
Max-Profit Scheduling: Insights into Proofs and DP Methods

• Problem 15-7 (p 369) . Scheduling to maximize profit

Given a set 1,2, . . .n of jobs, each requiring processing time ti > 0 and will receive

a payoff pi > 0 if finished by deadline di, select a subset to maximize total payoff

• consider an example, and whether to include last job or not

• in DP, we max/minimize some cost property (possibly with constraints) of the

solution, as well as construct the solution itself

• assuming a DP approach is possible:

• what assumptions in the ordering of the jobs can be useful?

• why is an ordering necessary for DP?

• possibilities: order by deadline, payoff, value (=payoff/time)

• what (implied) constraints are there?

• will the chosen ordering always lead to an optimal solution?

COMP3600 Lecture 20: Data Structures: Review & Applications2011 ◭◭◭ •◮◮◮× 1

Deadline-Driven Scheduling

• idea: assume jobs are ordered in increasing deadline, i.e. 1 ≤ d1 ≤ d2 ≤ . . .≤ dn,

then the max-profit scheduling problem can be expressed as:

find a sub-sequence (i1, i2, . . . im), where 1 ≤ i1 < i2 < .. . < im ≤ n s.t.

the payoff Σm
j=1pi j is maximized

with the constraint that Σk
j=1t j ≤ dk, for each 1 ≤ k ≤ m

• will this idea work?

• try to construct a sequence of jobs which could be satisfied in non-deadline order,

but not in deadline order

t: 2 2 1 1
d: 2 4 4 11

(deadline order (1,2,3,4) fails)

• non-deadline orderings (3,1,2,4) and (4,3,2,1) also fail

COMP3600 Lecture 20: Data Structures: Review & Applications2011 ◭◭◭ •◮◮◮× 2

Proving the Procrastination Lemma

• statement of the Procrastination Lemma:

given a permutation (i1, i2, . . . , im) of (1,2, . . . ,m), and 0 < d1 ≤ d2 ≤ . . .≤ dm:

if Σk
j=1ti j ≤ dik for each 1 ≤ k ≤ m, then: Σk

j=1t j ≤ dk for each 1 ≤ k ≤ m

• prove the converse (why? cf. prof by contradiction)

assume there is a k s.t. Σk
j=1t j > dk; show ΣK

j=1ti j > diK for some K

• approaches:

• how can we use the assumption? i.e. (Σ?) ≥ Σk
j=1t j > dk ≥ (?)

• clues from the previous example?

• proof:

• (for later)

COMP3600 Lecture 20: Data Structures: Review & Applications2011 ◭◭◭ •◮◮◮× 3

Proof of the Procrastination Lemma

• assume there is a k s.t. Σk
j=1t j > dk; show ΣK

j=1ti j > diK for some K

• idea: the non-ordered sequence must fail when it has just covered all the jobs in

(1,2, . . . ,k)

i.e. choose K s.t. {i1, i2, . . . , iK} ⊇ {1,2, . . . ,k} and 1 ≤ iK ≤ k

• then the non-ordered sub-sequence fails to meet the deadline at job iK:

ΣK
j=1ti j ≥ Σk

j=1t j , as {i1, i2, . . . , iK} ⊇ {1,2, . . . ,k}
> dk , by assumption
≥ diK , as iK ≤ k

COMP3600 Lecture 20: Data Structures: Review & Applications2011 ◭◭◭ •◮◮◮× 4

DP Solution to Max-profit Scheduling: 1st Attempt

• idea: similar approach to the maximum decreasing subsequence problem

• let Pi denote the maximum accumulated payoff for any sub-sequence of jobs 1 to i
(including i)

• Pi = Pj + pi, where 0 ≤ j < i maximizes Pj + pi under constraint Tj + ti ≤ di

• Tj is accumulated time associated with Pj (similarly defined as Ti = Tj + t j)

• Pi = Ti = 0 if no such j exists, or i = 0

• best solution is the max. of {P1,P2, . . . ,Pn}

• a counterexample was found! (lesson: always (exhaustively) test a solution!)

d: 4 5 5 6 7 17 19
t: 2 3 2 1 3 5 2
p: 2 10 2 5 4 9 4

• DP algorithm: payoff 30, solution vector 6b (0,1,3,5,6)

• Brute Force algorithm: payoff 32, solution vector 7a (1,3,4,5,6)

• iterates over all possible 2n solution vectors!

