PRACTICAL GRAPH ISOMORPHISM
Brendan D. McKay

Current address: Computer Science Department

Department of Computer Science Vanpderbilt University
Australian Mational University .
Canberra, ACT 0200, Australia Nashville, Temnessee 37235

bdm@&ecs.anu.edu.au

We develop an imgproved algorithm for canonically labelling a graph
and finding generators for its automorphism group. The emphasis 15 on the
power of the algorithm for solving practical problems, rather then on the
theoretical niceties of the algorithm. The resuit is an implementation which
con successfully handle many graphs with o thousand or more veriices, and

is very likely the most powerful graph isomorphism program currently in use.

INTROCDUCTION

In this paper we discuss the design of an algorithm for canoni-
cally labelling a vertex-coloured graph and for finding generators for
its automorphism group. This algorithm is & descendant of one described
in McKay[14], which in turn was descended from one which first appeared
in McKay[12]. Other algorithms which also employ some of the ideas
used by our algorithm include those of Mathon [111, Arlazarov, Zuev,
Uskov and Faradzev [1] and Beyer and Proskurowski [2]. However, we are
confident that our algorithm is significantly more powerful than any
other published algorithm for the practical solution of the jsomorphism
problem for general graphs. On the few occasions where the proof of a

non-trivial assertion is not given here, 1t can be found in McKay [15].

1.1 Sets and graphs

In this paper V will always denote the set {1,2,---,n}. The
set of all labelled simple graphs with vertex set ¥ will be denoted by
GV). If GeG(V) and veV, N{v,G) is the set of all elements of V
which are adjacent to v in G. Any other graph theoretic concepts not
defined here can be found in [4].

let X be a set and let < be a linear (total) order on X.
Suppose Z is a set whose elements are finite sequences of elements of

Congressus Numerantium, Vol. 30 (1981), pp. 45— BY

X (the length may vary). Then the lezicographic ordering of Z induced by
< 1is the linear order < defined as follows. 1f o — (21,22, -+, 26) € Z

and B = (y1,y2, -, y) e Z then a < f# either of the following are true,

(1) For some ¢, 1 <+t < min{k,{}, we have z; = y; for 1 < ¢
and z: << .

(1) 2=y for 1 <d <k and { > k.

If X is a linearly ordered set, then min X denotes the minimum
element of X. In particular, min® = oo. The function max is defined
similaerly,

1-2 Partitions

A portifion of the set V is a set of disjoint non-empty subsets of
V whose union 1s V. An ordered partition of V 1is a sequence (Vi, Ve, -, V2),
such that {V1,V, ---,V;} is a partition of V. The set of all partitions
0of V and the set cof all ordered partitions of V will be denoted by
(V) and fJ(V) respectively. For notational economy we also define
o'y = ovyu gv).

The elements of a partition {or ordered partition) = EH*(V]
are usually called its cells. A iriwial cell of 7 is a cell of cardinality
one; the element of such a cell is said to be Fred by 7, If every cell
of w is trivial, then 7 is a discrete partition, while if there is only
one cell, o is the unit partition.

If my, ﬂgEH*{V], we write i ~ 75 if m; and w: have the same
cells, in some order. We say that m; is finer than wg, denoted m < o,
if every cell of m 1is a subset of some cell of 7z Under the same
conditicns, mo 1s coarser than w,. It is well known that the set (V)
forms a lattice under the partial order <. This means that, given 1y,
w2 € [I(V), there is a unique coarsest partition mi Ao € fI{V) such that
T 2 M1 ATz and 7p 2> T A2, and a unique finest partition m v g e IT(V)
such that m < m vwe and 7y < 7; v wy. Each cell .of i1 ATy 15 a non-
empty intersectlon of a cell of m; and a cell of wp. ZBach cell of TV fg
ls a minimal non-empty subset of V which is both a union of cells of
71 and & union of cells of #..

Let m e IT' (V). Then fix(m) is the set of elements of V which
are fixed by #. The support of w is the set supp(m) = V \ fix{w). The
set of minimum cell representatives of m is mer(n) = {ninV;|[Vi e '},

where the minima are under the natural ordering of V.

