
Aequationes Mathematicae 25 (t982) 257-268 
University of Waterloo 

0001-9054/82/002257-12 $1.50 + 0.20/0 
© 1982 Birkh~iuser Verlag, Basel 

Constructing cospectrai graphs 

C. D. GODSIL AND B. D. MCKAv 

Abstract. Some new constructions for families of cospectral graphs are derived, and some old ones are 
considerably generalized. One of our new constructions is sufficiently powerful to produce an estimated 
72% of the 51039 graphs on 9 vertices which do not have unique spectrum. In fact, the number of graphs 
of order n without unique spectrum is believed to be at least an~g,_l for some a >0, where g, is the 
number of graphs of order n and n >- 7. 

I. Introduction 

1.1. We  use G to  deno te  a simple g raph  with vertex set V ( G )  = {v~, v~ . . . . .  v,} 

and edge set E ( G ) .  The adjacency matrix of G is the n x n matrix with ( i , j ) th  
entry equal to 1 if vertices i and j are  adjacent  and equal  to 0 otherwise.  The  

adjacency matrix o f  G will also be deno ted  by the symbol  G. The characteristic 
polynomial of G is the polynomial  ~ ( G )  = ~b (G, x )  = det(xI ,  - G) ,  w h e r e / ,  is the 

n × n identi ty matrix. 
Two graphs G and H are cospectral if 4~(G) = ~b(H). We say that G is 

characterized by its spectrum if every g raph  cospectral  to  G is i somorphic  to G. It 

was proved by Schwenk [14] that  the p ropor t ion  of  trees on n vertices which are 

characterized by their  spectra converges  to zero as n increases. The  cor responding  

asymptotic ques t ion for  graphs in general  remains one of  the outs tanding unsolved 

problems in the theory  of graph  spectra.  
Schwenk's  p roof  depends  on  a const ruct ion which provides pairs of  cospectral  

trees. Thus, if we wish to settle the quest ion for  graphs in general ,  it is natural to 

AMS (1980) subject classification: Primary 05C55. Secondary 15A18. 

Manuscript receioed March 1, 1982, and in ]inal form, January 4, 1983. 

257 



258 C, D. GODSIL AND B, D. MCKAY AEO. MATH. 

look for constructions for pairs of cospectral graphs. In this paper we present some 
new and powerful constructions for pairs of cospectral graphs and considerably 
generalize some old ones. One of our new methods is sufficiently powerful to 
generate an estimated 72% of the 51039 graphs on 9 vertices which are not 

characterized by their spectra. 

1.2. T E R M I N O L O G Y .  We will use Jm, to denote the m x n matrix with each 
entry one and I, to denote  the identity matrix of order  n. In each case the subscripts 
will be deleted if the order  is clear from the context. The  column vector Jm i will also 

be denoted by jm. 
The concept of switching was introduced by Seidel [13]. Let  S be a subset of 

V(G). Then  the graph H formed from G by switching about S has 

V(R)-- V(G), 

and 

E ( n ) = { x y  E E ( G ) [ x , y  E S  or x, y f ~ S } U ( x y ~ E ( G ) [ x  E S  and y E S } .  

We say that G and H are switching equivalent. 

2.1. CONSTRUCTION.  Let G be a graph and let ,r = ((71, C: . . . . .  Ck, D)  be a 
partition of V(G). Suppose that, whenever 1 -< i, j -< k and o E D, we have 

(a) any two vertices in C~ have the same number  of neighbours in Ci, and 

(b) v has either 0, n, [2 or n, neighbours in C~, where n, = [ C~ I- 
The graph G °° formed by local switching in G with respect to ,r is obtained from G 
as follows. For each o E D and 1 <- i -< k such that v has n~/2 neighbours in C, 
delete these n~/2 edges and join v instead to the other  n~ [2 vertices in C .  

For our  purposes the most important property of our construction is provided 

by the next theorem. 

2.2. T H E O R E M .  Let G be a graph and let lr be a partition of V(G) which 
satisfies properties (a) and (b) above. Then G (~) and G are cospectral, with cospectral 
complements. 

