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Abstract—In this paper we study data collection in an
energy harvesting sensor network for traffic monitoring and
surveillance purpose on busy highways, where sensors are
densely deployed along a pre-defined path and a mobile
sink travels along the path to collect data from one-hop
sensors periodically. As the sensors are powered by renewable
energy sources, the time-varying characteristics of energy
harvesting poses great challenges on the design of efficient
routing protocols for data collection in such energy har-
vesting sensor networks. In this paper we first formulate a
novel data collection maximization problem that deals with
multi-rate transmission mechanism and transmission time
slot scheduling among the sensors. We then show the NP-
hardness of the problem and devise an offline algorithm
with a provable approximation ratio for the problem by
exploiting the combinatorial property of the problem, as-
suming that the global knowledge of the network topology
and the profile of each sensor are given. We also develop
a fast, scalable online distributed solution for the problem
without the global knowledge assumption, which is more
suitable for real distributive sensor networks. In addition, we
consider a special case of the problem for which a optimal
polynomial solution is given. We finally conduct extensive
experiments by simulations to evaluate the performance of
the proposed algorithms. Experimental results demonstrate
that the proposed algorithms are very efficient, and the
solutions are fractional of the optimum.

I. INTRODUCTION

Wireless sensor network has emerged as a key tech-

nology for various applications such as environmental

sensing, structural health monitoring, and area surveil-

lance. However, the limited lifetime of battery-powered

sensors has hampered the large-scale deployment of such

networks. A viable solution against the limited energy

supplies is to enable sensor nodes to harvest ambient

energy from their surroundings. In addition to being

environmentally friendly, harvesting energy could also

enable sensor nodes to function indefinitely, allowing the

network to operate perpetually and eliminating the cost

for battery. However, the time-varying characteristics of

energy harvesting sources poses a great challenge in the

design of routing protocols for such networks due to

dynamic energy replenishment. That is, algorithms that

rely on pre-determined activations to sense, transmit, or

receive cannot be used.

A. Related work

Sink mobility in conventional sensor networks has been

extensively studied [2], [4], [8], [15], [18], [25], [26], and

has been shown to improve various network performance

including reducing the energy consumption of sensors,

balancing the workload among sensors, thereby prolong-

ing the network lifetime. In general, existing research can

be classified into three categories in terms of sink mobility:

sinks with random mobility which are often mounted

on some humans or animals which move randomly in

the monitored area to collect data from sensors [10];

sinks with controlled mobility which actively control their

trajectories [7], [15], [9]; sinks with deterministic mobility

(or path-constrained mobile sinks) which move along a

pre-defined path [2], [8], [12], [23], [25]. Most existing

studies focused on minimizing the energy consumption

so as to prolong the network lifetime since sensors are

powered by energy-limited batteries. However, network

lifetime maximization is no longer a main issue in energy

harvesting sensor networks as the sensors can be contin-

uously recharged by renewable energies.

In terms of data collection with a path-constrained

mobile sink, the closely related work in conventional

sensor network is briefly described as follows. Chakrabarti

et al. [2] considered the dependence of transmission

setting and packet loss rate of the mobile data collection

problem by modeling the process of data collection as

an M/D/1 queue. They then proposed an algorithm that

ensures adequate data collection and minimizes the energy

consumption. Kansal et al. [12], [23] addressed a network

infrastructure based on the use of a path-constrained

mobile sink for data collection, where a sensor sends its

data to the sink along a minimum number of hop routing

path. They proposed a speed control algorithm to improve

the amount of data collected. Assuming that the mobile

sink moves at a constant speed, Gao et al. [8] addressed the

energy minimization problem by proposing a novel data

collection scheme, where sensors close to the trajectory

of the mobile sink are chosen as ‘subsinks’ and other

sensors make use of different subsinks for their data relay.

They formulated the subsink choice problem as a problem

of minimizing the number of hops from each sensor

to its subsink and provided a heuristic algorithm. They

also studied the time allocation problem for subsinks by

dividing the communication time between the mobile sink

and all subsinks into several time intervals and proposed

some practical time allocation methods. Liang et al. [18]

recently considered another data collection problem by

assuming the subsinks (they termed as gateways) are

given, they devised an approximation algorithm for finding

a forest consisting of routing trees rooted at gateways
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and spanning all sensors. In contrast, very little attention

has been paid to data collection in energy harvesting

sensor networks with mobile sinks, and most existing

solutions in such networks assumed that the collected data

is routed to a fixed sink through multi-hop relays [14],

[16], [27]. For example, Liu et al. [14], [16] formulated

the problem as a lexicographic maximin rate allocation

problem, and provided a centralized algorithm for the

problem by solving an integer linear program. Zhang et
al. [27] studied the problem as a utility maximization

problem by representing the utility gain at each sensor

node as a concave utility function. They proposed an

efficient algorithm for finding the accumulative sum of

utility gains in tree networks. However, the fixed sink-

based data collection paradigm may be applicable to small

to mediate size networks, but it is not suitable for large-

scale networks due to limited bandwidth, etc. Ren and

Liang [21] recently considered the use of a mobile sink

with controlled mobility for data collection by assuming

that the mobile sink sojourns at some locations and

only collects sensing data generated within that sojourn

period from one-hop sensors. Orthogonal to these existing

works, in this paper we consider data collection in an

energy harvesting sensor network with a path-constrained

mobile sink, where the sensor network is deployed along

a highway for traffic-surveillance and a mobile vehicle at

a constant speed is employed to patrol the highway for

collecting data from its one-hop sensors. We formulate

the problem as a data collection maximization problem

by incorporating multi-rate wireless communication mech-

anism between the sensors and the mobile sink. The key

technique to solve the problem of concern is a reduction

which reduces the problem to the generalized assignment

problem (GAP), and approximation techniques for the

latter [3], [6] in turn will lead to an approximate solution

to the former. The only similar work is [22] conducted by

Ren and Liang. However, they considered a data quality

problem and only developed greedy algorithms without

performance guarantee, assuming that transmission power

of sensors is fixed.