1:3° Lemma Letm, M€ vy,
(a) £ix(my v m2) = £ix{mi) N fix(ma)
(b) £ix{m A me) 2 £ix{m)U £ix(ma)
(©) supp(my v) = supp(m)U supp(mz)
(d) supp(m A m2) C© supp(m1) N supp(mz)
e) mecr(m v mg) C mer(m) Nmer(wz)

(6) mer(m A mg) = mer(m) U mer(m) a

Let 7 = (Vi,V, + -, Vi) € [I(V). For each z €V define ulz,) =1,
where g € V. If mp, e EQ{V] then we say that m; and w2 are consistent
if, for any z, yeV, u{z,m)<ulym) inplies that u(z, T2) < wly, m2).
As a relation, consistency is symmetric but not transitive. If 7 < 72
and m, and wp are consistent, we indlcate this by writing m =Xz oF

mo > 1. The relation X 1is transitive but not symmetric.

1-4 Groups

For permutation group theory not delineated here see Wielandt
[19]. let 4 be a permutation on V (in other words 4 € Sp,). The image
of v e V under 4 will be denoted by y7. More generally, 1f WC V
then W7 = {w” | w e W}. Similarly, if 7= (Wi, V2 V) e I(V),
then #" = (V], VY, .-, V7). Finally, if Ge G(V) then G” e G(V) has
E(G") = {2"y" | =y € B(G) }-

If 2 € S, then {2 defines a partition 8(12) e IT{V) whose
cells are the orbits of ({2), the group generated by {7. For notational
convenience we will write 6({7}) as 8{y), and fix(72), supp(f?) and mcr((7)
4ill be used as abbreviations for fix(8(:2)), supp(6(12)) and ner(6(£2)),

respectively. The next lemma fcllows easily from Lemma 1-3.

47

1.5 Lemma
al
o))
()

@

Let 2, & C S,.. Then
B(2 U &) = 8(12) v 6(2)

Fix{7 U @) = fix{(2) N £ix(P)

supp(i2 U &) = supp(2) U supp(d), and

mer (2 U &) C wer{?) N mer($). 0

let I' < 5, and let {27 be any set such that an action of each
7€l is defined on each element of 2. Then the stgbiliser of {J in r
is the group I'n ={q el |w”=w for each w e ?}. Elements of [y are

said to fiz {2. The most important cases of this construction are as

follows.

1

(ii}

(din

{iv)

(point-wise stobiliser)

If WOV then 'y ={qel'| "=z for each e W}.

If W= {z1,22,---,2,} we will also write [y as Tzqmg ez,
(set-wise stabiliser)

It WCV then Iwy={qel"| W, =W}

{(partition stabilicer)

If meIT°(V) has cells Wi, V,---,V; then Iy = {qy e I |

VI=V; for 1 <i<r}. Note that this is quite different
from I'ixy ={qel'| 7" =x}, unless = e [F(V).

(automorphism group of graph)

If GeG(V), then the sutomorphism group of G is the
group Aut{G) = (Sa)ic} = {1 € S |GT"=@G}).

48

DEVELOPMENT OF THE ALGCRITHM

In this section we describe the theoretical basis for the

algorithm. The more mundane aspects of its implementation will be ftreated
in Section 3.

2-1 ‘Canonical Labels

A canonical label is a map C: G(V) X [I(V) — G(V), such that
for any G e G(V),m e fI(V} and 7 e 8, we have

€ CGe,mn=G
(c2)y (@7, 7") = C(G,7)
(€3 1f (G, 77) = C(G,7), then 7 = #° for some § e Auf(G‘].

The main use of a canonical label is to solve varlous graph

isomorphism problems as indicated in the following theorem.

2.2 Theorem Let G, Gz € G(V), 7 € (V) and 4 € 8., Then C(Gy,T) =
C(G2 7?) of and only if there is @ permutation § € S, such that Go = G! and

7t = n’.

Proof: The existence of § as required implies that (Gy, 7) = C(Ga,7”) by
Property C2. Suppose conversely that ([Gy,7) = C(Ga,77). By Property Ci,
Gy = G? for some f e §,. Therefore ((Gq, n')}= c(@f) = C[Gl,w"-‘g_lj,
by Property C2. Since C{Gy,)= C(Ga,#7), there is some a & Aut(G;) such
that #7% ' = %, by Property C3, and so 77 = 7®#. But « € Aut(@,), and
50 GzzG*f:G‘fﬁ. 0

The isomorphism problem described in Theorem 2-2 can be thought
of as that of testing vertex-coloured graphs for isomorphism. Given |1r|
colours, we colour the vertices of (i1 which lie in the t¢-th cell of
7 with the ¢-th colour, for 1< ¢ < |n]. We then similarly colour the
vertices of G5 in accordance with #7. This will use the same colours
with the same freguency. Theorem 2.2 now says that C(G,7)= C(Gs,7")
if and only if there is a colour-preserving isomorphism from &; to Go.