Proo[. The most direct way of showing that two graphs are cospectral is to show 

that their adjacency matrices are similar. We now proceed to do this. 
For  any positive integer m, define Om= 2J~,/m - Ira. Th e  following claims can 

be verified easily. 
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(a) OZ = / ~ .  
(b) If X is an m x n matrix with constant row sums and constant column sums, 

then QmXQ~ = X. 
(c) If x is a vector with 2m entries, m of which are zero and m of which are 

one, then Q2wr = af~ - x. 
If the vertices of G are labelled in an order consistent with ~, the adjacency 

matrix of G has the form 

G = 

I C I  Clz '' Clk ~Dk l 
• D j  

C T 12 C2 " '"  C2k D2 

cT ,  cX . . -  Ck 

DT D T • D I  2 " "  

The required properties of 7r ensure that each C, and each C,j has constant row 
sums and constant column sums, and that each column of each 19, has either 0, n,/2 
or n, ones. Therefore  QGO is the adjacency matrix G ~ ,  where O is the 
block-diagonal matrix diag(On,, O,~ . . . . .  O,k, Itol). Since O 2 = L this proves G and 
G ~*) to be cospectral. G and G °° have cospectral complements by the same 
argument, since (t~) °° is the complement of G ~ .  [ ]  

2.3. EXAMPLES.  We consider some cases of local switching that are of 

particular interest. 
(a) Form G by taking a regular graph H with an even number of vertices and 

adjoining a new vertex v adjacent to exactly half the vertices of H. Then G ~) for 
~'=(V(H),{v}) is formed by joining v instead to the other vertices of H. An 

example with H = C8 is shown in Figure 1. 

Figure 1 

If H has 2m vertices and a trivial automorphism group, it is easy to show that all 
of the (2~) possibilities for G are nonisomorphic. Hence, for example, if we choose 
H to be a cubic graph on 12 vertices with no nontrivial automorphisms we can 
COnstruct (~)/2 = 462 pairs of cospectral nonisomorphic graphs on 13 vertices. 

(b) Let G be regular with degree k and let S be a subset of V(G) such that the 
graph H obtained from G by switching about S is also regular with degree k. Then 
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H and G are cospectral because H = G t'°, where lr = ( V ( G ) \ S ,  S).  This construc- 
tion is well known. 

In examples (a) and (b), G (') and G are switching equivalent. However this is 
not always the case, as in the next example. 

(c) This example is most easily explained by reference to Figure 2, where 
¢r = ( { a , b , c , d } , H ) .  

a b c d 

. ) ( . ) 
Figure 2 

A similar example is shown in Figure 3, where again ~r = ({a, b, c, d}, H).  If H is 
chosen to have vertices of degree three, except that vertices 1 through 6 have 
degree one, then G and G t'° are both cubic. This construction provides 2 of the 3 
pairs of cospectral cubic graphs on 14 vertices. There are no cospectral cubic graphs 
on less than 14 vertices [2]. 

Figure 3 

2.4. STATISTICS. We now demonstrate the efficiency of local switching as a 
means of producing pairs of cospectral graphs. We will concentrate on the subcase 
which appears to produce the most examples, namely that when 7r = (C~, D) and 

Ic t =4. 
Define I, to be the proportion of (unlabelled) graphs G on n vertices such that 

there exists zr = (C1, D)  with I C~ I = 4 satisfying conditions (a) and (b) of Section 2.1 
and G (') ~ G. Also define c, to be the proportion of all graphs on n vertices which 

are not characterized by their spectra. 
It is easy to show that l~ = 0  for n -<6. For .each value of n in the range 

7 <-n-< 16 a large number 5/, of random labelled graphs with n vertices was 
generated. For each graph the order of the automorphism group was found, and 
then, for each ~ of the required type, G ('~) was tested for isomorphism with G. An 
estimate of I, was then obtained by weighting each graph according to the order of 
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its au tomorph ism group,  to get  an unbiased est imator  for  unlabelled graphs. The  
results are shown in Table  1. The  values of  cn are taken f rom [10] for n -< 9 and are 

unknown for  n > 9. The  est imates of I, are given with approximate  95% confidence 

limits. The  latter were compu ted  under  the untested assumption that  the distribu- 

tion of the est imates of I, ob ta ined  f rom samples of  size N , / I 0  is normal ,  and 
should only  be taken as a rough guide to the accuracy of  l,. There  are convincing 

reasons to suspect that  I, ~ (~)21-~, which would imply the claim made  in the last 

sentence of  the abstract.  
Table 1 

n N~ c. I. t,/c~ 

5 - -  0.059 0 
6 - -  0.064 0 
7 50000 0 . 1 0 5  0.037 -+ 0.003 
8 50000 0 . 1 3 9  0.084 -+ 0.004 
9 50000 0 . 1 8 6  0.135-+0.003 

10 30000 0.164-+0.008 
11 20000 0.165+0.008 
12 10000 0.145-+0.011 
13 100120 0.127_+0.010 
14 6000 0.095 -+ 0.010 
15 5000 0.074 -+ 0.008 
16 3000 0.042 -+ 0.009 

0.00 
0.00 
0,35 
0.60 
0.73 

It is seen that  for n <-9 the ratio l~/c, is steadily increasing and probably  

exceeds 70% for  n = 9. It is interesting to note  that lim i n f ~  In/cn > 0 would  imply 
c~ ~ 0, since 1, --* 0. However ,  we feel that  our  data  provide only a small amount  of  

evidence that  c, ~ 0, and that the behaviour  of cn for small n may not be typical. 

