
UNIFORM GENERATION OF RANDOM REGULAR GRAPHS

OF MODERATE DEGREE

Brendan D. McKay

Computer Science Department, Australian National University

GPO Box 4, ACT 2601

AUSTRALIA

Nicholas C. Wormald

Department of Mathematics and Statistics, University of Auckland

Private Bag, Auckland

NEW ZEALAND

Abstract

We show how to generate k-regular graphs on n vertices uniformly at random in expected

time O(nk3), provided k = O(n1/3). The algorithm employs a modification of a switch-

ing argument previously used to count such graphs asymptotically for k = o(n1/3). The

asymptotic formula is re-derived, using the new switching argument. The method is ap-

plied also to graphs with given degree sequences, provided certain conditions are met. In
particular, it applies if the maximum degree is O

`|E(G)|1/4
´
.

1. Introduction.
Random regular graphs have come under ever increasing scrutiny in recent years.

However, it is not easy to generate k-regular graphs on n vertices uniformly at random.
It is known how to do this for small k in expected time O(ek2/2nk) per graph, using
a procedure which does not necessarily terminate (see Wormald [W] or Bollobás [B]);
but even for k ≈ log n this is not polynomial expected time. If one insists on an
algorithm which always terminates, the picture is even worse: it can be done [W] for
k = 3 and 4 but already the algorithm is very complicated. On the other hand, one can
slacken the uniformity constraint slightly, and ask for an almost uniform probability
distribution. Sinclair and Jerrum [SJ] were successful at generating random graphs of
this type with given degrees in polynomial time, as long as the degrees are bounded
above by O(m1/4) where m is the number of edges. For this, they employed Markov
processes, and asymptotic enumeration results obtained by McKay [M] using switchings.

Our aim here is to show how to generate graphs with given degrees uniformly at
random in polynomial time. Our result applies to a slightly wider range of degree se-
quences then Sinclair and Jerrum’s. To do this we combine features of the basic method
of the algorithm for generating k-regular graphs in [W] with a type of switching related

Typeset by AMS-TEX

1

to that in [M]. This new type of switching also enables extension of the asymptotic
enumeration results (see McKay and Wormald [MW]).

Our model of a graph G with vertex degrees k1, . . . , kn is a set of M = Σki points
arranged in cells of sizes k1, k2, . . . , kn. We take a partition (called a pairing) P of the
M points into 1

2M parts (called pairs) of size 2 each. The degrees of P are k1, . . . , kn.
The vertices of G are identified with the cells and the edges with the pairs; each edge of
G joins the vertices in which the points of the corresponding pair lie. A loop of P is a
pair whose two points lie in the same vertex. It should cause no confusion if we refer to
the cells as vertices. A multiple pair is a set of j ≥ 2 pairs each involving the same two
vertices; this is a double pair if j = 2. The mate of a point is the other point in its pair.

If the pairing has multiple pairs then G is strictly a multigraph rather than a
graph; we also forbid loops in a graph. For j ≥ 2, a j−path is a sequence p1, . . . , p2j of
points such that p2i and p2i+1 are distinct but in the same vertex, for i = 1, . . . , j − 1.
Note that each non-loop double pair contains four distinct 2-paths, two beginning at
each vertex involved.

We make use of the following two operations on a pairing:
I `-switching:

Take pairs {p1, p6}, {p2, p3}, {p4, p5}, where {p2, p3} is a loop, and p1, p2, p3, p4, p5

and p6 are in five different vertices. Replace these pairs by {p1, p2}, {p3, p4}, {p5, p6}.
In this operation, none of the pairs created or destroyed is permitted to be part of a
multiple pair.
II d-switching:

Take pairs {p1, p5}, {p2, p6}, {p3, p7}, {p4, p8}, where p2 and p3 are in the same
vertex, as are p6 and p7, but the vertices containing p1, p2, p4, p5, p6, p8 are all distinct.
Replace these pairs by {p1, p2}, {p3, p4}, {p5, p6}, {p7, p8}. Note that these form two
2-paths. In this operation, none of the pairs created or destroyed is permitted to be
part of a multiple pair, except that {p2, p6}, {p3, p7} form a double pair.