• optimal sub-structure property does not hold (consider 1st 2 jobs)

COMP3600 Lecture 20: Data Structures: Review & Applications2011 ◭◭◭ •◮◮◮× 5

The ‘Potential’ of Sub-solutions in Dynamic Programming

• in the presence of constraints, as well as its value, a sub-solution may have other

attributes determining its potential to form a larger solution

• maximum decreasing subsequence problem, what attributes of Li (longest dec.

subsequence ending at position i) have?

• what about Pi?

• DP must be extended to include the best sub-solutions for each possible potential

• reconsider the sub-solutions up to job 2 in the previous example:

d: 4 5 5 6 7 17 19
t: 2 3 2 1 3 5 2
p: 2 10 2 5 4 9 4

COMP3600 Lecture 20: Data Structures: Review & Applications2011 ◭◭◭ •◮◮◮× 6

Extended DP Solution to Max-profit Scheduling

• let Pi,T denote the maximum accumulated payoff for any sub-sequence of jobs 1 to

i (including i) having an accumulated time of T

• assuming the job times are bounded (ti ≤ tmax), then T ≤ ntmax, i.e. T = O(n)

• then Pi,T +ti = Pj,T + pi, where 0 ≤ j < i is chosen to maximize Pj,T + pi,

under constraint T + ti ≤ di

• does the optimal sub-structure property hold for this definition of a solution?

• total solution is maximum of Pi,T over 1 ≤ i ≤ n and 0 ≤ T < ntmax

• an implementation using 2-D arrays is in smp.c

• what is the complexity of this algorithm?

• what data structures could improve its efficiency?

• would this reduce its complexity?

COMP3600 Lecture 20: Data Structures: Review & Applications2011 ◭◭◭ •◮◮◮× 7

http://cs.anu.edu.au/Student/comp3600/revAppsLects/smp.c.txt

Data Structures in Practice

Ref: man(3C++)

• the C++ Standard Template Library (STL) provides generic definitions of:

• priority queue: priority queue implemented using a heap

• map: associative array, implemented using a sorted (key,value) array

• hash map (not standard): associative array, implemented using hash tables

with chaining

• requires a equality, rather than a less than, comparison method

• when would you use this over map?

• in G++ 3.4.4, default integer hash function appears to use the division

method h(k) = k mod m where m is taken from a table of chosen primes

• default string hash function repeats h = 5∗h + s[i]; over each string element

• the table gets automatically resized when > 75% full (why?)

• Java has similar generic class definitions

• when should you use standard data structure libraries instead of implementing your

own ?

COMP3600 Lecture 20: Data Structures: Review & Applications2011 ◭◭◭ •◮◮◮× 8

Cdt: A Container Data Type Library

Ref: Cdt web page

• has C/C++ interface with a cleaner abstraction of the underlying data structure

• DtSet corresponds to hash map

• also uses chaining and automatic resizing

• chaining is augmented with a move-to-front heuristic for often-searched keys

• default string hash function repeats h = h + (s[i] + s[i−1]<<8) ∗ 17109811;

over each pair of string elements

• claims O(1) access time for a good hash function

• claims a reduction in the number of comparisons of 6−10×, with an overall

speedup of 2−3× over hash map

• the same hash function was used

• why aren’t better methods (e.g. double hashing) used?

• and the more sophisticated data structures?

COMP3600 Lecture 20: Data Structures: Review & Applications2011 ◭◭◭ •◮◮◮× 9

http://www.research.att.com/sw/tools/cdt/