2.5. In the special case where  zr = (C1, D )  and there are no edges within Cl, the 
construction above  can be considerably generalized. We  will call two rn x n 
matrices A and B congruent if A T A  = BTB.  If we view the columns of  A and B as 
points in ~ "  then it is clear that  A and B are congruent  if and only if the 
corresponding sets of  points  in ~R" are congruent  in the geometr ic  sense, i.e., there 

is an m × m or thogona l  matrix which maps  the columns of  A onto  the correspond-  
ing columns of  B. 

2.6. C O N S T R U C T I O N .  Let  H be a graph on n vertices and let A be an 

m × n 0-1 matrix. T h e n  H ( A )  is the graph  with adjacency matrix 

(°T HA) 



262 C.D. GODSIL AND B. D, MCKAY AEQ. MATH 

2.7. T H E O R E M .  Let H be a graph on n vertices and let A and B be two 
congruent m x n 0-1 matrices. Then the graphs H ( A  ) and H(B)  are cospectral. 

Proof. Let Q, = diag(O,/~), where QA = B and Q is orthogonal. Then Q~ is 
orthogonal and Q~H(A )QT = H(B ). [] 

One source of congruent matrices is Construction 2.1 with k = 1. Another 
example is provided when A and B are the transposed incidence matrices of two 
BIBDs with the same parameters. If the graph H has no edges in this case then 
Construction 2.7 reduces to a known result. If H is not empty, then H ( A )  may be 
not isomorphic to H(B)  even if the two corresponding designs are isomorphic. As 
an example, let A be the transposed incidence matrix of a Steiner Triple System 
with v = 15 and trivial automorphism group, and let H be any 15 vertex graph with 
trivial automorphism group. Then H ( A )  ~ H(B)  for any column permutation B of 
A. Thus we get a family of 15! = 130767438000 nonisomorphic graphs on 50 
vertices, all of which are cospectral and have cospectral complements. More 
generally, there are v t~)/3+°t°) labelled Steiner triple systems with v points (see [1]), 
and 2(P/v !(1 + O(1/v)) graphs of order v with trivial automorphism groups. Thus 
we can construct 2"~)/v !(1 + O(1/v)) families of graphs of order v(v + 5)/6, each 
containing v tp/3~°tv) cospectral graphs. Although high, the number of graphs 
involved here is miniscule compared to the number produced by Construction 2.1. 

Construction 2.6 has also been investigated (without proof) by Davidson [6], 
who gives many examples of congruent matrices. 

3. Tensor products 

3.1. In this section we describe a very general procedure which uses the matrix 
tensor product to construct families of cospectral graphs. Although many special 
cases of this construction have appeared before, the general case is new. 

All the matrices in this section are real, but otherwise not restricted. The 
necessary conditions for the matrices so constructed to be adjacency matrices of 
graphs will be obvious in every case. 

The tensor (direct) product of matrices A and B will be denoted by A ~) B. For 
the most elementary properties of this operation we refer the reader to [11] or [7]. 

3.2. Consider a sequence of matrices 

.4 = (A ~l), A (21), ~ o). a ~2) A (2) A (k2)), 
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where A I I) has order n~ x n~ and A I 2) has order n2 x n2, for 1-< i -< k. The next 
Iemma is just an elementary property of the tensor product. 

3.3. LEMMA. For any monomial f in k noncommuting variables 

tr f (A ~1) @ A~ 2), A ~21)@ A ~2),..., A~ l) @ A~ 2)) 

= tr f (A  ~ '), A(2 ~) . . . . .  A~))trf(A~ 2), A~2),..., A~2)). [] 

Let B be a sequence of matrices with the same orders as those of A. Define 
T(A ) = ~ (A ~') @ A 12)) and T(B) = Y~=z (B ~') @ B12)). The general construction 
we are considering is based on the following theorem, which follows immediately 
from the multinomiai theorem and Lemma 3.3. 