A forward `-switching is an `-switching as described, and a backward `-switching
is the reverse operation. We use the same convention for d-switchings. Note that a
forward `-switching always reduces the number of loops by 1 and does not create or
destroy double pairs. Similarly, a forward d-switching reduces the number of double
pairs by 1 and neither creates nor destroys loops. (See Figure 1.)

In the next section, we analyse random pairings and the number of ways that
the switching operations can be carried out in pairings with given numbers of loops and
double pairs. From this, McKay’s formula for the asymptotic number of k-regular graphs
is re-derived in Section 3, and in Section 4 we give a procedure DEG for generating
degree-constrained graphs uniformly at random. In Section 5, we show how to reduce
the asymptotic average-case time complexity of DEG in the case of regular graphs.

2. Preliminary results.
In this section, we consider a pairing P with M points and degrees k1, . . . , kn,

with ki ≤ k = k(n) for i = 1, . . . , n. The first four lemmas, 1 to 3′, refer to such a
pairing P uniformly at random. The notation o, O and ∼ refers to n tending to ∞,
as does → when used in connexion with functions, and our result are uniform over all
sequences k1, . . . , kn as above, provided M →∞. We use E to denote expectation, and

2

put

M2 = M2(k1, . . . , kn) =
n∑

i=1

ki(ki − 1).

Lemma 1. The probability of t given pairs occurring in P is at most (M−2t)−t, which
is asymptotic to M−t for t fixed.

Proof. To be precise, the probability is[
M
2

]
t
2T

[M]2t
.

Lemma 2. The probability that P contains at least one triple pair is O
(

k2M2
2

M3

)
and

the probability of at least one double loop is O
(

k2M2
M2

)
.

Proof. By Lemma 1, the expected number of triple pairs (other than triple loops) is

M−3
∑

1≤i<j≤n

6
(

ki

3

)(
kj

3

)
≤ 6M−3


 ∑

1≤i≤n

(
ki

3

)
2

<
1
6
M−3 (kM2)

2
.

Similarly, the expected number of double loops is

M−2
∑

1≤i≤n

3
(

ki

4

)
< k2M2/(8M2).

Let ` denote the number of loops, and let d denote the number of double pairs
(not in triple pairs) in P . For counting regular graphs, we use the following:

Lemma 3. Let ω(n) →∞. If k2 < M/24, we have

Pr{d > k2 + ω(n) or ` > 2k + ω(n)} = o(1).

Proof. By Lemma 1,

E

((
d

k2

))
≤ 1

(k2)!

(
1
2

(
M
2

)
k2

(M − 4k2)2

)k2

.

Hence,

Pr{d ≥ k2} ≤ E

((
d

k2

))
= O

((
9
25

k2

)k2/(
k2

e

)k2)
= O

((
9e

25

)k2)
.

Separate consideration of the cases k →∞ and k bounded, and a similar computation
for `, give the lemma.

For the generation of graphs, we will use the following similar result.

3

Lemma 3′. For k = o(n), and n sufficiently large,

Pr

{
d >

(
M2

M

)2

or ` >
M2

M

}
<

3
4
.

Proof. By Lemma 1, E(`) < 1
M

∑(
ki

2

)
= M2

2M . Thus, Pr
{
` > M2

2M

}
< 1

2 . Similarly,

E(d) < 2
M2

∑
1≤i<j≤n

(
ki

2

)(
kj

2

)
< 1

M2

(∑
1≤i≤n

(
ki

2

))2

=
(

M2
2M

)2
. So Pr

{
d >

(
M2
M

)2}
<

1
4
.

Let C`,d be the set of pairings with ` loops, d double pairs, and no triple pairs or
double loops.