B. Contributions

Our major contributions in this paper are as follows. We

consider data collection in an energy harvesting sensor

network using a path-constrained mobile sink. We first

formulate a novel data collection maximization problem

by incorporating the multi-rate transmission mechanism

and the transmission time slot scheduling among the

sensors, and show the NP-hardness of the problem through

a reduction from a NP-Complete problem - the generalized

assignment problem. We then devise an offline algorithm

with a provable approximation ratio for the problem,

by exploiting the combinatorial property of the problem,

assuming that the global knowledge of the network and

sensor profiles (e.g. their locations and energies) is avail-

able. We also develop a fast, scalable online distributed

solution that is more suitable for real distributive sensor

networks, by removing the global knowledge and sensor

profile assumptions. We finally conduct extensive exper-

iments by simulations to evaluate the performance of

the proposed algorithms. Experimental results demonstrate

that the proposed algorithms are very efficient.

To the best of our knowledge, unlike most existing

solutions to this type of optimization problem by formulat-

ing and solving an integer linear programming (ILP), the

proposed algorithm exploits the combinatorial property of

the problem and provides the first approximate solution to

the data collection maximization problem in energy har-

vesting sensor networks. To respond to time varying nature

of renewable energy harvesting, traditional ILP methods

take too much time and suffer poor scalability, and the

worst of all, the solution delivered may be no longer

applicable due to the quick changes of energy profiles

at sensors. Thus, to develop a fast, scalable solution to

the problem is desperately needed, to this end, an online

distributed algorithm for the problem is devised, which

can be applicable to the realistic energy harvesting sensor

networks. For a special case where each sensor has only

one fixed transmission power, we provide a polynomial

solution to the data collection maximization problem.

C. Paper organization

The remainder of the paper is organized as follows.

Section II introduces the system model, notions, problem

definition. Section III shows the NP-completeness of the

problem. Section IV is devoted to present an offline

algorithm with a provable approximation ratio for the

problem. Sections V and VI develop two online distributed

algorithms for the problem. Section VII evaluates the per-

formance of the proposed algorithms through experimental

simulations, and Section VIII concludes the paper.

II. PRELIMINARIES

A. System model

We consider an energy harvesting sensor network G =
(V ∪{s}, E) where V is a set of n homogeneous stationary

sensors that are densely deployed along a pre-defined

path, and s is a mobile sink traveling along the path at

a constant speed rs without stops to collect data from

one-hop sensors. Each sensor is powered by renewable

energy (e.g., solar energy) and has stored enough sensing

data for collection. There is a link in E between a sensor

v ∈ V and the mobile sink s when they are within

the transmission range of each other. Assume that the

maximum transmission range of each sensor is R, and the

length of the pre-defined path is L. The duration per tour

by the mobile sink is determined by its moving speed rs,

which is referred to as the data latency. That is, the faster

the mobile sink travels, the shorter the duration per tour

will be, resulting in a shorter delay on data delivery from

its generation to its collection by the mobile sink. For the

sake of discussion, we also assume the pre-defined path

is a straight line in the rest of paper, which can be easily

extended to real scenarios.

We here adopt a discrete-time system where the duration

per tour is slotted into equal time slots with each lasting
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τ time units. [17]. Given the mobile sink speed rs, the

number of time slots per tour can be determined, which

is T = � L
rs·τ �, and they are indexed by 1, 2, · · · , T ,

where L is the length of the pre-defined path. Let A(v)
represent the set of consecutive time slots in which the

data transmitted by sensor v ∈ V can be collected by

the mobile sink. Then, A(v) will be determined by the

maximum transmission range R of v and its distance from

the pre-defined path. Note that some sensors share some

time slots at which they can transfer their data to the

mobile sink. However, the mobile sink at any given time

slot can receive the data from one sensor only otherwise a

collision occurs [24]. We thus need to allocate these time

slots to the sensors such that each time slot is allocated to

one sensor only with an objective to maximize the amount

of data collected by the mobile sink.

B. Energy model

As sensors in this network are powered by renewable

energy, the amount of energy harvested by a sensor varies

with time in a non-deterministic manner. This implies

that a sensor cannot transmit its data to the mobile sink

without any restriction. In principle, a given sensor v can

transmit its data to the mobile sink in all time slots in A(v).
However, it may not have enough power at this moment

to achieve that. Following a widely adopted assumption

of renewable energy replenishment, we assume that the

energy replenishment rate of each sensor is much slower

than its energy consumption rate, and the amount of

energy harvested in a future time period is uncontrollable

but predictable based on the source type and harvesting

history [14]. Denote by B(v) the energy storage capacity

and Pj(v) the amount of energy stored at each node

v ∈ V in the beginning of tour j, Pj(v) can be expressed

as min{Pj−1(v) + Qj−1(v) − Oj−1(v), B(v)}, where

Qj−1(v) and Oj−1(v) are amounts of energy harvested

and consumed at tour j − 1, and 0 ≤ Pj(v) ≤ B(v). Fur-

thermore, to support long-period, continuous monitoring

service, we assume that sensors should not consume more

energy than they can collect in order to achieve ‘perpetual’

operations [11]. Hence, we use Pj(v) as the energy budget

of sensor v for tour j. Without loss of generality, we define

P (v) as the energy budget of sensor v per tour.