3.4. THEOREM.  Suppose that 

tr f (A  •), A ~) , . . . ,  A ~)) = tr f (B? ), B~), . . . ,  B ~)), 

for any monomial f and j E { 1,2}. Then T(A ) and T( B ) are cospectral. [] 

The cases where A?)E{LGi ,  Gj} for 1-<]---2 and l<-i<-k have been 
investigated in depth by Cvetkovi6 and others ([3], [5]). In this connection, we note 
that, although we are using tensor products of only two factors, the class of graphs 
constructed is not thereby reduced, since the case of more than two factors can be 
obtained by repeated application. 

A simple family of applications of Theorem 3.4 can be obtained with the help of 
the following lemma. 

3.5. LEMMA. If G~ and G2 are cospectal, then tr G~ = tr Gi for any r >- O. If 
also GI and G2 are cospectral, then trf(G~, t ~ , J )  = trf(G2, t~2,J) for any mono- 
rnial f. 

Proof. The first claim is obvious, while the second follows from Lemma 2.1 of 
McKay [12]. [] 

3.6. CONSTRUCTION. Let GI and G2 be cospectral, and let X and H be 
square matrices of the same order. Then H @ I + X @ G 1  is cospectral to 
H @ I + X @ G 2 .  

The choices X = I, X = J and X = I + H give the cartesian product H x Gi, the 
lexicographic product G~ [H] and the strong product H * G~, respectively. 
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3.7. C O N S T R U C T I O N .  Let G~ and G2 be cospectral, with (~  and ( ~  also 
cospectral. Let C, D, E and F be square matrices of the same order. Then 
C ~ I + D @ J + E @ G ~ + F @ t ~  is cospectral to C @ I + D @ J + E @ G 2 +  
F @  G2. 

If C = F = 0 and E = I we have the lexicographic product D[G,] .  Another 
interesting subcase comes from taking C = D = 0, E = (~ ~) and F = (0 ~), which 
yields the switching graphs Sw(G0 and Sw(G2). These are regular even if Gt and 
G2 are not, and are known [8] to be isomorphic if and only if G~ and G2 are 
switching equivalent. Thus, for example, if G; and G2 are cospectral nonisomorphic 
trees then Sw(G0 and Sw(G2) are cospectral nonisomorphic regular graphs. This 
follows from the easily proved fact that switching equivalent trees are isomorphic. 

Constructions 3.6 and 3.7 have the property that the graphs constructed will be 
isomorphic if G~ and G2 are isomorphic. This is not a necessary characteristic of 
T(A) and T(B), as our next example demonstrates. 

Let G~ and G2 be bipartite graphs with parts of cardinality m and n. For i = 1, 2, 
label G+ so that 

0 Bi) 
G+ = BT 0 ' 

where the partition is m + n. Define 

0 E =  ( / "  0 ) ,  E * = ( 0  0 I , )  and C~= (0 B , ) .  

3.8. LEMMA.  If G~ and G2 are cospectral then, for any monomial f in four 
noncommuting variables, t r f (E,  E*,  C;, C T) = try(E, E *, G ,  CT2 ). I f  also m = n 
then tr f (E,E*,  C~, C~) = tr f (E*,E,  C T, (72). 

Proof. The only monomials f for which t r f (E ,E*,  C,  C T) is possibly nonzero 
are those for which f(E, E*, C,  C T) equals (CCT) r or (CTC) ~ for some r ~ 0. The 
first claim now follows from Lemma 3.5, together with the observation that 
tr(CiCT)' = tr(CTC+)r _ ~+~ ~2, - 2,- ,-, + if r -> 1. The second claim can be proved by noting, 
in addition, that tr(CCT) ° = m and tr(C~C)° = n. 

Lemma 3.8 can be used to produce many diverse pairs of cospectral graphs. For 
example, if G~ and G2 are cospectral as above, and H~ and /-/2 are arbitrary 
cospectral graphs, then the four "half-cartesian-products" <3+ @ I + E* @/4/ 
(i, j = 1, 2) are cospectral. However,  the most interesting application is perhaps the 
partitioned tensor product, first defined in [9]. 
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3.9. T H E O R E M  [9]. Let G, and G2 be cospectral bipartite graphs with parts of 
cardinality m and n. Define E, E*,  C, and C2 as above. Let G and H be arbitrary 
graphs and let Q be an r x s matrix, where r and s are the orders of G and H, 

respectively. Define 

P = E G G  + E * Q H + C ~ @ O + G @ Q  r, 

and 

P * =  E * @ G  + E @ H  + C ~ @ O  + C T ( ~ Q  ~. 

