizes updates to a specific
common data identified by its name. That is, it commits all
put operations since the last sync. This can only be called
by the client. This is because there could be several tasks
within the same SI that may be updating the common data
and the client alone has got the knowledge of when all tasks
in the current generation have been sent and the common
data is ready to be updated. At this call the service processes
communicate each other and commits all previous updates
to that particular common data. The updated common data at
SI is also communicated back to the client and gets updated
at client side.

The variant function iSync applies sync only to service
instances. The common data will be synchronised among SIs
but won’t be updated back to the client side. This function is
useful, when the client does not want to know all the updates
to common data at SIs for every generation. However, an
iSync shall always be followed by an iGet, which will always
fetch updated common data from the service side to ensure
data consistency at the client side.

ANU-SOAM does not expose MPI inter-communicators
as such to the application programmers. Instead, ANU-
SOAM implements more convenient API calls of Platform
Symphony as mentioned before. However, the application
programmer has to decide and express which part of data
has to be distributed, modified and synchronized. The Plat-
form Symphony inspired ANU-SOAM API is given in the
appendix to explain this aspect.

IV. EXPERIMENTS AND PERFORMANCE ANALYSIS

The Conjugate Gradient Solver (CGS) and N-body Solver
(NBS) are well-known medium grained communication in-
tensive computations. So, they were chosen to evaluate and
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compare the performance of SOAM. CGS was used to
compare ANU-SOAM performance with that of pure MPI
implementation and NBS was used to compare the advantage
of ANU-SOAM generation approach with CDS to that of
a traditional SOA approach, also implemented on ANU-
SOAM. The results are discussed below.

A. Conjugate Gradient Solver

The Conjugate Gradient Solver (CGS) is considered to
be a medium grained communication-intensive computation.
So, it was chosen to compare the performance of ANU-
SOAM with that of pure MPI implementations. The CGS
algorithm, which is explained in our previous paper [3], is
reproduced here for the completion of this paper.

The CGS is used to solve the linear equation: Qxx—b = 0,
where Q) is a given N % N symmetric positive definitive
matrix and b is a given N vector. If the iteration number
is 4, x; is considered as the solution approximation, d; is
termed as the search direction and r; is the residual. The
technique is to perform iterations in the direction of d; till
we find that the residual r; is small enough to be ignored
to find the solution, z;. For the same, the iterations starts
from an arbitrary initial guess of
xo =0 and
To :d():fQ*x()‘Fb

Constants « and  which are functions of d;, r; and @ de-
termine the successive values of conjugacy constraints. This
iterative process involves two main mathematical operations,
namely,

1) Compute: z = Qd; (Matrix-Vector multiplication)

2) Reduce: x; ,d; (Vector-Vector operations) and Com-

pute: 7.
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An ANU-SOAM CGS program was developed without
using CDS extension and was experimented on a Gigabit
Ethernet cluster (with 2GHz AMD Opteron and AMD
Athlon processors), with each SI having a dedicated CPU.
Scalability tests were also conducted for hte ANU-SOAM
CGS program for up to 8 SIs. In order to compare the results,
a number of pure MPI CGS implementations using different
MPI techniques - client-server model, MPI collective call
model (using MPI_Comm_allgather) and MPI Spawn - were
also developed and experimented on the same testbed. In
order to get comparable results, the refinement of CGS
result was limited to 441 iterations for all experiments.
Experiments were conducted for dense square matrices of
order from 1000 to 8000. The results are compiled in graphs
5 and 6.

1) CGS Performance Analysis: Figure 5 gives a compar-
ison between ANU-SOAM and various MPI CGS programs.
In the performance comparison graph, total time includes the
session creation time, common data set up time and the total
time taken for all tasks to complete. It shows that the ANU-
SOAM implementation of CGS is as good as other MPI
implementations. It suggests that architectural overheads in
developing a SOA middleware using MPI techniques are
kept to minimum in our implementation. This suggests that
we have succeeded in designing an SOA middleware which
has got the expected level of performance for scientific
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applications at HPC standards prevail in academic circles.
The ANU-SOAM CGS was also tested for scalability
(with -O3 optimization). Each SI was assigned a dedicated
compute node. In Figure 6, the x-axis shows the number of
nodes (or the number of SIs) and the y-axis shows the total
execution time for 441 iterations but with 8 tasks in all cases.
The scalability graph shows that ANU-SOAM scales well
as we move from single service instance to up to 8 service
instances on 8 compute nodes, under our test conditions.
Since we used 8 tasks for all experiments, the number of
tasks to be served by an SI with a lower number of Sls
would be higher. This scenario could also be attributed to
the better than expected scaling effect we see on the graph.