C. Multi-rate communication

It is known that wireless signals suffer from path loss,

fading, shadowing, interference and other impairments,

and the communication performance is determined by the

received Signal to Noise Ratio (SNR). Hence reliability

and efficiency are often at odds with each other. Reli-

ability can be improved by transmitting packets at the

maximum transmission power. However, this introduces

unnecessarily high energy consumption. Motivated by the

fact that popularly used radio hardware such as CC2420

has multiple output power settings and offers a register

to dynamically control the transmission power level dur-

ing runtime, a multi-rate communication between vi and

the mobile sink s is adopted [19]. That is, the average

transmission rates of vi at two different time slots j and

k, ri,j ∝ Pvi

dα
i,j

and ri,k ∝ Pvi

dα
i,k

are determined by their

distances di,j and di,k, where Pvi
is the transmission

power of sensor vi at that moment and α ≥ 2 is the path

loss rate. We thus assume that ri,j and ri,k are given in

the rest of discussions.

D. Problem definition

Given an energy harvesting sensor network G and T
time slots per tour in which the mobile sink travels along

with a pre-defined path to collect data from one-hop

sensors, the data collection maximization problem is to

maximize the volume of data collected by the mobile sink

through allocating the T time slots to individual sensors,

under the constraints on both the energy replenishment

rate and different data transmission rates of each sensor.

Intuitively, each sensor should transmit its data to the

mobile sink at all available time slots to it in order

to maximize its share on the collected data, thereby

maximizing the volume of data collected from the entire

network. However, since the energy replenishment rate of

each sensor is much slower than its energy consumption

rate, due to its energy budget, the sensor may only make

use of some of the available time slots to transmit its

data. What followed is which time slots should be chosen,

since the sensor at different time slots will have different

data transmission rates. Furthermore, it is very likely that

multiple sensors sharing the same time slot will compete

with each other for the time slot to transmit their own data,

as sensors in the network are densely deployed. Thus, to

allocate each shared time slot to which one among the

competing sensors so as to maximize the accumulative

data volume is a challenging task.

In other words, the data collection maximization

problem in G can be described as follows. Given T
time slots and a pre-defined path, the mobile sink travels

along the path to collect data from one-hop sensors.

Associated with each sensor vi ∈ V , there are |A(vi)|
potentially available time slots for sensor vi to transfer

its data to the mobile sink, where ri,j is the average

data transmission rate of vi if it does transmit its data at

time slot j ∈ A(vi). We assume that there are a given

number of different transmission rates for each sensor

vi, ri,1, ri,2, . . . ri,ki
. To ensure that the transmitted data

can be received by the receiver successfully, we further

assume that a different transmission rate ri,j consumes a

different amount of power Pi,j of sensor vi, 1 ≤ j ≤ ki.
Usually ki is a fixed integer. For the sake of discussion

convenience, in the rest of the paper we assume that

ki = |A(vi)|. The data collection maximization problem

in G thus is to allocate the time slots to the sensors

such that
∑

vi∈V
∑

j∈A(vi)
(xi,j · ri,j · τ) is maximized,

subject to

xi,j ∈ {0, 1}, ∀vi ∈ V, j ∈ A(vi) (1)

xi,j = 0, ∀vi ∈ V, j /∈ A(vi) (2)
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n∑
i=1

xi,j ≤ 1, ∀vi ∈ V, 1 ≤ j ≤ T (3)

∑
j∈A(vi)

Pi,j · τ · xi,j ≤ P (vi), ∀vi ∈ V (4)

where P (vi) is the energy budget of sensor vi. xi,j is

a boolean value: xi,j = 1 if time slot j ∈ A(vi) is

allocated to sensor vi, otherwise xi,j = 0. Constraints (1)

and (2) ensure that at any given time slot, a sensor can

transmit its data to the mobile sink only when the sink

is within its transmission range. Constraint (3) enforces

that at most one sensor can transfer its data to the mobile

sink if multiple sensors share the time slot. Constraint (4)

ensures that the energy consumption of each sensor per

time-slot cannot exceed its energy budget at that moment.

III. NP-HARDNESS

Theorem 1: The data collection maximization problem

in an energy harvesting sensor network is NP-hard.

Proof: We show the claim by a reduction from a well

known NP-complete problem - the generalized assignment

problem (GAP), which is defined as follows. Given a set

of bins and a set of items that have a different size and

profit for each bin, pack a maximum profit subset of items

into the bins. In other words, let A = {a1, a2, · · · am} be

a set of m items and B = {B1, B2, · · ·Bn} a set of bins,

where each Bi has a capacity bi for all i with 1 ≤ i ≤ n.

Assigning item aj to bin Bi will consume the amount

of resource bi,j of Bi, and the benefit brought by this

assignment is ci,j . The objective is to allocate the items in

A to the bins in B such that the total profit is maximized,

subject to the total amount of resources consumed of each

bin Bi being no more than its capacity bi , 1 ≤ i ≤ n.

We now show that a special case of the data collection

maximization problem is equivalent to the defined GAP

problem. The special case of the data collection maxi-

mization problem is given as follows: We assume that the

maximum transmission range of each sensor R is large

enough to cover the entire tour path. That is, a sensor can

utilize each time slot in the pre-defined path to transmit

its data. We then proceed the following reduction.

Each item in A corresponds a time slot, thus the set of

time slots corresponds to the set of items A. Each bin Bi

in B corresponds to a sensor vi ∈ V , the capacity bi of

Bi corresponds to the energy budget P (vi) of sensor vi to

perform its data transmission for a certain number of time

slots, and Pi,j · τ is the amount of transmission energy

consumed by vi if it sends its data to the mobile sink at

time slot aj , i.e., the amount of its resource consumed. The

profit brought by allocating time slot aj to sensor vi is ci,j
(= ri,j ·τ ), which is the amount of data transmitted, where

ri,j is the average data transmission rate of vi at time slot

aj , which usually is determined by the Euclidean distance

di,j between vi and the mobile sink at time slot aj . This

implies that at different time slots, the data transmission

rates of sensor vi are different, thereby leading to different

amounts of data collected by the mobile sink. Allocating

the T time slots to the n sensors such that the amount

of data collected by the mobile sink is maximized is

equivalent to maximizing the profit in GAP. Hence, the

data collection maximization problem is NP-hard.