Lemma 4. Denote an operation taking an element of Ci,j to an element of Ck,` by
Ci,j → Ck,`. For each of the following operations, the number, m, of ways of applying
the operation is as stated.
(a) forward `-switching C`,d → C`−1,d:

2`M2 ≥ m ≥ 2`M2

(
1−O

(
k2 + ` + d

M

))
,

(b) backward `-switching C`−1,d → C`,d:

MM2 ≥ m ≥ MM2

(
1− (k − 1) (6(` + 2d) + (k − 1)`)

M2
− 2(k − 1)(k + 2)

M

)
.

(c) forward d-switching C0,d → C0,d−1:

4dM2 ≥ m ≥ 4dM2

(
1−O

(
k2 + d

M

))
,

(d) backward d-switching C0,d−1 → C0,d:

M2
2 ≥ m ≥ M2

2

(
1− (k − 1)

(
16d + 9(k − 1) + 3(k − 1)2

)
M2

)
.

Proof. Given a pairing in C`,d to which a forward `-switching is to be applied, we can
choose the points p1 and p4 in M ways each, and the point p2 in 2` ways. This determines
precisely how the switching is to be applied; for example, the point p3 is the mate of p2.
Hence the upper bound on m in (a). For some choices of p1, p4 and p2 the switching
cannot be performed (for example, if p1 = p4) or does not yield an element of C`−1,d

due to the creation or destruction of other loops or multiple pairs. These “bad” choices
are (over) estimated and subtracted to give the lover bound on m in (a). We will not
need a very accurate estimate of this. Similarly, in (b) we can choose the points p2 and
p3 in M2 ways, and then p6 in M ways. Hence the upper bound. For the lower bound,
there are three types of things that can go wrong:

4

(i) a pair chosen might be in a loop or double pair,
(ii) a vertex containing pi for i ≤ 4 might contain p5 and p6,
(iii) the selection might be such that a double pair would be created in the switching.

That is, one of three forbidden edges is already present in the graph (one of these
is a loop).

We bound the number of possibilities in (i) by 3(2`+4d)(k−1)M , in (ii) by 6M2(k−1),
and in (iii) by `M(k − 1)2 + 2M2(k − 1)2. The lower bound follows.

In (c), we choose the points p2 and p3 at the same end of a double pair in 4d
ways, and then points p1 and p4 in M ways each, and for the lower bound subtract the
number of bad choices as in (a). In (d), we choose p2 and p3 in M2 ways, and p6 and p7

similarly. A chosen pair can be a double pair in at most 16d(k − 1)M2 ways, a vertex
can simultaneously contain p1, p2, p3 or p4 and p5, p6, p7, or p8 in at most 9M2(k − 1)2

ways, and forbidden pairs can be present in at most 3M2(k − 1)3 ways.

3. Enumeration.
We show here that the bounds in Lemma 4 are sufficiently accurate to give a

simpler proof of the formula given by McKay [M] for the asymptotic number of k-regular
graphs for k = o(n1/3). The precise forms of the lower bounds are not even required.
We will use this idea elsewhere [MW] to extend the asymptotic formula for counting
graphs by degree sequence, but here we confine the enumerative discussion to the simpler
regular case. We include the proof of the following result because it bears more than
passing resemblance to the algorithm given in Section 3 for generating these graphs.

Theorem 1. (McKay [M]) If k = o(n1/3), the number of labelled k-regular graphs on
n vertices is

(nk)! exp
(

1−k2

4

)
(nk/2)!2nk/2

(1 + o(1))

uniformly as n →∞ with kn even.

Proof. Note that for k-regular graphs, M = kn and M2 = k(k − 1)n.

Set c`,d = |C`,d|. Suppose d < ω(n) + k2 and ` < ω(n) + k where ω(n) → ∞
arbitrarily slowly. By Lemma 4(a) and (b),

c`,d

c`−1,d
=

(k − 1)
2`

(
1 + O

(
k + ω(n)

n

))

for ` ≥ 1, and from (c) and (d),

c0,d

c0,d−1
=

(k − 1)2

4d

(
1 + O

(
k + ω(n)

n

))
.

Hence
c`,d

c0,0
=

1
d!`!

