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Abstract. A cache oblivious matrix transposition algorithm is implemented and 
analyzed using simulation and hardware performance counters. Contrary to its name, 
the cache oblivious matrix transposition algorithm is found to exhibit a complex 
cache behavior with a cache miss ratio that is strongly dependent on the associativity 
of the cache. In some circumstances the cache behavior is found to be worst than 
that of a naïve transposition algorithm. While the total size is an important factor in 
determining cache usage efficiency, the sub-block size, associativity, and cache line 
replacement policy are also shown to be very important. 

1. Introduction 
The concept of a cache oblivious algorithm (COA) was first introduced by Prokop in 
1999 [1] and subsequently refined by Frigo and coworkers [2, 3]. The idea is to 
design an algorithm that has asymptotically optimal cache performance without 
building into it any explicit knowledge of the cache structure (or memory 
architecture) of the machine on which it is running. The basic philosophy in 
developing a COA is to use a recursive approach that repeatedly divides the data set 
until it eventually become cache resident, and therefore cache optimal. COA for 
matrix multipl ication, matrix transposition, fast Fourier transform, funnelsort and 
distribution sort have been outl ined (see [4] and references therein). 

Although a number of COA have been proposed, to date most of the analyses have 
been theoretical with few studies on actual machines. An exception to this is a paper 
by Chatterjee and Sen (C&S) [5] on “Cache-Efficient Matrix Transposition”. In this 
paper C&S outline a number of matrix transposition algorithms and compare their 
performance using both machine simulation and elapsed times recorded on a Sun 
UltraSPARC II based system. Their work is of interest in two respects; first their 
simulations showed that while the cache oblivious transposition algorithm had the 
smallest number of cache misses for small matrix dimensions, for large dimensions it 
was actually the worst. Second, their timing runs showed that in most cases the COA 
was significantly slower than the other transposition algorithms. It was suggested that 
the poor performance of the cache oblivious matrix transposition algorithm was 
related to the associativity of the cache, although this relationship was not fully 
explored.  

Today virtually all modern processors include a number of special registers that can 
be programmed to count specific events. These so called “hardware performance 
counters”, coupled with the availabili ty of a number of portable libraries to access 
them [6, 7] means that it is now possible to gather very detailed information about 
how a CPU is performing. Examples of the sort of events that can be counted include 
machine cycles, floating point operations, pipeline stalls, cache misses etc. Using 



these registers it is therefore possible to directly assess the performance of COA on 
real machines, and perform details studies comparing theoretical and observed 
performance. In this respect there have, very recently, appeared a number of studies 
looking at COA using hardware performance counters, e.g., cache oblivious priority 
queues [8, 9] and cache oblivious sorting [10, 11]. 

The primary aim of this paper is to explore further the cache oblivious matrix 
transposition algorithm with the aim of rationalizing the results of C&S [5]. To 
achieve this, a combination of machine simulation and hardware performance 
counters is used, and in this respect the work presented here compliments the other 
recent studies of COA [8–11].  

2. Matr ix Transposition 
Matrix A of size m × n is transposed into a matrix B of size m×n such that: 

Frequently the transposition occurs “ in-situ”, in which case the memory used for 
storing matrix A and B is identical. For the purpose of this paper the discussion wil l be 
restricted to square (m=n) in-situ matrix transpositions. Three different algorithms 
will be consider; cache ignorant, blocked, and cache oblivious. 

2.1 Cache Ignorant Matr ix Transposition 
A naïve implementation of matrix transposition is given by the following C code: 

f or  ( i  = 1;  i  < n;  i ++)  
 f or  ( j  = 0;  j  < i ;  j ++) {  
  t mp = A[ j ] [ i ] ;  
  A[ i ] [ j ] =A[ j ] [ i ] ;  
  A[ j ] [ i ] =t mp;       }  

In this implementation the statements in the inner loop are executed n(n-1)/2 times 
and no special care is made to use the cache efficiently. 