IV. AN OFFLINE APPROXIMATION ALGORITHM

Since the data collection maximization problem is NP-

hard, in this section we instead devise an approximation

algorithm with a provable approximation ratio for it, by

exploiting the combinatorial property of the problem,

provided that the mobile sink has the global knowledge

of the network topology and the profile of each sensor

(e.g., the energy budget of each sensor at the current tour,

the location of the sensor, the starting and ending time

slots of the sensor, etc).

A. Approximation algorithm
Cohen et al. [3] proposed a local search algorithm for

the generalized assignment problem (GAP). We adopt their

algorithm for the data collection maximization problem, as

we have already shown that the data collection maximiza-

tion problem is equivalent to GAP. The technique they

adopted is based on a novel combinatorial translation of

any (exact or approximation) algorithm for the knapsack

problem into an approximation algorithm for GAP. Thus,

any β-approximation algorithm for the knapsack problem

can be transformed into a 1
1+β -approximation algorithm

for GAP. The theoretical foundation of their technique is

based a local-ratio theorem [1]. Specifically, the Cohen

et al. [3] algorithm proceeds iteratively. It essentially

decomposes the profit function into two profit functions:

one is used for the current bin packing; and another is

used for the rest of bin packing. The initial profit matrix

is defined as follows.

D
(0)
i,j =

{
ri,j · τ if time slot j ∈ A(vi)
0 otherwise.

Within iteration l with 1 ≤ l ≤ n, it packs items in

A(vl) into bin Bl, using the profit function D
(l)
i,j , i.e., it

packs time slots j ∈ A(vl) to sensor vl, based on the

profit entries of row l in D
(l)
i,j , subject to the capacity

constraint P (vl) of sensor vl. Let Sl be the set of time slots

allocated to sensor vl by a β-approximation algorithm for

the knapsack problem, clearly Sl ⊆ A(vl). Then, the profit

function D
(l)
i,j is decomposed into two profit functions

D
(l+1)
i,j and T

(l+1)
i,j , where

D
(l+1)
i,j =

{
D

(l)
l,j if time slot j ∈ Sl or i = l

0 otherwise.

T
(l+1)
i,j = D

(l)
i,j −D

(l+1)
i,j . (5)

The decomposition of the profit function implies that

D
(l+1)
i,j is identical to D

(l)
i,j with regard to bin Bl. In

addition, if time slot j ∈ Sl, then it is allocated in D
(l+1)
i,j

the same profit as that in D
(l)
i,j for all bins l′ if j ∈ A(vl′).

All other entries are zeros. The new profit function for bin

Bl+1, D
(l+1)
i,j then is T

(l+1)
i,j , i.e.,

D
(l+1)
i,j = T

(l+1)
i,j . (6)
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The procedure continues until the last bin Bn is packed.

An approximate solution to the data collection maxi-

mization problem finally is derived. That is, let Sl be the

set of time slots allocated to sensor vl. If l = n, then

Sn = Sn; otherwise, the set of time slots allocated to

sensor vl is Sl = Sl \ ∪n
j=l+1Sj .

Initially we sort the sensors in increasing order of

indices of their starting time slots. If there are multiple

sensors with the same starting time slot, then sort them

in increasing order of the indices of their ending time

slots. In case the indices of these ending time slots

are also identical, the tie between the sensors will be

broken arbitrarily. Without loss of generalization, assume

that v1, v2, . . . vn is the sorted sensor sequence starting

from time slot indexed by 1, and the mobile sink starts

its data collection tour from the first time slot. For the

sake of completeness, we present the offline centralized

algorithm for the data collection maximization problem

Offline_Appro as Algorithm 1.

Algorithm 1 Offline_Appro

Input: The number of time slots T , the set of sensors

V , the energy budget P (vi) and the set of available

time slots A(vi), the transmission rate ri,j and the

corresponding energy consumption Pi,j of each sensor

vi ∈ V , and the profit matrix D
(0)
i,j for all i and j with

1 ≤ i ≤ n and 1 ≤ j ≤ T .

Output: Allocate T time slots to the n sensors.

1: Sort all sensors by the indices of their starting

time slots, followed by their ending time slots. Let

v1, v2, . . . , vn be the sorted sensor sequence;

2: Profit matrix’s Initialization: D
(1)
i,j ← D

(0)
i,j for all i

and j with 1 ≤ i ≤ n and 1 ≤ j ≤ T ;

3: for l← 1 to n do
4: /* Assume A(vl) = {ls, · · · le} */

5: Apply a β-approximation algorithm for a single bin

packing (knapsack problem) to allocate time slots

in A(vl) to sensor vl, subject to the energy budget

of vl, P (vl), using the profit function D
(l)
i,j , i.e.,

the entries in row l of the matrix. Let Sl be the

solution delivered by the approximation algorithm,

where Sl ⊆ A(vl);
6: /*decompose the profit function into two profit

functions D
(l+1)
i,j and T

(l+1)
i,j */

7: D
(l+1)
i,j ← T

(l+1)
i,j ;

8: end for;

9: Sn ← Sn;

10: for l← n− 1 downto 1 do
11: Sl ← Sl \ ∪n

j=l+1Sj ;

12: end for;

13: return Sl for all l with 1 ≤ l ≤ n.