(
k − 1

2

)2d+`(
1 + O

(
k + ω(n)

n

))d+`

=
1

d!`!

(
k − 1

2

)2d+`

(1 + o(1)) .

5

Thus the sum of c`,d over 0 ≤ ` ≤ 2k + ω(n) and 0 ≤ d ≤ k2 + ω(n) is

c0,0 exp
(

(k−1)2

4 + k−1
2

)
. So by Lemma 3, Pr{C0,0} ∼ exp

(
1−k2

4

)
, and the

theorem follows.

4. Generation of random graphs with specified vertex degrees.
We describe in this section a procedure DEG whose input is n and k1, . . . , kn and

output is a random graph on n vertices of degrees k1, . . . , kn. It uses two procedures,
which eliminate loops and multiple pairs from a random pairing, but which terminate
unsuccessfully with a certain probability. Such a termination we denote by restart; in
this case DEG should be repeated. We assume all the ki are non-zero to make it easier
to state complexity results. In particular, we have M ≥ n.

Let B1(B2, B3, B4) denote the upper(lower, upper, lower, respectively) bound in
Lemma 4(a) ((b), (c), (d), respectively). We first have a procedure for eliminating
loops.

procedure NO LOOPS (P); [P is a pairing]
while P has at least one loop do

begin
obtain a pairing P ′ by applying a random forward `-switching to P ;
m1: = the number of ways to apply a forward `-switching to P
m2: = the number of ways to apply a backward `-switching to P ′

restart with probability 1− m1B2
m2B1

; otherwise P : = P ′;
end;

We next define a procedure NODOUBLES which is identical to NOLOOPS except
that “loop” is replaced by “double pair”, `, by d, B1 by B3, B2 by B4, m1, by m3, and
m2 by m4. Finally, we have the following procedure for generating a random graph G
on a vertices of degrees k1, . . . , kn :

procedure DEG (n, k1, . . . , kn);
begin
select a pairing P uniformly at random from the pairings of degrees k1, . . . , kn;
if P has any multiple pairs of cardinality greater than 2,

or a double loop, or more than
(

M2
M

)2
double pairs

or more than M2
M loops then restart;

if P has any loops then NOLOOPS (P);
if P has any double pairs then NODOUBLES (P);
let G be the graph corresponding to P ;
end.

Theorem 2. Successful terminations of DEG generate graphs of degrees k1, . . . , kn

uniformly at random.

Proof. We show that at each stage in the algorithm, the probability of a pairing P
occurring, given that it is in C`,d, is |C`,d|−1. This is true immediately of the initial
pairing. It only remains to show that each iteration of the while loops in NOLOOPS
and NODOUBLES preserves this property.

6

So assume that P , as in the start of NOLOOPS, is chosen uniformly at ran-
dom from C`,d. Consider P ′ obtained by applying a random forward `-switching to P .
This particular `-switching is performed with probability 1

m1
|C`,d|−1; but the are m2

`-switchings leading to P ′, each with this probability. So the probability of getting a
particular P ′ appearing is m2

m1
|C`,d|−1. The probability of accepting this as the new P in

NOLOOPS is m1B2
m2B1

, which is ≤ 1 by Lemma 4(a) and (b). Hence, an arbitrary pairing
in C`−1,d occurs as the new P with probability B2

B1
|C`,d|−1. As this is independent of the

old P , and as the only other possible termination within the while loop of NOLOOPS
is a restart, this means that each P in C`−1,d is equally likely to occur at the beginning
of the next iteration of the of the while loop. The analysis of NODOUBLES is similar,
and the theorem follows.

Theorem 3. DEG can be implemented so that it generates graphs with n vertices of
degrees 1 ≤ k1, . . . , kn ≤ k uniformly at random in expected time O(Mk2 + M2

2) per
graph, provided k3 = O(M2/M2) and k3 = o(M + M2).

Note. Mk2 + M2
2 ≤ nk3 + n2k4. Also, k = O(M1/4) implies k3 = O

(
M2

M2

)
and

k3 = o(M).