The most important case is, of course, when # is the unit
partition (V), in which case Property C3 holds trivially. However we
will maintain the more general setting we have created, since the added

complications will only be slight.

49

23 Equitable Partitions

For GeG(V), veV and WC V, we define dg(v, W) to be the
number of elements of W which are adiscent in G to ». The subscript
G will normallﬁ-’ be suppressed. We will say that = EH'(‘P’) is equitable
{with respect to &) if, for all V¥, ¥s e (not necessarily distinct) we
have d(vi, Vo) = df{wsz, V2). It 1s easy to show that the equitable members
of II{V) form a lattice which is closed under v. Since the discrete
partition is always equitable, it follows that for every w e H[V} there
is a unique coarsest equitable partition €(w) € [I(V) which is finer than

T

One of our first concerns 1in this section will be to study an
efficient procedure for computing &(m) from .

2-4 The Refirement Procedure

The algorithm we give here is a descendant of one first described
in McXay[12]. It actually turns out to be a generalization of an algorithn
of Hopcroft ([8], see also [7]) for minimizing the number of states in

a finite automaton, although 1t was not derlved from the latter.

The algorithm accepts a graph G e G(V), an ordered partition
m e [TI(V) and a sequence a = (Wi, Wh, ---,Wys) of distinct cells of 7.
The result is an ordered partition RB{G,w,a) € II{(V). Under suitable
conditions, to be discussed below, R(G,w, a)~= £(w).

2.5 Algorithm Compute R(G, 1,) given G € G(V), 7 € [T{V) and
o = (W11W2J “'JWM] g .
(1) o=
m.=1

() If (% is discrete or m > M) stopr R(G,ma)=*#

W = Wa
m:=m-+1
k=1

{Suppose & = (V4,Vz, ---, V+) at this point.}

(3 Define {X,, X, ---,Xs) € I(Ve) such that for any z e Xis
y € X; we have d(z, W) < d(y, W) if and only 1f 1< 5.

If (a=1) go to (4

Let # be the smallest integer such that]X,| s maximum
1<t<s)

If (W = Vi for some 7 (m < j < M) Wj =X,
For 1< i<t set Wyqii=Xi

For t{i'S s set Wy :=X;
M=M+4s-1

Update # by replacing the cell Vi with the cells X, Xo, -
in that order (in gsiv).

4 ki=k-4+1
If (k<r) go to (3

Go to (2 0

2.6 Theorem For any G € G(V), 7 € I(V), we have R(G, 7, m) = {(m).

Proof: (a) The value of M —m 1s decreased in Step (2) and is only
increased when # is made strictly finer. Therefore the algorithm is

certain to terminate.

(b) By definition, £(r) < m, so £(r) < 7 at Step (1). Now
suppose that £[r) < ¥ before some execution of Step (3}. 3ince W is &
cell of some partition coarser than E(‘l’r) (ie. some earlier value of 7,
it is a union of cells of &(n). Since §(m) 1s equitable, we must have
that é(m) < & after the executlon of Step (3). Therefore, by induction,
¢(r) < R(G,m,m) <« when the algorithm stops.

(c) Suppose that R(G,m,7) is not equitable. Then for some Y1,
Y: € R(G, 7, n) there are z, y €Y, such that d{z,Ys) # d{y, Y2). Since 7

51

';Xa

is made successively finer by the algorithm, z and y nust always be in
the same cell of .

{d) At Step (1), Y3 is contained in some element of «. lence
Y, must sometime be contained in W for an execution of Step (3).

(e) Since z and y are never separated, d(z, W)= d{y, W}. But
since W is a union of cells of R(G,w, 7), and d(z, Y2) 7 d(y, ¥2), there
is at least one other cell Yz of R(G,w,w) contained in W for which
d(z,Ys) # d(y, Y3). Since Yz and Y; are different cells of R(G,w,w) they
must be separated at some execution of Step (3). At least one of then,

say Yo will then be contained in some new element of o.