B. Complexity analysis

Theorem 2: Given an energy harvesting sensor network

G(V ∪{s}, E), there is an approximation algorithm for the

data collection maximization problem with an approxima-

tion ratio of 1
2+ε , where ε is a constant with 0 < ε < 1. The

time complexity of the proposed approximation algorithm

is O(n2).
Proof: Cohen et al. [3] have showed that algorithm

Offline_Appro is a 1
1+β -approximation algorithm,

where β is the approximation ratio of an approximation

algorithm for the single knapsack problem. Obviously, the

approximation ratio of the approximation algorithm for the

single knapsack problem is β = 1 + ε [13], and it takes

O(|A(vl)| log 1
ε +

1
ε4 ) = O(tmax) time to find the subset

Sl (⊆ A(vl)), where ε is a constant with 0 < ε < 1
and tmax = max{|A(v)| | v ∈ V }. The updating of

profit matrices D
(l)
i,j and T

(l)
i,j also takes time. However,

it is noticed that there is no need to update all entries, we

only need to update the entries in row l and the related

columns j ∈ Sl, thus, it takes O(|A(vl)|+
∑

j∈Sl
O(n)) =

O(|A(vl)| + O(n · |Sl|)) = O(ntmax) time. Thus, the

running time of allocating all time slots into the n sensors

is
∑

vl∈V O(tmax + ntmax) = O(ntmax + n2tmax) =

O(nΓ + n2Γ) = O(n2) since tmax ≤ 2Γ and Γ = � R
rs·τ 


usually is a constant in practice, where R is the maximum

transmission range of sensors and rs is the travelling

speed of the mobile sink. The approximation ratio of the

proposed algorithm for the data collection maximization

problem thus is 1
1+β = 1

2+ε .

V. ONLINE DISTRIBUTED ALGORITHM

So far we have provided an offline approximation al-

gorithm with a provable approximation ratio for the data

collection maximization problem. However, the solution

obtained by this algorithm is based an assumption that the

global knowledge of the network topology and the profiles

of sensors including their physical locations, power levels,

starting and ending time slots are available. In reality,

there is no way for the mobile sink to know the profile

of each sensor unless it is within the transmission range

of the sensor and communicates with the sensor. Thus,

although the proposed off-line approximation algorithm

can guarantee an approximation ratio, it lacks of scalability

and may not be applicable to large-scale sensor networks.

In the following we focus on developing a fast, scal-

able online distributed algorithm that is more suitable to

real distributive sensor networks, by removing the global

knowledge assumptions. We shall make use of the solution

obtained by the off-line algorithm as the benchmark to

evaluate the effectiveness and efficiency of the proposed

online distributed algorithm.

A. General framework of online distributed algorithms

The framework of the proposed online distributed algo-

rithm proceeds as follows. The mobile sink periodically

broadcasts a ‘Probe’ message with a ‘Registration’ timer,

announcing its presence while traveling along the pre-

defined path once per time interval, where each time
interval consists of Γ = � R

τ ·rs 
 time slots. The ‘Probe’

message is broadcast in the beginning of each interval,

which will be used to detect whether the mobile sink
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and the sensors are within the transmission range of

each other. Each sensor receiving the ‘Probe’ message

will send the mobile sink back an ‘Ack’ message which

contains its current power level, the indices of its starting

and ending time slots, its location coordinate, etc. Once

the ‘Registration’ timer expires, the mobile sink starts

scheduling the Γ time slots to the registered sensors, using

a time-slot scheduling algorithm A which will be detailed

later. It finally broadcasts the scheduling result to the

registered sensors and each registered sensor then sets its

transmission time slots.

In the rest of the current time interval, each registered

sensor transmits its data to the mobile sink at its allocated

time slots. For the sake of simplicity, we here assume that

the time spent by the mobile sink in probing and time

slot scheduling is negligible in comparison with the time

at each time slot for data transmission. When the mobile

sink received the data from the sensor at the last time slot

in the current time interval, it sends a ‘Finish’ message

to all the registered sensors. The registered sensors then

update their own energy profiles after having received the

‘Finish’ message, and wait for the next time interval. This

procedure continues until there is no response from any

sensor to the ’Probe’ message sent by the mobile sink

in some time interval, which means that the mobile sink

finishes the tour already, as we assumed that the sensors

are densely deployed along the pre-defined path and there

is at least one sensor at each time interval. The detailed

framework of the online distributed algorithm is given in

Algorithm 2.

B. GAP-based time slot scheduling

In the following we devise a GAP-based time-slot
scheduling algorithm as algorithm A. Recall that the

starting and ending time slots of sensor vi ∈ V are the

isth and the ieth time slots, denote by [is, ie] the time

slot interval in which sensor vi can transmit its data to

the mobile sink. Given the current time interval j, [aj , bj ]
where aj and bj are the starting and ending time slots

in the current time interval, then |bj − aj | = � R
rs·τ 
. If

[is, ie]∩[aj , bj ] �= ∅, then sensor vi can transmit its data to

the mobile sink in time interval j within time slot interval

[i′s, i
′
e] = [is, ie] ∩ [aj , bj ] with is ≤ i′s and i′e ≤ ie.

Let Pj(vi) be the amount of power of sensor vi in the

beginning of time interval j, then it consumes the amount

of energy Pi,j ·τ when sensor vi transmits its data in a time

slot j ∈ [i′s, i
′
e]. It may transmit its data within multiple

time slots as long as its residual energy enables itself to do

so. The mobile sink schedules the current Γ time slots to

these registered sensors in the current time interval, using

the offline approximation algorithm. We refer to this GAP-

based online distributed algorithm as Online_Appro,

and have the following lemma and theorem.