Proof. We bound the expected time, per successful termination of DEG, in a sequence
of repeated runs. For this, we take an upper bound on the time taken before a restart
or successful termination, and then divide by the probability of not restarting in a single
run.

Consider firstly the case k3 = o(M2/M2). The initial pairing P can be generated
by choosing firstly a mate for one point at random from all the other points, secondly
a mate for another unused point at random from the remaining points, and so on.
Assuming that a random number in [1, . . . , j], j ≤ M , can be generated in constant
time, the time taken to generate P is O(M). Checking for triple pairs and double loops,
and finding the numbers of double pairs and loops can be done in time O(Mk2). By
Lemmas 2 and 3′, a restart occurs at this point with probability at most 3

4 + o(1).
It only remains to bound the time taken by a run of NOLOOPS or NODOUBLES.

We analyse NODOUBLES in detail, since better bounds can easily be obtained for
NOLOOPS, due to the smaller number of loops than double pairs in the worst case.

Note that NODOUBLES is only called if there are at most
(

M2
M

)2
double pairs, and

so this is an upper bound on the number of iterations of the while loop. This also means
that we can assume M2 ≥ M in NODOUBLES; otherwise, it cannot be called. We can
obtain P ′ easily enough by mimicking the proof of Lemma 4(c): choosing p2, p3, p1 and
p4 at random in one of 4dM2 = B3 ways, with each choice equally likely. At this point, if
the d-switching cannot legally be performed, restart. The probability of not restarting
here is m3/B3, so m3 does not need to be computed. However the time taken to compute
m4 determines the overall expected run-time. We need m4 since the next thing to do
is to restart with probability 1− B4

m4
, thus achieving the desired probability 1− m3B4

m4B3

of a restart in this step of the algorithm. Note that by Lemma 4, this probability is
O
(

k2+d
M + kdk3

M2

)
= O

(
k3

M2

)
as M2 < kM . Hence, the probability of not restarting the

7

whole execution of NODOUBLES is
(
1−O

(
k3

M2

)) (
M2
M

)2
= 1−O

(
k3M2
M2

)
= 1−o(1).

A similar calculation for NOLOOPS gives 1−O
(

k3

M

)
= 1− o(1).

If ease of implementation were of prime importance, one could calculate m4 in time
O(M2

2) by running through all M2
2 choices of p1, p5, p3 and p7 as in the proof of Lemma

4(d), and then testing each (in constant time) for allowability of the reverse d-switching.
(Recall that M2 ≥ M . An adjacency matrix of the graph of the pairing is useful here.)
This can be repeated for each iteration of the while loop in NODOUBLES; i.e. at most(

M2
M

)2
times. The analogous process for NO LOOPS requires O(MM2), repeated up to

M2
M times. This would give an overall average-case time complexity for NODOUBLES

of O
(

M4
2

M2

)
= O(k2M2

2) = O(n2k6). On the other hand, instead of recalculating m4 for
each iteration, one could calculate m4 in the initial pass and then update its value for
the next iteration by calculating the change due to the d-switching. Each of the O(1)
pairs involved in a switching requires time O(kM2) to find its contribution to m4 (either
positive or negative) as one of the pairs to be switched out in a reverse d-switching, and
time O(k4) as one of the pairs to be switched in. The update must be performed at
most

(
M2
M

)2
= O

(
M2
k3

)
times, yielding the time complexity O(M2

2) for NODOUBLES,
since k ≤ n ≤ M ≤ M2 here. As seen before, NOLOOPS requires at most O(M2

2), and
we are done in the case k3 = o(M2/M2).