{f) Since the argument in (e} can clearly be repeated in-
definitely, the algorithm never stops, contradicting f(a). Therefore our
assunption that R{G,w,7) is not equitable must be false, which proves
that R{G,w,w) == &(n). a

An important advantage that Algorithm 2.5 has over previous
algorithms for computing &(m) is that o can sometimes be chosen to be a
proper subset of w. One method of choosing a is described in the next
theoremn.

2.7 Theorem Let G e G(V), 7€ (V) and suppose that there is some equi-
table partttion m' which 1s coarser than m. Choose o T 7 such that for any
Wen', we have X C W for ot most one X € w\ a. Then R(G,w,) = £(m).

Proof: (a) By the same arguments as in Theorem 2-6, the algorithm will
eventually stop, and £(m) < R(@G,n,a) < 7.

{b) Suppose that E[G,-:r,a) is not equitable. Then for some
Y, Yz e R(G,n,a) there are z, yeY; such that d{z, Y2) # d[y, ¥2). Since
R(G,m,a) < ', and 7' is equitable, there 1s at least one other cell
Y: of R(G,m a) such that d(z,Ys) # d(y, Ya)-

(cy If Yo and Y3 are in different cells of =, the defined
relationship between o, o and x' ensures that at least one of them, say
Y., is contalned in some cell of o at Step (1). We can then take up the
proof of Theorem 2-6 at step (d), and conclude that R{G,w, a) =< &(r).

52

(d) On the other hand, Y, and Y; may be in the same cell of .
Since they are in different cells of R(G, 7, a) they must be separated
at Step (3). At least one of them, say Y., will then be contained in
some new element of o. We can now take up the proof of Theorem 2-6 at
step (e) and conclude as before that R(G,m, o) o= £{r). !

One application of Theorem 2.7 occurs when G is regular and 7
has more than one cell. The unit partition mp is equitable, and so we
can choose o to be w less any one cell. This will be particularly time-

saving if w=={v,V \v) for some v, in which case we can use¢ & = {v)-

A much more important application of Theorem 2.7 will be described
in Section 2.9.

Two very useful properties of Algorithm 2-5 are stated in the
next lemma. Both of them are immediate consequences of the definition
of the algorithm

2.6 Lemma LetG e G(V), T eI(V), « an ordered subset of m and v € 8,.
Then

{a) R(G,ma) =7, and

(o R(GY, 77, ") = R(G,,a)". O

2.9 Partition nests

Let = (v1,ve, - - ¥k) € [7{V) and let v € V; for some . If V=1
define mow = m. If |Vi| > 1 define mov = {Vl,---.W_l,u,v,-\u,ml,---,Vk).
also define 7 1 v = R(G, 7o, ().

Given G e G(V), 7 e[I(V) and a sequence v = v1,v2 **- ¥m-1 of
distinct elements of V, we define the parisiion nest derived from G, T
and v to be [my,Te, ..., Tm|, Where
(@ m = R(G,m,), and
(b} i = Mi1 L i1, foT 254 < m.

It follows from Theorems 2-6 and 2.7 that each m; 1s equitable.
Define N(V) to be the set of all partition nests derived from some
G e G(V), me (V) and vector v of distinct elements of V.

53

2:10 The basic search tree

Let G e G(V) and 7 € [J(V). Then the search tree T(G,m) is the
set of all partition nests v = [my, 7y, - -, %m| € N{V) such that v is
derived fron &, w and a sequence vy,¥s, ' **, ¥m-1 where, for 1 <1< m-1,
vy is an element of the first non-trivial cell of m; which has the
smallest size. This definition implies that |m| < |mig1] for 1 <7 < m.

The elements of T(G,m) will be referred to as modes. The
length |v| of a node v is the number of partitions it contains. If
¥ = |, Mg, -+, Mm] 15 a4 node then Y denotes the node [m1,mg, -+, m}y, for
1<i<m. Thus »™ =p, 1f m > 2 then v is called a successor of
=1 similarly, v is a descemdant of () (and » is an ancestor
of ») 1f 1 <i< m. The roof node [r1] is an ancestor of every node
other than itself. The set of 211 nodes equal to or descended from a
node v constitutes the subtree of T(G,) rooted at v, and is denoted
by T(G,,). If the last partition in a node is discrete, v will be

called a terminal node.

Suppose that v, and i are distinct nodes, nelther of which is a
descendant of the other. Then for some 1, »{ = p{) but p{FF £ {0,
The node {1 will be denoted by v —wy and o5+ by vy—v,.