2.2 Cache Blocked Matr ix Transposition 
In the cache blocked transposition algorithm the matrix is effectively divided into a 
checkerboard of small blocks. Two blocks that are symmetrically distributed with 
respect to the leading diagonal are identified and their data is copied into cache 
resident buffers. The buffers are then copied back into the matrix, but in transposed 
form. Pseudo code i llustrating this algorithm is given below: 

f or  ( i  = 0;  i  < n;  i  += si ze)  
 f or  ( j  = 0;  j  < i ;  j  += s i ze) {  
  copy A[ i : i +s i ze- 1] [ j : j +s i ze- 1]  t o buf 1 
  copy A[ j : j +s i ze- 1] [ i : i +s i ze- 1]  t o buf 2 
  t r anspose buf 1 t o A[ j : j +si ze- 1] [ i : i +si ze- 1]  
  t r anspose buf 2 t o A[ i : i +si ze- 1] [ j : j +si ze- 1] }  

In the above the dimension of the small blocks is given by si ze with the restriction 
that 2×si ze2 is less than the cache size, and it has been assumed that si ze perfectly 
divides the matrix dimension n. In contrast to the cache ignorant scheme, each 
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element of the matrix is now loaded into registers twice; once when copying the data 
from matrix A to buf ,  and once when copying each element from buf  back to A. 

2.3 Cache Oblivious Matr ix Transposition 
In the cache oblivious transposition the largest dimension of the matrix is identified 
and split, creating two sub-matrices. Thus if n ≥ m the matrices are partitioned as: 

This process continues recursively until individual elements of A and B are obtained 
at which point they are swapped.  

3. Per formance Simulation 
To analyse performance a basic cache simulator was written. This assumes a single 
level of cache, and includes parameters for the cache line size, the number of cache 
lines, the associativity, and the cache line replacement policy. Code to perform the 
different matrix transposition algorithms was written and annotated such that the 
memory address corresponding to every matrix element access was passed to the 
cache simulator, which then determined whether it was either a cache hit or miss.  

When simulating the cache, a number of other issues also need to be considered; 
notably the initial alignment of the matrix with respect to the cache, the word size of 
each matrix element, and the dimension of the matrix. For simplicity in the following 
experiments the first element of the matrix is always aligned perfectly with the start of 
a cache l ine, the cache line size is a perfect multiple of the matrix element word size, 
and the matrix dimensions are chosen such that different rows of the matrix never 
share the same cache line. 

Before considering the results of the simulator experiments, it is useful to illustrate 
the typical access patterns of the three matrix transposition algorithms. This is shown 
in fig. 1. Of particular interest is the COA. This clearly shows a natural partitioning of 
the matrix into a hierarchy of square blocks of dimensions 2x. Thus if the cache line 
size was sufficient to hold exactly 4 matrix elements and the total cache size was 
sufficient to hold 8 cache l ines, then both of the shaded blocks shown in fig. 1.c could, 
in principle, reside in cache simultaneously and the algorithm would therefore be 
expected to show minimal cache misses. 

Figure 1: Typical access patterns for the three transposition algorithms on an 
8×8 matrix (A blocking size of 4 is used in the cache blocked algorithm). 

In their paper C&S [5] presented a table of cache misses for a variety of different 
matrix transpositions algorithms and for four different matrix sizes. Their simulated 
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results for the cache ignorant, cache blocked (full copy), and COA are reproduced in 
table 1. The strange behavior of the COA is immediately obvious; for N=1024 it has 
the lowest number of cache misses, while for N=8192 it has the largest. 

 ————  M atrix Dimension  ———— 
Algorithm 1024 2048 4096 8192 
Cache ignorant  589795  2362002  9453724  37826712 
Ful l copy cache blocked  275550  1170003  4804808  19493808 
Cache oblivious  131226  923295  7101600  56158873 

Table 1: Cache misses for three matrix transposition algorithms. Data taken 
from C&S [5] and obtained by simulating a 16KB direct mapped cache with 
a 32byte cache line. The matrix is square with a 4byte word size. 

In fig. 2, the simulations of C&S [5] have been extended to include all matrix 
dimensions that are less than 10,000 but that are multiples of the cache line size. The 
figure includes data for the cache ignorant and COA, and also the minimum and 
maximum number of cache misses. The minimum cache miss ratio assumes all data in 
a cache line is fully utilized before that cache line is evicted, while the maximum 
cache miss ratio assumes a cache miss occurs for every read, but the subsequent write 
is a cache hit. Assuming there are no cache line confl icts between the temporary 
buffers and the matrix elements then the cache blocked algorithm will essentially give 
the minimum number of cache misses. 

Figure 2: Simulated cache miss to access ratio for cache oblivious and cache 
ignorant matrix transposition algorithms, using a 16KB, direct mapped cache 
with a 32byte line size and 4byte matrix elements. Matrix dimensions are 
always an exact multiple of the cache line size. 
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From fig. 2, it is apparent that the COA is far from cache oblivious. Rather, the cache 
miss profile shows significant structure. Furthermore the data points chosen by C&S 
(N=1024, 2048, 4096 and 8192) [5] are actually some of the worst possible values; 
for many other dimensions the COA achieves close to the minimum. 