B. N-Body Solver

The N-body problem in astrophysics and molecular dy-
namics is considered to be an important but highly com-
putation and communication intensive scientific problem.
For our experiments, we have adopted a naive or ‘direct’
implementation of N-body problem in astrophysics with
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O(n?) computation complexity. While asymptotically more
efficient algorithms exist, the direct algorithm is still widely
used in astrophysics, due to concerns over the accuracy of
faster methods [14].

The aim of our experiment was to analyze the advantages
of generation approach using CDS to that of traditional
approach on SOAM. The Naive NBS algorithm was a
perfect choice for that purpose for we could update the new
positions and velocities of N bodies in the problem only in
phases. Since each and every particle is dependent on all
other particles for their new positions after a time step, the
NBS algorithm has to move in steps or generations. NBS
algorithm for traditional SOA can be summed up as follows:

1) Send input data (position, velocity and mass of all
particles) to service instances.

2) Do parallel updates of new position and velocity of
(N/No. of service instances) of particles at each service
node.

3) Send back partial particle updates to client and syn-
chronize results (new positions and velocities).

4) Send input data again and repeat the process for
required time steps (iterations).

This traditional algorithm can be twisted a bit with the
CDS to help accepting a new generation of work at the
service side without sending input data again and again for
each iteration. The NBS algorithm with CDS will be as
follows:

1) add input data as common data (position, velocity and

mass of all particles).

2) Do parallel work and put updates of new position and
velocity of (N/No of service instances) of particles at
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each service node.

3) Once a generation of tasks are over, send instruction

for iSync by the client.

4) Service Instances apply sync among themselves and

initiates new generation of work.

5) Continue the algorithm over the required number of

time steps (or generations).

6) The Client gets the results (new positions and veloci-

ties).

The differences in these two methods are vividly portrayed
in sequence diagrams (Figures 7 and 8) given. These two
variants of ANU-SOAM prgrams were compiled with -
02 optimization and tested on 4 nodes of 2.4 GHz Intel
Core2 Quad connected with Infiniband. However, the client
was run from a different node in the same network but
connected with Gigabit Ethernet connection. Experiments
were conducted with 1000 bodies and time steps (iterations
or generations) varying from 100 to 2000 for performance
and scalability. The results are compiled in Figure 9 and
Figure 10.

1) NBS Performance Analysis: The performance com-
parison between NBS with traditional SOA approach and
generation approach recorded in Figure 9 shows clear ad-
vantage of generation approach over the traditional one. It
is to be noted that in both variants of the program, the
complexity of algorithm remains the same (O(n?)). But the
new approach allows a service-centric algorithm that re-
places heavy communications between the client and service
instances with that of light-weight sync and task instructions.
This modification has increased the performance of NBS in
our lab settings. This advantage could be more evident in
scenarios where the client has to access SIs over the internet



cloud. The new approach has also reduced the coding effort
(number of lines of the client code (main) has reduced from
160 to 120. The service code effort remain almost the same.
In the scalability experiments, each task was assigned a
dedicated SI with up to 8 compute nodes. In Figure 10, x
axis shows the number of SIs (more than one SI run on some
compute nodes, when number of SIs exceed 8) and y axis
shows the total execution time and for 1000 bodies for 100
iterations (time steps). We get good speedup up to 8 SIs and
after that the computational advantages are overpowered by
communication costs and memory constraints.

V. RELATED WORK

There were attempts to make MPI system-aware to help
development of efficient scientific applications. Research at
the Universidade Federal Fluminense (UFF), Nitero’i, Brazil
in this line has resulted in the development of EasyGrid. It is
designed as an Application Management System (AMS) for
MPI library [15]. It allows applications to be autonomous,
which is not a property of pure MPI applications with the
help of a Resource Management System (RMS) [16] who
implements self-scheduling policies. EasyGrid has given
positive results according to [17] and [15]. However, it is not
clear that EasyGrid addresses the problems associated with
task granularity and high communication costs expected in
scientific applications.

