Max-Profit Scheduling: Insights into Proofs and DP Methods

• Problem 15-7 (p 369). Scheduling to maximize profit

Given a set 1,2,...*n* of jobs, each requiring processing time $t_i > 0$ and will receive a payoff $p_i > 0$ if finished by deadline d_i , select a subset to maximize total payoff

- consider an example, and whether to include last job or not
- in DP, we max/minimize some cost property (possibly with constraints) of the solution, as well as construct the solution itself
- assuming a DP approach is possible:
 - what assumptions in the ordering of the jobs can be useful?
 - why is an ordering necessary for DP?
 - possibilities: order by deadline, payoff, value (=payoff/time)
 - what (implied) constraints are there?
 - will the chosen ordering always lead to an optimal solution?

Deadline-Driven Scheduling

 idea: assume jobs are ordered in increasing deadline, i.e. 1 ≤ d₁ ≤ d₂ ≤ ... ≤ d_n, then the max-profit scheduling problem can be expressed as:

find a sub-sequence $(i_1, i_2, ..., i_m)$, where $1 \le i_1 < i_2 < ... < i_m \le n$ s.t. the payoff $\sum_{j=1}^m p_{i_j}$ is maximized with the constraint that $\sum_{j=1}^k t_j \le d_k$, for each $1 \le k \le m$

- will this idea work?
- try to construct a sequence of jobs which could be satisfied in non-deadline order, but not in deadline order
- non-deadline orderings (3, 1, 2, 4) and (4, 3, 2, 1) also fail

Proving the Procrastination Lemma

- statement of the Procrastination Lemma:
- given a permutation $(i_1, i_2, ..., i_m)$ of (1, 2, ..., m), and $0 < d_1 \le d_2 \le ... \le d_m$: if $\sum_{j=1}^k t_{i_j} \le d_{i_k}$ for each $1 \le k \le m$, then: $\sum_{j=1}^k t_j \le d_k$ for each $1 \le k \le m$ • prove the converse (why? cf. prof by contradiction)

i.e. $(\Sigma?) \ge \sum_{i=1}^{k} t_i > d_k \ge (?)$

assume there is a k s.t. $\Sigma_{j=1}^{k} t_j > d_k$; show $\Sigma_{j=1}^{K} t_{i_j} > d_{i_K}$ for some K

- approaches:
 - how can we use the assumption?
 - clues from the previous example?
- proof:
 - (for later)

Proof of the Procrastination Lemma

- assume there is a k s.t. $\Sigma_{j=1}^{k} t_j > d_k$; show $\Sigma_{j=1}^{K} t_{i_j} > d_{i_K}$ for some K
- idea: the non-ordered sequence must fail when it has just covered all the jobs in (1,2,...,k)

i.e. choose *K* s.t. $\{i_1, i_2, ..., i_K\} \supseteq \{1, 2, ..., k\}$ and $1 \le i_K \le k$

• then the non-ordered sub-sequence fails to meet the deadline at job i_K :

$$\begin{array}{ll} \Sigma_{j=1}^{K} t_{i_{j}} & \geq & \Sigma_{j=1}^{k} t_{j} & \text{, as } \{i_{1}, i_{2}, \dots, i_{K}\} \supseteq \{1, 2, \dots, k\} \\ & > & d_{k} & \text{, by assumption} \\ & \geq & d_{i_{K}} & \text{, as } i_{K} \leq k \end{array}$$

DP Solution to Max-profit Scheduling: 1st Attempt

- idea: similar approach to the maximum decreasing subsequence problem
- let P_i denote the maximum accumulated payoff for any sub-sequence of jobs 1 to i (including i)
 - $P_i = P_j + p_i$, where $0 \le j < i$ maximizes $P_j + p_i$ under constraint $T_j + t_i \le d_i$
 - T_j is accumulated time associated with P_j (similarly defined as $T_i = T_j + t_j$)
 - $P_i = T_i = 0$ if no such *j* exists, or i = 0
- best solution is the max. of $\{P_1, P_2, \ldots, P_n\}$
- a counterexample was found! (lesson: always (exhaustively) test a solution!)
 - d: 4 5 5 6 7 17 19
 - t: 2 3 2 1 3 5 2
 - *p*: 2 10 2 5 4 9 4
 - DP algorithm: payoff 30, solution vector 6b (0, 1, 3, 5, 6)
 - Brute Force algorithm: payoff 32, solution vector 7a (1,3,4,5,6)
 - iterates over all possible 2^n solution vectors!
- optimal sub-structure property does not hold (consider 1st 2 jobs)

The 'Potential' of Sub-solutions in Dynamic Programming

- in the presence of constraints, as well as its value, a sub-solution may have other attributes determining its *potential* to form a larger solution
 - maximum decreasing subsequence problem, what attributes of L_i (longest dec. subsequence ending at position i) have?
 - what about *P_i*?
- DP must be extended to include the best sub-solutions for each possible potential
- reconsider the sub-solutions up to job 2 in the previous example:
 - d:455671719t:2321352p:21025494

Extended DP Solution to Max-profit Scheduling

- let P_{i,T} denote the maximum accumulated payoff for any sub-sequence of jobs 1 to i (including i) having an accumulated time of T
 - assuming the job times are bounded ($t_i \leq t_{max}$), then $T \leq nt_{max}$, i.e. T = O(n)
- then $P_{i,T+t_i} = P_{j,T} + p_i$, where $0 \le j < i$ is chosen to maximize $P_{j,T} + p_i$, under constraint $T + t_i \le d_i$
 - does the optimal sub-structure property hold for this definition of a solution?
- total solution is maximum of $P_{i,T}$ over $1 \le i \le n$ and $0 \le T < nt_{max}$
- an implementation using 2-D arrays is in smp.c
 - what is the complexity of this algorithm?
- what data structures could improve its efficiency?
 - would this reduce its complexity?

Data Structures in Practice

Ref: man(3C++)

- the C++ Standard Template Library (STL) provides generic definitions of:
 - priority_queue: priority queue implemented using a heap
 - map: associative array, implemented using a sorted (key,value) array
 - hash_map (not standard): associative array, implemented using hash tables with chaining
 - requires a equality, rather than a less than, comparison method
 - when would you use this over map?
 - in G++ 3.4.4, default integer hash function appears to use the division method h(k) = k mod m where m is taken from a table of chosen primes
 - default string hash function repeats h = 5*h + s[i]; over each string element
 - the table gets automatically resized when > 75% full (why?)
- Java has similar generic class definitions
- when should you use standard data structure libraries instead of implementing your own ?

Cdt: A Container Data Type Library

Ref: Cdt web page

- has C/C++ interface with a cleaner abstraction of the underlying data structure
- DtSet corresponds to hash_map
 - also uses chaining and automatic resizing
 - chaining is augmented with a move-to-front heuristic for often-searched keys
 - default string hash function repeats h = h + (s[i] + s[i-1]<<8) * 17109811;
 over each pair of string elements
 - claims O(1) access time for a good hash function
- claims a reduction in the number of comparisons of $6-10\times$, with an overall speedup of $2-3\times$ over hash_map
 - the same hash function was used
- why aren't better methods (e.g. double hashing) used?
- and the more sophisticated data structures?