For k = O(M2/M2) with k 6= o(M2/M2), triple pairs can become a problem.
However, by using inclusion-exclusion (or Bonferroni’s inequalities) it is easy to show
that the number of triple pairs in such a random pairing has asymptotically a Pois-
son distribution with mean at least cM2/M2 for some c > 0. (This is similar to the
argument in Wormald [W2]. Alternatively, it can also be derived by using switch-
ings as in McKay [M].) Hence, the probability of no triple pairs occurring is e−O(1).
The only other feature of the proof which changes for k = O

(
M2

M2

)
is the probabil-

ity of executing NODOUBLES without a restart: again, it is
(
1−O

(
k3

M2

)) (
M2
M

)2
=

exp
(
−k3M2

M2

) (
as k3 = o(M2)

)
, which is exp (−O(1)). The number of restarts required

per successful termination is thus expected to be O(1).
We note finally that if M2 < M , then NOLOOPS and NODOUBLES are never

called, and the time reduces to O(Mk2).

5. Generation of random regular graphs.
By Theorems 2 and 3, DEG generates k-regular graphs on n vertices uniformly

at random in expected time O(n2k4) provided k = O(n1/3), since M = nk and M2 =
nk(k − 1). We improve this to the following.

Theorem 4. DEG can be implemented so as to generate k-regular graphs on n vertices
uniformly at random in expected time O(nk3) per graph, provided k = O(n1/3).

Proof. From the proof of Theorem 3, we see that the theorem will follow if NOLOOPS
and NODOUBLES can each be implemented with a maximum time O(nk3) between
restarts. To achieve this, we employ the updating technique and moreover calculate
m4 in a very special way to begin with.

8

Take a pairing P with d double pairs (and no loops or triple pairs), let F denote the
set of pairs in double pairs, and let E denote the edge set of the multigraph of the pair-
ing. Note that m4 is the number of ordered pairs of 2-paths (p1, p2, p3, p4, p5, p6, p7, p8)
satisfying none of the following criteria, where v1, v2, v3, v4, v5 and v6 denote the vertices
containing p1, p2, p4, p5, p6 and p8 respectively:

(i) {p1, p2} ∈ F
(ii) {p3, p4} ∈ F
(iii) {p5, p6} ∈ F
(iv) {p7, p8} ∈ F
(v) v1 = v4

(vi) v1 = v5

(vii) v1 = v6

(viii) v2 = v4

(ix) v2 = v5

(x) v2 = v6

(xi) v3 = v4

(xii) v3 = v5

(xiii) v3 = v6

(xiv) v1v4 ∈ E
(xv) v2v5 ∈ E
(xvi) v3v6 ∈ E.
Conditions (i) - (iv) and (xiv) - (xvi) ensure that the switching will not involve double
edges, and given that, (v) - (xiii) ensure that v1, . . . , v6 are distinct. For i = 1, . . . , 16,
let Di denote the set of ordered pairs of 2-paths satisfying the ith criterion. Then by
inclusion-exclusion,

m4 =
16∑

i=0

(−1)i
∑

|Dj1 ∩ . . . ∩Dji
| (1)

where the second sum is for 1 ≤ j1 < . . . < ji ≤ 16, and the empty summation is taken
to be n2k2(k − 1)2 (the number of ordered pairs of 2-paths with no restrictions).

To compute some of the terms in (1), we use the 3-path structure of the pairing,
defined as follows. Let T denote the set of points, let V denote the vertex set of the
multigraph, let a, d ∈ V , and let b and c each denote either a point or a special symbol
(∗ say) used to mark a sum over all points. For b, c ∈ T , let sa,b,c,d denote 1 if there
is a 3-path beginning with b which is in vertex a, and ending with c which is in vertex
d, and 0 otherwise. Then put sa,∗,c,d =

∑
p∈T sa,p,c,d, and define sa,b,∗,d and sa,∗,∗,d

similarly. The 3-path structure of the pairing is the set of numbers sa,b,c,d.
The non-zero elements of the 3-path structure can be determined in time O(nk3)

by running through all 3-paths and incrementing the relevant numbers (which can be
stored in an O(n3) array with constant look-up time). We call the the s-array. Records
of which entry non-zero can be stored in an O(nk3) linked list

(
so that all such entries

can later be found in time O(nk3)
)
, called the s-list, with a pointer from each s-array

element to the corresponding s-list element (for constant-time deletion and insertion,
and eliminating the need to initialise the s-array to zeros). When a d-switching is
performed, each edge inserted or deleted occurs in O(k2) 3-paths and hence the above
data structure can be updated in time O(k2).

