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1 Talk Outline

• introduction to (large) general dense symmetric systems factorization

• diagonal pivoting algorithms:

• challenges for the parallel out-of-core case

• the (exhaustive) elimination block search strategy

• left-looking parallel out-of-core algorithms:

• blocking and data layout issues

• a slab-based algorithm

• memory scalability issues and a block-based algorithm

• conclusions and future work
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2 Introduction to Large Symmetric Indefinite Systems Solution

• N × N general (ie. indefinite: xTAx 6> 0, ||x|| > 0) symmetric systems of linear
equations, eg. Ax = b, arise in:

• incompressible flow computations, linear and non-linear optimization,
electromagnetic scattering & field analysis & data mining

• a direct solution for x is the most general and accurate method

• require O(N 3) FLOPS, dominated by the fact’n of A, ie. A → PLDLTP T

• only parallel out-of-core algorithms for LU, LLT and QR developed so far

• left-looking versions of blocked algorithms are preferred:
• the number of writes to disk is only O(N 2); easier to checkpoint

• two approaches:
• slab-based: whole block of columns being eliminated are kept in

core
• block-based: only part of the column block in core√

permits a wider column block ⇒ better memory scalability
× can’t be (efficiently) applied for LU with strict partial (row) pivoting

• seemingly harder still for LDLT , which requires symmetric pivoting
WoPLA’03 / ICCS 2003
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3 Diagonal Pivoting Algorithms

• store A in lower triangular half; overwrite with L and D

• partial left-looking blocked algorithm: (A∗1 factored, A∗2 being factored, A∗3 untouched)
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(applying pivots from within A2)

5. apply pivots (row interchanges) from A2 to
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• diagonal pivoting methods use symmetric (row & column) interchanges
based on 1 × 1 or 2 × 2 ‘pivots’

• nb. interchange i ↔ j: Ai,j is not moved; Aj,j ↔ Ai,i

• recently developed stable methods include the bounded Bunch-Kaufman
and exhaustive block search methods
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4 Challenges for the Parallel Out-of-core Case

• here, A is distributed over a P × Q processor grid with an r × r block-
cyclic matrix distribution:

• i.e. (storage) block (i, j) will be on processor (i mod P, j mod Q)

• assume this applies to both disk and memory

• assume storage is column-oriented for both

• in the left-looking algorithm, consider candidate pivot i lying outside A2

• ai must be aligned with aj (read a large number of remote disk blocks)

• all updates from A1 and A2 (so far) must be applied to it (large number of

disk accesses)

• if suitable, ai (in A33) must be over-written by the original value of aj

• pivot i may not even be suitable!

• if pivot i is inside A2, only overhead is in message exchanges . . .
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5 The Exhaustive Block Search Strategy

• search for (stable) pivots in the current elimination block (A2)

• consider any 1 × 1 or 2 × 2 pivots in remaining columns j : j2

• well-known stability tests can be used

• originally developed for sparse matrices (Duff & Reid, 1983)

• has a large payoff in preserving the sparsity

• useful in the parallel in-core case if search succeeds within the current
storage block
√

little message overhead in searches / interchanges
× overhead of extra searches (finding column maximums) can outweigh

⇒ limit search to ωs = 16 columns found to be optimal
• for highly indefinite matrices: only 0.15N searches outside A2 re-

quired
• for weakly indefinite matrices, this reduces to < 0.05N

• the bounded Bunch-Kaufman algorithm used for searches outside A2

• a successful block search can minimize the overheads in the out-of-core
case
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6 Parallel OOC Algorithms: Blocking and Data Layout Issues

• must consider all levels of the (parallel) memory hierarchy,
exploiting locality wherever possible:

• ωa: the top-level algorithm’s blocking factor
• should be as large as possible, to maximize re-use at disk level
• for slab-based algorithm, Nωa

PQ
≤ M (M is memory capacity)

• ωc: optimal blocking factor for matrix multiply
• need ωa ≥ ωc to maximize re-use at cache level

• r: the storage block size; can be chosen to minimize message over-
heads
• r = ωa best for this but may cause unacceptable load imbalance

(disk and CPU)
• ωs: the number of columns to be searched, ωs ≤ ωa

• must be sufficiently large to achieve a very high success rate
• ωd, where ω2

d = disk block size
• for block-based algorithm, ω2

a >> ω2

d to amortize disk latencies

• organization of A upon disk: could be [(ωs or r - sized) block] row/column
oriented, depending on algorithm
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7 A Slab-based Algorithm Exploiting Pivoting Locality

• a modification of the left-looking algorithm:

• the 0 ≤ u1 < ωa un-eliminated columns left over from previous stage
become the 1st u1 columns of A2 for this stage

• steps 1–3 only operate on last ωa − u1 columns
• insert step 3a: block interchange of the 1st & last u′

1
= min(u1, ωa−u1)

columns of A2

• step 4: uses the exhaustive block search (+ a non-local search to ensure ≥ 1

columns eliminated)

• provided no non-local searches were needed, step 1 is empty, and all
interchanges are kept within slabs

• as ωa > r for other aspects of performance, this will require some
communication

• column-oriented disk stage will be optimal

• performance will rely on highly successful block searches, eg. ui ≤ 0.2ωa

• for u1 ≈ 0, the number of words read from disk (dominated by steps 2–3) is:
Σ

N/ωa
i=0

iωa(N − iωa) = N3

6ωa
+ O(N 2)
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8 A Block-Based Algorithm

• only for very large problems (or small processor grids) will slab-based
algorithms result in a too small ωa

• can convert the slab-based algorithm to a block-based one in which only
ωa (ωc ≤ ωs ≤ ωa) columns are kept in core:

• apply a left-looking factorization internally to step 4 (factorize A2),
using a blocking factor of ωs

• the columns of A2 must now be read repeatedly as they were for
A1 for the slab-based algorithm

• the number of extra reads is given by:
Σ

N/ωa
i=0

Σ
ωa/ωs
j=0

iωa · jωs = N2ωa
4ωs

+ O(N)

• for the top-level algorithm, steps 2–3 proceed using ωa × ωa sized
blocks

• as these form the dominant accesses, a row-block disk storage is
optimal
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9 Conclusions

• solving general symmetric systems has an accuracy–performance trade-
off

• for the parallel out-of-core case, potentially very large disk/message
overheads from non-local symmetric interchanges

• however, efficient slab- and even (a limited) block-based algorithms ex-
ist, based on applying exhaustive pivots searches in (overlapping) elim-
ination blocks

• seems likely that most searches and interchanges can be kept within
these blocks

• performance is highly dependent on overlap being small
• block-based algorithm has better memory scalability but slab-based

algorithm will normally be adequate in practice

• future (current!) work includes:

• investigating whether the overlap can be kept small (eg. u1

ωa
≤ 0.2) for

any indefinite matrices
• developing and evaluating these highly complex algorithms!
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