Issues in the Design of Scalable Out-of-core Dense Symmetric Indefinite Factorization Algorithms

Peter Strazdins

Department of Computer Science, Australian National University,

http://cs.anu.edu.au/~Peter.Strazdins/seminars

2 June 2003

1 Talk Outline

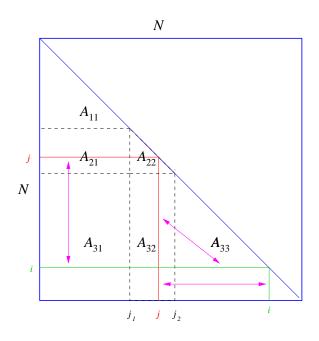
- introduction to (large) general dense symmetric systems factorization
- diagonal pivoting algorithms:
 - challenges for the parallel out-of-core case
 - the (exhaustive) elimination block search strategy
- left-looking parallel out-of-core algorithms:
 - blocking and data layout issues
 - a slab-based algorithm
 - memory scalability issues and a block-based algorithm
- conclusions and future work

2 Introduction to Large Symmetric Indefinite Systems Solution

- $N \times N$ general (i.e. indefinite: $x^T A x \neq 0$, ||x|| > 0) symmetric systems of linear equations, eg. Ax = b, arise in:
 - incompressible flow computations, linear and non-linear optimization, electromagnetic scattering & field analysis & data mining
- a direct solution for x is the most general and accurate method
 - require $O(N^3)$ FLOPS, dominated by the fact'n of A, i.e. $A \rightarrow PLDL^T P^T$
- only parallel out-of-core algorithms for LU, LL^T and QR developed so far
 - left-looking versions of blocked algorithms are preferred:
 - the number of writes to disk is only $O(N^2)$; easier to checkpoint
 - two approaches:
 - <u>slab-based</u>: whole block of columns being eliminated are kept in core
 - block-based: only part of the column block in core
 - $\sqrt{\text{permits a wider column block}} \Rightarrow \text{better memory scalability}$
 - × can't be (efficiently) applied for LU with strict partial (row) pivoting
 - seemingly harder still for LDL^T, which requires symmetric pivoting

3 Diagonal Pivoting Algorithms

- store A in lower triangular half; overwrite with L and D
- partial left-looking blocked algorithm: (A_{*1} factored, A_{*2} being factored, A_{*3} untouched)



- 1. apply pivots from A_{11} to $A_2 = \begin{pmatrix} A_{22} \\ A_{32} \end{pmatrix}$ 2. $A_{22} = A_{21}W_{21}^T$, $W_{21} = D_{11}A_{21}$ 3. $A_{32} = A_{31}W_{21}^T$ 4. eliminate block column A_2 (applying pivots from within A_2) 5. apply pivots (row interchanges) from A_2 to $A_1 = \begin{pmatrix} A_{21} \\ A_{31} \end{pmatrix}$
- diagonal pivoting methods use symmetric (row & column) interchanges based on 1×1 or 2×2 'pivots'
 - nb. interchange $i \leftrightarrow j$: $A_{i,j}$ is not moved; $A_{j,j} \leftrightarrow A_{i,i}$
- recently developed stable methods include the bounded Bunch-Kaufman and exhaustive block search methods
 WoPLA'03 / ICCS 2003

- 4 Challenges for the Parallel Out-of-core Case
 - here, A is distributed over a $P \times Q$ processor grid with an $r \times r$ block-cyclic matrix distribution:
 - i.e. (storage) block (i, j) will be on processor $(i \mod P, j \mod Q)$
 - assume this applies to both disk and memory
 - assume storage is column-oriented for both
 - in the left-looking algorithm, consider candidate pivot i lying outside A_2
 - a_i must be aligned with a_j (read a large number of remote disk blocks)
 - all updates from A_1 and A_2 (so far) must be applied to it (large number of disk accesses)
 - if suitable, a_i (in A_{33}) must be over-written by the original value of a_j
 - pivot *i* may not even be suitable!
 - if pivot i is inside A_2 , only overhead is in message exchanges . . .