The poor performance of the COA for N=4096 and 8192 is due to the fact that for 
both of these dimensions one row of the matrix is an exact multiple of the cache size. 
With a direct mapped cache this means that elements in the same column of the 
matrix map to the same cache line. Inspecting the access pattern for the COA given in 
fig. 1 clearly shows that this will  be a problem. For example, if a cache line is 
assumed to hold 4 matrix elements and the matrix is aligned such that accesses { 13, 
17, 29, 33}  correspond to one cache line, then to fully uti lize the data in this cache 
line there must be no cache line conflicts between accesses 13 and 33. However, 
between these accesses 7 other cache lines wil l be accessed – corresponding to 
accesses { 15,19,31,35} , { 21,25,37,41}  { 23,27,39,43} ,  {14,16,22,24} , { 18,20,26,28} , 
{30,32,38,40} , and { 34,36,42,44} . The first three of these share the same cache line 
as the initial access, while the latter 4 will share another cache l ine. Changing the 
matrix row size to be, e.g., 1.5 times the cache size will halve the number of cache 
line conflicts, but will not totally eliminate then. Similar effects occur for other partial 
multiples giving the complicated structure shown in fig. 2. 

From the above discussion increasing cache l ine associativity should lead to a 
decrease in the number of cache line confl icts. This is demonstrated by the simulated 
results in fig. 3.  It is interesting to note, however, that the reduction in cache misses is 
not universal for all matrix dimensions. Thus while the cache miss ratio for N=4096 
and 8192 decreases in going from a direct to 2-way set associative cache, the cache 
miss ratio for N=6144 actually increases slightly. This effect is due to the fact that 
increasing the cache l ine associativity while maintaining the same total cache size 
actually doubles the number of possible cache line conflicts, although also providing 
two possible cache l ines that can be used to resolve each conflict. For example, 
whereas with the direct mapped cache, a cache line conflict was encountered every 
4096 matrix elements and could not be avoided, with a 2-way set associative cache a 
conflict arises every 2048 elements but there are two possible cache line locations that 
can be used to remove those conflicts. Thus predicting the overall effect of increasing 
cache l ine associativity is hard, although it appears beneficial overall. 

Interestingly with an 8-way set associative cache, the data points that originally gave 
rise to the worst cache miss ratio, i.e. N=4096 and 8192, now give rise to the 
minimum. This is evident in fig. 3 as slight dips in the cache miss ratios for these data 
points. The existence of “magic dimensions” is not surprising; with a 4-way 
associative cache the cache line conflict discussed above for accesses { 13,17,29,33} , 
{15,19,31,35} , { 21,25,37,41}  and {23,27,39,43} would be removed. If these assesses 
also confl icted with those of { 14,16,22,24} , { 18,20,26,28} , { 30,32,38,40}, and { 34, 
36,42,44} , an 8-way set associative cache would be required to remove the conflict. 

This result can be generalized for a cache whose line size (l) is a power of 2. 
Assuming that each matrix row starts with a new line, a COA will attain minimum 
misses if its associativity is at least 2l. This is because it will reach a stage where it 
will swap two l×l blocks, which will be stored in 2×l lines. Providing a least recently 



used (LRU) replacement policy is used, the cache will  be able to hold all of these 
simultaneously. If matrix rows are not aligned with cache lines, the two sub-blocks 
will be stored in at most 4×l lines; in this case, an associativity of 4×l would be 
required in order to minimize cache misses 

Figure 3: Simulated cache miss to access ratio as a function of cache line 
associtivity for the cache oblivious matrix transposition algorithms using a 
16KB cache with a 32byte line size and 4byte matrix elements. Matrix 
dimensions are chosen to be a direct multiple of the cache line size. 

4. Per formance Measurements 
Using hardware performance counters cache miss data was gathered for: 

• A 167MHz Sun UltraSPARC I system with a 16KB direct mapped L1 data 
cache with 32-byte cache line and a 512KB level 2 cache 

• A 750MHz Sun UltraSPARC III system with a 64KB 4-way set associative 
L1 data cache with a 32-byte cache line size and an 8MB level 2 cache 