Lemma 1: Within the proposed framework of the online

distributed algorithm 2, each sensor is within at most two

consecutive broadcasting regions (or two consecutive time

intervals).

Proof: We show the claim by contradiction. Consider

Algorithm 2 Framework_Distributed_Algorithm
1: continue← ‘true′; /* the tour finishes or not */

2: j ← 0; /* the number of time intervals per tour */

3: while continue do
4: j ← j + 1; /* The current time interval j*/

5: Mobile sink broadcasts a ‘Probe’ message with a

‘Registration’ timer;

6: if the timer expires then
7: if the mobile sink received ‘Ack’ messages then
8: Call a time-slot scheduling algorithm A in the

mobile sink to allocate the time slots in time

interval j to the registered sensors, subject to

the power constraint on each registered sensor;

9: The mobile sink broadcasts the scheduled re-

sults to sensors in the network;

10: Each registered sensor performs data transmis-

sions in its allocated time-slots;

11: The mobile sink broadcasts a ’Finish’ message

to sensors when it finished the data collection

from the last time slot in time interval j;

12: The registered sensors updates their energy

profiles when their received the ’Finish’ mes-

sages. That is, registered sensor vi updates its

energy budget:

P (vi)← P (vi)−
∑

j∈Si
·Pi,j · τ , where Si is

the set of time slots assigned to vi by algorithm

A in the current time interval and Si ⊆ A(vi);
13: else
14: continue← ‘false′; /* finish the tour */

15: end if
16: else
17: Waiting for replies;

18: end if
19: end while

R R R R

v1

v
2

The mobile sink

s
1

s
2

s
3h

h’

w

Figure 1. A sensor v1 (or v2) cannot be in three consecutive time
intervals.

Fig. 1, assume that a sensor v1 is within three consecutive

‘Probe” message broadcasting regions, i.e., when the mo-

bile sink broadcasts its probing messages at s1, s2, and s3
locations, sensor v1 is able to receive the message three

times. Following this assumption, we have d(v1, s1) ≤ R,

d(v1, s2) ≤ R, and d(v1, s3) ≤ R. We now show that this

is impossible by the following three cases:

Case one: sensor v1 is in the left side of s2, then

d(v1, s3) =
√

h2 + (w +R)2 >
√
R2 = R, which

contradicts the fact that d(v1, s3) ≤ R.
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Case two: sensor v1 is in the right side of s2, the proof

is similar to Case one, omitted.

Case three: sensor v1 (i.e., sensor v2) is just above s2,

then d(v2, s1) =
√
h′2 +R2 >

√
R2 = R and d(v2, s3) =√

h′2 +R2 >
√
R2 = R. This contradicts that v2 is in the

transmission ranges of s1 and s3.

Theorem 3: Given an energy harvesting sensor network

G = (V ∪ {s}, E), there is an online GAP-based dis-

tributed algorithm for the data collection maximization

problem in G, which takes O(n) time and O(n) messages.

Proof: Following Lemma 1, we notice that each

sensor can receive the probing message and the finish

message from the mobile sink at most twice per tour,

and these messages are issued in two consecutive time

intervals. Thus, the total number of probing and finish

messages and the time slot allocation messages received

by each sensor are four, respectively per tour of the mobile

sink, while the number of acknowledgement messages by

each sensor is two as well. Thus, the total number of

messages transmitted per tour is O(
∑

v∈V dv) = O(n)
as each sensor v has O(dv) = O(1) messages to be

received and/or sent out. Clearly, the time for time-

slot scheduling by the mobile sink in each interval j
is

∑Nj

l=1 O(tmax log tmax) = O(Nj · tmax log tmax) as

sorting by the mobile sink for bin packing at each sensor in

this interval takes O(tmax log tmax) time, and the rest op-

erations take constant time, where Nj is the number of reg-

istered sensors in interval j and tmax = maxv∈V {|A(v)|}.
Thus, the time complexity of the distributed algorithm

is proportional to the number of time intervals per tour.

As we assume that sensors are densely deployed, this

implies that there is at least one sensor responded to each

probing request in the beginning of each time interval,

while each sensor is included at most in two consecutive

time intervals by Lemma 1. Assume that there are K
intervals of each tour, then

∑K
j=1 Nj ≤ 2n. Thus, the

time complexity of the online distributed algorithm is∑K
j=1 O(Nj · tmax log tmax) = O(ntmax log tmax) =

O(nΓ log Γ) = O(n) as tmax ≤ 2Γ and Γ = � R
rs·τ 


usually is a constant in practice, where R is the maximum

transmission range of sensors and rs is the travelling speed

of the mobile sink.

VI. SPECIAL DATA COLLECTION MAXIMIZATION

PROBLEM

In this section we deal with a special case of the data

collection maximization problem where the transmission

power at each sensor is fixed and there is only one single

transmission power P ′. For this special case, the problem

becomes polynomially solvable and a fast, scalable online

distributed algorithm is devised through a reduction to the

maximum weight matching problem. We shall adopt the

proposed framework of online distributed algorithms in the

previous section. The detailed description of the proposed

algorithm is as follows.