Then 

4~(P)@(H) ...... = ~ ( P * ) 4 , ( G )  . . . .  • 

Consequently, da(P) = da(P*) if either m = n or oh(H) = cb(G). 

Proof. Without  toss of generali ty,  assume that m >-n. A d d  m - n  isolated 
vertices to the second parts  of Gt and G2. The  effect is to add m - n isolated copies 

of H to P and m - n isolated copies of G to P*.  The  claim is now immedia te  from 
3.4 and 3.8. []  

Informally,  P is obta ined as follows: Replace each vertex in the first part  of G, 

by a copy of G, and each vertex in the second part  by a copy of H. Then,  for  each 

edge of G,,  join the cor responding  copies of G and H according to the entries of Q. 

An example is shown in Figure 4. 

G I  " G2 " o - - - o - - - - o  G - H - 

0- 
0 0 

0 0 

1 

P p- 

Figure 4 
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In [9] it is shown that the smallest pair of cospectral graphs, the smallest pair of 
cospectral forests and the smallest pair of cospectral connected graphs can each be 
obtained using the partitioned tensor product. 

Of course, there is no guarantee that P and P* are nonisomorphic in general, 
although some sutficient conditions are known (see [9]). A special case of Theorem 
3.9 has been rediscovered by Schwenk, Herndon and Ellzey [16]. 

4. Cespectrai points 

4.1. If G is a rooted graph with root v, then Go denotes the graph formed by 
deleting v from G. Given two rooted graphs G and H with roots v and w, 
respectively, we can define the following composite graphs: 

(i) G"  H is formed from G and H by identifying v and w. 
(ii) G ~ H is formed from disjoint copies of G and H by adding one edge 

joining v and w. 
(iii) G --- H is formed from disjoint copies of Go and Hw by joining every vertex 

in G, which is adjacent to v in G to every vertex in Hw which is adjacent to w in H, 
Examples are given in Figure 5. 
The spectrum of G .  H was first determined by Schwenk [14]. That of G ~ H is 

just a special case. The spectrum of G -- H has not been previously determined. 

OoH- 

O-H- 

OBH° ~ ~  7 

Figure 5 
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4.2. T H E O R E M .  
(i) 4~(G" H ) =  ~b(G)ga(H+)+ ck (G~)6 (H) -x4~(Go)~(H+);  

(ii) 4,(G ~ H )  = ¢ b ( G ) ( a ( H ) -  6(Go)~b(H+); 
(iii) 4,(G =- H )  = ¢b( Go )~b(H+ ) - (xcb(G~ ) - ¢b(G))(x~b(H+ ) - ok(H)). 

Proof. For part (i), and thus (ii), see [14] or [4]. To prove part (iii) we need some 
additional notation. Let M and N be square matrices of order m and n, 
respectively. Let a and b be (column) vectors of length m and n, respectively. The 
notation M I,, represents the matrix (o ,~). The two claims following can be proved 
by applying elementary row and column operations. For any a, 

b ( M  + aaa x) = a~b(M [a)  + (1 - ax )~b(M). (1) 

4~ M 0 = d ~ ( M ) 4 ~ ( g l b ) + c b ( N ) c b ( M l a ) - x c k ( M ) c b ( N ) .  (2) 
0 N 

Now suppose G = Go [g and H = H~ [h. Then 

( H w -  O h h T ) +  kkT] 

where kT= (gThT). Application of (1) and (2) produces 

qS(G -~ H )  = (~(G~)dp(Hw - hh I ) + qb(G++)~b(G, - ggT) 

- -  ~b(H+ - hh T)~b(G~ - g g T ) .  

Further application of (2) gives the desired form. [] 

4.3. C O R O L L A R Y .  ~b(G H H ) +  ~b(G - H )  = x~b(G. H) .  [] 

4.4. C O R O L L A R Y .  For i = 1,2, let G °> and H ¢'~ be rooted graphs with roots v <'~ 
and w ~'~, respectively. Suppose that ~b(G~°), ~b(G~?,,), 4~(H ~°) and ~b(H~,>) are 
independent of i. Then 4~(G °~. H°~), ~,(G <')H H ~'~) and ¢b(G ~'~=-- H ~')) are indepen- 
dent of i. [] 

The case ~b(G °~. H °~) was used by Schwenk [14] to prove that almost no tree is 
uniquely identified by its spectrum. Stronger results of similar form appeared in [10] 
and especially in [12]. A generalization (for the " . "  operation) to graphs rooted at 
more than one point has been given by Schwenk [15]. Construction 2.1 can also be 
described in this manner. 
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