The Sun UltraSPARC I system has a direct mapped level 1 cache with identical 
structure to that used by C&S [5]. The measured and simulated cache misses for the 
COA are given in table 3. The matrix elements are 4 bytes, with data given for 
dimensions around N=4096 and 8192. Two different simulated results are shown; for 
Sim#1 the cache line size is 32bytes while for Sim#2 it is 16bytes. This is done since 
the 32byte Ultra SPARC I cache line is actually split into two 16byte sub-blocks, and 
halving the cache l ine size in the simulated results is an attempt to approximately (but 
not exactly) account for this effect. 
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  Table 3: Measured and simulated cache misses on the Ultra SPARC I for 
square in-situ COA and a variety of matrix dimensions (N). Simulated results 
reported with both 32byte (Sim#1) and 16byte (Sim#2) cache line size 

The results as measured by the hardware performance counters clearly show a large 
number of cache misses at N=4096 and 8192, that decreases markedly for matrix 
dimensions that are either sl ightly smaller or larger. At these dimensions both the 
experimental and simulated results are approximately identical – reflecting the fact 
that essentially every matrix access results in a cache miss. For other dimensions the 
simulated results obtained using a 16byte cache line are closest to the experimentally 
recorded results, with the experimental results showing slightly higher number of 
cache misses. This is to be expected since the simulated results with a 16kbyte cache 
and a 16byte cache line has twice the number of cache l ines as a 16kbyte cache with a 
sub-blocked 32byte cache line and is therefore a more flexible cache model. It should 
also be noted that the results from the hardware counters show some sensitivity to the 
choice of compilation flags; the above results were obtained using the –f ast  option 
and if this is lowered to –x01 the agreement between the measured and simulated 
number of cache misses actually improves slightly. 

Table 4: Cache misses on an UltraSPARC III system. Simulated results 
using LRU (Sim#LRU) and random (Sim#Ran) cache replacement policy for 
the square in-situ COA and a variety of different matrix dimensions (N). 

In table 4, similar cache miss data is given for the Ultra SPARC III platform. On this 
system there is a 4-way set associative level 1 cache. From the results given in section 
3, it might be expected that there would be little difference between the number of 
cache misses that occurs for N=4096 or 8192 and surrounding values of N. The 
experimental results show, however, that this not the case; rather, the number of cache 
misses is roughly double at these values of N compared to those at nearby values of N. 
This is due to the cache line replacement policy on the UltraSPARC III, which is 
pseudo random rather than LRU [12]. Simulated results using a random number 
generator to determine cache line placement are shown as “Sim#Ran” in table 4. 
These show a considerable increase in the number of cache misses when N=1024, 

N Ultr a I Sim #1 Sim #2 N Ultr a I Sim #1 Sim #2

4080 5270060 2391376 4379033 8176 21408816 9646976 17621793

4088 5199068 2316901 4331751 8184 20438710 9301155 17393199

4096 12997199 12615680 12595200 8192 52589636 50479104 50397184

4104 6857957 4176906 4849009 8200 27268615 16677803 19370810

4112 5499487 2550567 4543409 8208 21899111 10117444 18110294

——— Cache Misses  ——— ——— Cache Misses  ———

N Ultra III Sim #LRU Sim #Ran N Ultra III Sim #LRU Sim #Ran

1000 263477 258290 265990 4072 4361124 4283628 4391355

1024 375028 262983 284788 4096 7751760 4232722 5973761

1048 289398 284628 292332 4120 4464945 4382333 4496696

2024 1075296 1058128 1083519 8168 17577433 17234628 17669072

2048 1923256 1056544 1491917 8192 30873556 16956716 23904911

2072 1128147 1108024 1136952 8216 17791597 17425642 17882604

——— Cache Misses  ——— ——— Cache Misses  ———



2048, 4096 and 8192, although still somewhat less than those recorded by the 
hardware performance counters. Outside these data points there appears to be little 
difference between the use of an LRU or random cache line replacement policy.  

5. Conclusions 
The performance of a COA for matrix transposition has be analyzed, with respect to 
cache misses, via both simulation and use of hardware performance counters on two 
fundamentally different UltraSPARC systems. The results confirm earlier work by 
C&S [5] showing very high numbers of cache misses for certain critical matrix 
dimensions. In general it was shown that the cache miss characteristics of the “cache 
oblivious” matrix transposition algorithm has significant structure, the form of which 
depends on a subtle interplay between cache size, matrix dimension, number of 
matrix elements per cache l ine, cache line size, cache associativity and the cache line 
replacement policy. Predicting, a priori, when the COA will perform well and when it 
will perform poorly is non-trivial, although increased cache l ine associativity appears 
overall to be beneficial.  

The work presented here has only been concerned with the cache usage characteristics 
of cache oblivious matrix transposition. The observed performance of any algorithm 
is of course dependent on other factors as well as efficient cache usage. Details of this 
will be discussed in a subsequent publication. 
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