9

We claim that each of the terms in the second sum in (1) can be computed in
constant time from a set of numbers, including the 3-path structure, which is computable
in time O(nk3) and can be updated after a single d-switching in time O(k2). This gives
the stated complexity of O(nk3).

It only remains to explain how to deal with the 216 terms in (1). We have already
treated the case i = 0, and each of the 16 terms for i = 1 are similar because the answer
does not depend on the pairing given n, k and d. For example, |D4| = nk2(k− 1)2 since
for v1 = v4 we can choose p1, p2, p3, p4 in nk(k−1) ways, then choose p5 to be anything in
v1 (in k ways), and then p6, p7, p8 in k− 1 ways. Similarly, |D14| = (nk− 2d)k2(k− 1)2,
since there are nk − 2d ordered pairs of adjacent vertices

(
eligible for (v1, v4)

)
and

k(k − 1) ways to choose each 2-path from there.
We now turn to i ≥ 2. For these cases, possibly the most difficult being D14∩D16,

some computation needs to be done on the given pairing. Consider D14 ∩D16 first. For
this, we wish to find the number of possibilities for pairs {p1, p2}, {p3, p4}, {p5, p6},
{p7, p8} such that {p2, p1} and {p5, p6} form the beginning and ending of a 3-path, as
do {p3, p4} and {p8, p7}, and p2 and p3 share a common vertex v2, p6 and p7 share a
common vertex v5, p2 6= p3 and p6 6= p7. Without the last two constraints, this number
is
∑

v1,v2∈V s2
v1,∗,∗,v2

and similarly by inclusion-exclusion,

|D14 ∩D16| =
∑

v1,v2∈V


s2

v1,∗,∗,v2
+ sv1,∗,∗,v2 −

∑
p∈P

(
s2

v1,p,∗,v2
+ s2

v1,∗,p,v2

) .

This can be computed in time O(nk3), using the s-list to find the non-zero terms.
Moreover, the value of each term in this expression can be updated to time O(k2) when
a d-switching is performed since at most this many terms in the s-array are affected.

We only have 65, 518 terms in (1) left to deal with. We leave these as an exercise
for the reader. We do have the following hints: D14 ∩ D15 ∩ D16 can be done easily
by restricting the calculation for D14 ∩ D16 to the case that v2 and v5 are adjacent.
Combinations such as D5 ∩D16 are probably best handled using an array of data for
2-paths as well as 3-paths. Anything involving any of D1 to D4 is as easy as the
corresponding case excluding these sets, since there are O(k2) double pairs, which can
be located in advance in time O(nk2) and listed for ready reference in the future. Often,
it will suffice to look at all such double edges, and all pairs of 2-paths emanating from
either end

(
in time O(k6) = O(nk3)

)
. An adjacency matrix for the multigraph may

come in handy. (Again, pointers can be used to eliminate the need to initialise this.)
From here, combinations involving more of the Di get progressively easier to deal with,
and almost all of the terms in (1) can be shown to be 0 always.

References

[B] B. Bollobás, Random Graphs, Academic Press, London, 1985.

[M] B.D. McKay, Asymptotics for symmetric 0-1 matrices with prescribed row sums, Ars Combi-

natoria 19A (1985), 15-25.
[MW] B.D. McKay and N.C. Wormald, Asymptotic enumeration by degree sequence of graphs with

degree o(n1/2), to appear.

[SJ] A. Sinclair and M. Jerrum, Approximate counting, uniform generation and rapidly mixing
Markov chairs, Internal report CSR-241-87, Department of Computer Science, University of

Edinburgh (1987).

10

[W] N.C. Wormald, Generating random regular graphs, Journal of Algorithms 5 (1984), 247-280.
[W2] N.C. Wormald, The asymptotic distribution of short cycles in random regular graphs, J. Com-

binatorial Theory (Series B) 31 (1981), 156-167.

11