We reduce the special data collection maximization

problem to the maximum weight matching problem in

another auxiliary graph, which is a bipartite graph G =

(X ∪ Y,EXY ), where X is the set of sensors that ac-

knowledged the probing message of the mobile sink in the

beginning of time interval j, Y is the set of Γ time slots

to be allocated to the registered sensors in X . There is an

edge between a sensor node vi that corresponds to a node

xi ∈ X and a time slot node yj ∈ Y if yj ∈ [i′s, i′e], i.e., yj
is a time slot in interval [i′s, i

′
e]. There are mi = |i′s−i′e|+1

edges incident to node xi in G. The weight associated with

edge (xi, yj) ∈ EXY is the amount of data received by the

mobile sink from sensor vi at time slot yj , D
(0)
i,j = ri,j ·τ ,

where the average data transmission rate ri,j of sensor

vi at time slot yj is determined by the distance between

sensor vi and the mobile sink at time slot yj . Our objective

thus is to maximize the data collected by the mobile

sink in the current time interval through the time slot

allocation. In terms of time slot allocation, we notice that

each registered sensor vi in the current time interval can

make use of upto ni = |A(vi)| time slots to transmit its

data. Meanwhile, it is very likely that there are multiple

sensors to compete with each other for each shared time

slot to transmit their own data. The challenge thus is how

to allocate these time slots to the registered sensors such

that the sum of amounts of data transmitted is maximized.

In the following we propose a solution to the special

data collection maximization problem by reducing it to

a maximum weight matching problem in another bipartite

graph G′ = ({x(k)
i | xi ∈ X, 1 ≤ k ≤ n′i}∪Y,E′), where

G′ is derived from the bipartite graph G as follows.

For each node xi ∈ X in G, there are n′i corre-

sponding node copies, x
(1)
i , x

(2)
i , . . . , x

(n′
i)

i in G′, where

n′i = min{� R
rs·τ 
, |i′s − i′e|+ 1, �P (vi)

P ′·τ 
}, where P ′ is the

fixed transmission power of sensors.

For each an edge (xi, yj) ∈ EXY in

G, there are n′i corresponding edge copies

(x
(1)
i , yj), (x

(2)
i , yj), . . . , (x

(n′
i)

i , yj) in E′, and each

of them has a weight D
(0)
i,j . Thus, finding a solution to

allocating the Γ time slots to the registered sensors such

that the amount of data collected by the mobile sink in

this time interval is maximized is equivalent to finding a

maximum weight matching in G′ such that the weighted

sum of matched edges is maximized. Let M be the

maximum weight matching in G′. Then, M corresponds

to a time-slot allocation. That is, each edge (x
(k)
i , yj) in

M implies that time slot yj is allocated to sensor vi, and

sensor vi will transmit its data with the data transmission

rate ri,j to the mobile sink. We refer to this online

distributed algorithm as Online_MaxMatch, and have

the following theorem.

Theorem 4: Given an energy harvesting sensor network

G = (V ∪ {s}, E), there is an online maximum weight

matching-based distributed algorithm for a special data

collection maximization problem in G where there is only

one fixed, identical transmission power for all sensors.

The proposed distributed algorithm takes O(n1.5) time and

O(n) messages.

Proof: The analysis of time complexity and message

complexity of the proposed online distributed algorithm
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Figure 2. Network throughput delivered by algorithms Offline_Appro and Online_Appro through varying the sink speed rs and the network
size n.

are almost identical to the ones in Theorem 3. The rest will

focus on the analysis of time complexity of the operations

in each time interval. Let Nj be the number of registered

sensors in time interval j. Then, the bipartite graph G′ con-

tains O(Nj ·tmax+Γ) nodes and O((Nj ·tmax) ·Γ) edges,

while it takes O(
√|V | · |E|) time to find a maximum

weight matching in a bipartite graph G = (V,E) [20].

Thus, it takes O(N1.5
j · Γ2.5) = O(N1.5

j ) time in G′ to

find the maximum weight matching M , since tmax ≤ 2Γ
and Γ = � R

rs·τ 
 usually is a constant in practice, where R
is the maximum transmission range of sensors and rs is

the travelling speed of the mobile sink. Notice that this

maximum weight matching-based time-slot scheduling

algorithm is performed by the mobile sink. Assuming that

there are K intervals, following Lemma 1, each sensor

appears at most twice in two consecutive time intervals,

thus,
∑K

j=1 Nj ≤ 2n. The total amount of time spent

for finding maximum weight matchings in all intervals

therefore is
∑K

j=1 O(N
1.5
j ) = O(n1.5). Considering the

fact that Nj usually is bounded by a constant in practice,

then the proposed online distributed algorithm takes only

O(n) time, and the message complexity is still O(n).
Notice that if the knowledge of the entire network

and the profiles of all sensors are given, an offline

algorithm based on maximum weight matching for the

special data collection maximization problem can also

be obtained, which can deliver an exact solution in

polynomial time. We refer to this offline algorithm as

Offline_MaxMatch.

VII. PERFORMANCE EVALUATION

In this section we study the performance of the proposed

algorithms through experimental simulation. We also in-

vestigate the impact of parameters: the network size n, the

mobile sink speed rs, and the duration τ of each time slot

on the network throughput.

A. Experimental environment setting

We consider an energy harvesting sensor network con-

sisting of 100 to 600 homogeneous sensor nodes randomly

deployed along a pre-defined path, and a mobile sink

s travels along the path at constant speed rs to collect

sensing data from one-hop sensors. We further assume

that the length of the pre-defined path is 10, 000m and

the maximum distance between the location of any sensor

and the path is 180m. All sensors have identical maximum

transmission ranges of 200 meters. Each sensor is powered

by a 10mm×10mm square solar panel with the battery ca-

pacity of 10, 000Joules. The solar power harvesting pro-

file is built upon real solar radiation measurements [14],

in which the total amount of energy collected from a

37mm × 37mm solar panel over a 48-hour period is

655.15mWh in a sunny day and 313.70mWh in a partly

cloudy day. Without loss of generality, we here adopt a

4-pairwise communication parameters setting, where the

transmission parameters and corresponding distances are:

250Kbps with the transmission power being 170mW
between 0 and 20 meters, 19.2Kbps with the transmission

power being 220mW between 20 and 50 meters, 9.6Kbps
with the transmission power being 300mW between 50

and 120 meters, and 4.8Kbps with the transmission power

being 330mW between 120 and 200 meters. In the default

setting the duration of each time slot τ is 1 second. Each

value in figures is the mean of the results by applying each

mentioned algorithm to 50 different network topologies of

the same network size.