5 The Exhaustive Block Search Strategy

- search for (stable) pivots in the current elimination block (A_2)
 - consider any 1×1 or 2×2 pivots in remaining columns $j : j_2$
 - well-known stability tests can be used
- originally developed for sparse matrices (Duff & Reid, 1983)
 - has a large payoff in preserving the sparsity
- useful in the parallel in-core case if search succeeds within the current storage block
 - \checkmark little message overhead in searches / interchanges
 - × overhead of extra searches (finding column maximums) can outweigh
 - \Rightarrow limit search to $\omega_s = 16$ columns found to be optimal
 - for highly indefinite matrices: only 0.15N searches outside A_2 required
 - for weakly indefinite matrices, this reduces to < 0.05N
 - the bounded Bunch-Kaufman algorithm used for searches outside A_2
- a successful block search can minimize the overheads in the out-of-core case

6 Parallel OOC Algorithms: Blocking and Data Layout Issues

- must consider all levels of the (parallel) memory hierarchy, exploiting locality wherever possible:
 - ω_a : the top-level algorithm's blocking factor
 - should be as large as possible, to maximize re-use at disk level
 - for slab-based algorithm, $\frac{N\omega_a}{PQ} \leq M$ (*M* is memory capacity)
 - ω_c : optimal blocking factor for matrix multiply
 - need $\omega_a \geq \omega_c$ to maximize re-use at cache level
 - r: the storage block size; can be chosen to minimize message overheads
 - $r = \omega_a$ best for this but may cause unacceptable load imbalance (disk and CPU)
 - ω_s : the number of columns to be searched, $\omega_s \leq \omega_a$
 - must be sufficiently large to achieve a very high success rate
 - ω_d , where ω_d^2 = disk block size
 - for block-based algorithm, $\omega_a^2 >> \omega_d^2$ to amortize disk latencies
- organization of A upon disk: could be [(ω_s or r sized) block] row/column oriented, depending on algorithm WoPLA'03/ICCS 2003

7 A Slab-based Algorithm Exploiting Pivoting Locality

- a modification of the left-looking algorithm:
 - the $0 \le u_1 < \omega_a$ un-eliminated columns left over from previous stage become the 1st u_1 columns of A_2 for this stage
 - steps 1–3 only operate on last $\omega_a u_1$ columns
 - insert step 3a: block interchange of the 1st & last $u'_1 = \min(u_1, \omega_a u_1)$ columns of A_2
 - step 4: uses the exhaustive block search (+ a non-local search to ensure ≥ 1 columns eliminated)
- provided no non-local searches were needed, step 1 is empty, and all interchanges are kept within slabs
 - as $\omega_a > r$ for other aspects of performance, this will require some communication
- column-oriented disk stage will be optimal
- performance will rely on highly successful block searches, eg. $u_i \leq 0.2\omega_a$
- for $u_1 \approx 0$, the number of words read from disk (dominated by steps 2–3) is: $\sum_{i=0}^{N/\omega_a} i\omega_a (N - i\omega_a) = \frac{N^3}{6\omega_a} + O(N^2)$ WoPLA'03/JCCS 2003

8 A Block-Based Algorithm

- only for very large problems (or small processor grids) will slab-based algorithms result in a too small ω_a
- can convert the slab-based algorithm to a block-based one in which only ω_a ($\omega_c \leq \omega_s \leq \omega_a$) columns are kept in core:
 - apply a left-looking factorization internally to step 4 (factorize A_2), using a blocking factor of ω_s
 - the columns of A_2 must now be read repeatedly as they were for A_1 for the slab-based algorithm
 - the number of extra reads is given by: $\sum_{i=0}^{N/\omega_a} \sum_{j=0}^{\omega_a/\omega_s} i\omega_a \cdot j\omega_s = \frac{N^2\omega_a}{4\omega_s} + O(N)$
 - for the top-level algorithm, steps 2–3 proceed using $\omega_a \times \omega_a$ sized blocks
 - as these form the dominant accesses, a row-block disk storage is optimal

9 Conclusions

- solving general symmetric systems has an accuracy-performance tradeoff
 - for the parallel out-of-core case, potentially very large disk/message overheads from non-local symmetric interchanges
- however, efficient slab- and even (a limited) block-based algorithms exist, based on applying exhaustive pivots searches in (overlapping) elimination blocks
 - seems likely that most searches and interchanges can be kept within these blocks
 - performance is highly dependent on overlap being small
 - block-based algorithm has better memory scalability but slab-based algorithm will normally be adequate in practice
- future (current!) work includes:
 - investigating whether the overlap can be kept small (eg. $\frac{u_1}{\omega_a} \le 0.2$) for any indefinite matrices
 - developing and evaluating these highly complex algorithms!