Aneka is a software platform for developing distributed
application which is initiated by CloudsLab of Melbourne
University, Australia. It has been recently commercialized
by Manjarasoft and intends to provide SOA platform as a
service (PaaS). As mentioned before, early attempts have
been made to identify the impacts of task granularity and
associated costs in SOA enabled scientific applications using
Aneka in [12]. However, there is no evidence that Aneka
handles this issue even in its latest versions [18].

There exists some data service tools for SOG/SOA mid-
dlewares like Global Arrays (GA). GA is compatible with
MPI [19]. It distributes the data among compute nodes
and provides an addressing system to represent them as a
single logical block. GA can query where the data is, before
starting a computation. So, it is also useful for data intensive
computations, when data affinity can be used to direct
computations to particular node(s) which needs specific data
[20]. GA allows global arrays to be updated and accessed
using get, put functionalities. But GA get and put are not
differed operations as in ANU-SOAM CDS and updates
GA instantly in a sequential order. Moreover GA sync is
only a barrier for all GA operations [21]. Another related
work is reported in [22], which discusses PERSISTENT and
PERSISTENT_RETURN mode of data transfer in Grid RPC
(remote procedure call). It tries to avoid unnecessary data
transfers within Grid RPC and supports asynchronous and
coarse-grained parallel tasking.
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In order to help data intensive applications, some data
grids ( [23]-[25]) make use of distributed file systems
(DFS) like Google File System [26] or Hadoop Distributed
File System [27]. In those cases, DFSs serve the purpose
of providing a distributed data space using full or partial
replication of huge chunks of input data for computations.
However this approach is neither meant nor effective for
computation intensive applications where atomic units of
work (tasks) are not independent from all other units within
the same generation [28].

VI. CONCLUSIONS & FUTURE WORK

The development of ANU-SOAM has provided desirable
level of performance for Platform Symphony inspired service
oriented architecture which is evident from CGS experi-
ments. The common data service provides tools to reduce
communication costs either by reducing communications
between client and SIs or by reducing data transactions
between client and SIs. Within CDS, SIs can keep session
specific data in their local memory and can get it. Tasks
within SIs can also put updates to it but without changing
the common data for a specific generation of tasks. Those
local and partial updates can be synchronised (committed)
by the client either among SIs or among client and SIs.
By enabling this new data service along with the compute
services of traditional SOA middleware, the efficiency of
scientific SOA applications can be improved. A comparison
between ANU-SOAM NBS implementation with CDS to
that of traditional SOA approach gives positive indications
in that line.

SOAM also offers the flexibility of using the Platform
Symphony API in developing scientific applications. This
will help wider scientific community to develop SOA sci-
entific applications much easier. ANU-SOAM’s compatible
API will also help already existing Platform Symphony



applications to be ported to SOAM, with relative ease. The
CDS is also expected to bring about new algorithms to solve
classic problems like NBS.

ANU-SOAM has to be further tested and optimized for
large scale HPC clusters. We intent to test it on larger
systems like ANU Supercomputing Facility and Magellen
Cloud for HPC at Argonne in the near future. The memory
scalability issues of ANU-SOAM will be addressed in the
future by proper data affinity, caching and data consistency
techniques.

We expect to introduce reduction services like SUM,
MAX etc as future extension to CDS . This will enhance
the capacity of application programmers to develop more
efficient scientific applications with relative ease. In order
to make SOAM work better under heterogeneous conditions
dynamic load balancing and scheduling policies are to be
built into the resource manager module ( Fig: 11). Fault
tolerant improvements will be another major area to be
worked on. With these improvements ANU-SOAM shall
become a robust solution for cloud-enabled SOA for HPSC.
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APPENDIX

The ANU-SOAM Common Data Service API:

add
add(cdName, cdElement)
add(cdName, length, cdArray)

— Adds common data (an element or array) to client
and SIs, if called from the application client code.
Adds SI specific common data, if called from the
application service code.

get
get(cdName, cdElement)
get(cdName, length, cdArray)

— Gets common data. Can be called either by the
client or service application codes.

put
put(cdName, updateElement)
put(cdName, start, updateLen, updateArray)

— Put updates to common data. The update is char-
acterized by its start pointer and length within the
common data. It is a differed operation. Mostly a
service specific call.

sync
sync(cdName)

— Commits updates to common data at both client
and SIs. It can only be called by the application
client code.

iSync
iSync(cdName)

— Commits updates to common data at SIs alone. It
can only be called by the application client code.

iGet
get(cdName, cdElement)
iGet(cdName, length, cdArray)
— Gets updated common data after iSync at client.