B. Performance evaluation of different algorithms

We first evaluate the performance of algorithms

Offline_Appro and Online_Appro by varying the

network size n from 100 to 600 and setting the mobile sink

speed rs at 5m/s, 10m/s, and 30m/s, while the duration

of time slot τ is fixed at 1s, 2s, and 4s, respectively.

Fig. 2 demonstrates that algorithm Offline_Appro
always outperforms algorithm Online_Appro slightly.

For example, when rs = 5m/s and τ = 1s, the network

throughput of algorithm Online_Appro is no less than

93% of that of algorithm Offline_Appro. The reason

behind this is that algorithm Online_Appro only has

the local rather than the global knowledge of the entire

network. It can be also noticed that when the network

size is fixed, the longer duration of time slot and the higher

mobile sink speed will lead to a lower network throughput

derived from each mentioned algorithm. In other words,

to maximize the network throughput, a shorter duration of

time slot should be chosen when the mobile sink travels

at a higher speed.
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Figure 3. Network throughput delivered by different algorithms for special case through varying the mobile sink speed rs and the network size n.

C. Performance of different algorithms for special data
collection maximization problem

Assuming that each sensor always transmits its

data with one identical transmission power 300mW ,

we now investigate the performance of algorithms

Offline_MaxMatch, Online_MaxMatch,

Offline_Appro, and Online_Appro and also

study the impact of the network size n and the mobile

sink speed rs by varying n from 100 to 600 and setting

rs at 5m/s, 10m/s, and 30m/s, respectively, while the

duration of time slot τ is fixed at 1s.

When the mobile sink speed is fixed at 5m/s, Fig. 3(a)

clearly shows that algorithm Offline_MaxMatch out-

performs the other three algorithms. Moreover, it is

observed that algorithm Online_MaxMatch is infe-

rior to algorithm Offline_MaxMatch, as algorithm

Online_MaxMatch only has the local rather than global

knowledge of the network. However, the performance gap

between them is marginal. It is also noticed that algorithm

Online_MaxMatch outperforms the other two algo-

rithms, and the performance gaps between them increase

with the growth of network size. Specifically, when n =
100, the performance of algorithms Online_MaxMatch,

Offline_Appro, and Online_Appro are almost the

same. When n = 600, the performance of algorithm

Online_MaxMatch is 16% and 19% higher than that

of algorithms Offline_Appro and Online_Appro,

respectively. When the mobile sink speed is fixed at

10m/s and 30m/s respectively, Fig. 3(b) and 3(c) exhibit

the similar performance behaviors, omitted. Fig. 3 implies

that when the network size is fixed, the network throughput

delivered by all mentioned algorithms decreases, with the

increase of the mobile sink speed. Specifically, the network

throughput delivered by algorithm Offline_MaxMatch
when rs = 5m/s is at least 101%, 540% higher than that

by itself when rs = 10m/s and 30m/s, respectively. This

is because when the mobile sink travels at a higher speed,

the duration of the mobile sink travels the entire path will

be shortened, while the data transmission rate does not

change with the mobile sink speed, thus, the amount of

data uploaded from sensors will be reduced. Although a

higher speed leads to a shorter delay on data delivery, it

will result in a less amount of data collected per tour too.

We then study the impact of the duration of time slot τ

and the network size n on the performance of algorithms

Online_MaxMatch and Online_Appro, by varying

n from 100 to 600 and setting τ as 1s, 2s, 4s, 8s, and

16s, respectively, while the mobile sink speed rs is fixed

at 5m/s.

Fig. 4 illustrates that for each mentioned algorithm,

the network throughput decreases with the increase of the

duration of each time slot, and the performance gap grows

bigger with the growth of network size. Specifically, in

Fig. 4(a), the network throughput delivered by algorithm

Online_MaxMatch with τ = 1s is at least 0.5%, 1%,

2%, 8%, and 50% higher than that by itself when τ = 2s,

4s, 8s, and 16s, respectively. In Fig. 4(b), the network

throughput delivered by algorithm Online_Appro with

τ = 1s is at least 1%, 1.5%, 2%, 9%, and 56% higher than

that by itself when τ = 2s, 4s, 8s, and 16s, respectively.

The reason behind is that with shorter time slot, the

registered sensors can utilize their energy more efficiently.

In detail, with a longer duration of time slot, sensors that

are close to the mobile sink are more likely to lose their

chances to transmit their data as they do not have enough

energy. However, in realistic scenario, a proper time slot

duration should be set by taking the energy consumption

to run the transmitter circuitry into consideration.

VIII. CONCLUSIONS

In this paper we studied mobile data collection in an en-

ergy harvesting sensor network, using a mobile sink trav-

elling along a pre-defined path. We first formulated a novel

data collection maximization problem and showed its NP-

hardness. We then provided an offline approximation algo-

rithm with a provable approximation ratio, by exploiting

the combinatorial property of the problem, assuming that

the global knowledge of the network is available. We

also proposed a fast, scalable online distributed algorithm

without the global knowledge assumption. In addition, for

a special case of the data collection maximization problem

where each sensor has only one fixed transmission power,

we propose a polynomial solution to the problem. Finally,

we conducted simulations to evaluate the performance of

the proposed algorithms. Experimental results demonstrate

that the proposed algorithms are efficient and scalable, and

the solutions delivered are fractional of the optimum.
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Figure 4. Impact of network size n and the time slot duration τ on the network throughput delivered by algorithms Online_MaxMatch and
Online_Appro.
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