The natural linear ordering of ¥V can be used to provide an
ordering < of the nodes of T(G,fr]. Let »; and po be distinet nodes. If
¥, is an ancestor of wy then wy < vy. If neither of ¢4 or s 15 an ancestor
of the other, there is a node [my, 7, -+, #m] and vertices wv; £ vy such
that vy — g = [1, M2, -+, T, Tew L 1] and vo—wy = [y, Mo, -, Tpn, T 1 ¥3].
Then we have v, < vo if v < vwe. If 1y < ug, we say that v, 1s earlter
than s, and that = is [afer than .

Some of the obvious properties of this ordering of T{G,) are
listed in the next lemma.

211 Lemma Let G e G(V), m € [I(V) and v1, V2, vs € T(G, 7). Then
(@) Ezactly one of v1 < v2, v1 = vo and vs < V1 18 true.

(b) If vh < vo and vy < vy then vy < vs.

{(c) If v1 < wa, V) € T(G,m,v1) and vy € T(G, T, vo) then vy < v,
ezcept possibly if v1 16 an ancestor of va.

(6 If v1 7 va and neither of v1 and vz 15 en ancestor of the other,

then vy < Vo if and only §f v1 —ve < v — V1. O

civen G e G(V) and 7 € [I(V) we can generate the elements of
T[G, m) in the order glven by <, with the simple backtrack algorithm
given below.

2.12 Algorithm Generate T(G,) in the order earliest to latest, given
G e G(V) and 7 € [I(V).

(1 k=1
m = R(G,m,)
Output [mi]
(2) If {m 1is discrete) go to (4
W = first non-trivial cell of m of the smallest size.
(3 1f (We=0) go to (4)
v :— nin Wy
Wy i= W \ v
kg1 =Tk 1 ¥
k:=k—+1
Output [my, T2, « -+, k]
Go to {2)
(4) ki=k-1
If (k> 1) go to ()

Stop: All the nodes of T(G,w) have been output in the
required order. O

55

2-13 Group Actions on T(G, 7)

If v == [my, 72, - -, %m] € N(V) and o € 5,, then we can define
v = [rl, w3, ..., m1]. Obviously v e N(V). The property of Algorithm
2-5 described in Lemma 2.8 has immediate consequences for TG,), as we
describe in the next theorem.

2-14 Theorem Let G e G(V), 7 e T(V) and v € §,.
@ TG, ") = T(G, 7).

() If v eT(G,), then T(G", 77, v") =T(G, ,v)". O

The map frem T(G,m) to T(G,n)” induced by «+ will not in general
preserve the ordering <.

We will be particularly interested in permutations 1 €5, such
that G” = G and #n7 € . In other words, ~ e Aut(G)r. If vy, vz e T(G,n)
and yg = v{ for some 4 e Aut(G)r we write wy ~ wp and say that vy and
vz are equivalent. By Theorem 2-14, ~ is an equivalence relation on
T(G,m). 1f v is a terminal node of T(G,) then v is called an sdentity
node if there is no earlier node of T(G,w) which is equivalent to u.

The following theorem is fundamental to our treatment of graup
actions on T(G, 7).

2:15 Theorem Let G e G(V), m € II(V) and 9 € Aut(G)y. Then
@ TG) =T(Gn).
(b) If v e T(G,7), then T(G, 7, 07) = T(G,m,)",

(c? ffvi, ve e T(G, 1), vy < vo and vy ~ vy, then T(G, m, vy -)
contatns no identiiy nodes.

Proof: Assertions (a) and (b) are immediate consequences of Theorem
214, so we consider only assertlon (c). If ¥y r~ Vo, there is sone
7 € Aut{G), such that vy = u}. But then wy-u — (v1 - »2Y? and

so T(G,m vz~) = T(G,m vy~ 12)" by (b). However vy < vy and so

by -vz < vg—¥q, by lLemma 2-11, Therefore, every terminal node in
T(G, 7, v2—vy) is equivalent to an earlier terminal node in T(G, 7, v1—vs),
which proves (c).

2-16 Indicator functions

let A be any linearly ordered set. An indicaior funciion is a
map A: G(V) X Z(V) X N(V) = A such that A(G",77,v7) = A(G,m,v) for
any G e G(V), mell(V), veT(G, 7) and 4 € 5,.

Given one indicator function A, we can deflne another indicator

function A by
AG, 1, 0) = (AG, 7, v™), AG, m, D), -, MG, m, s *),

where k = |v|, with the lexicographic ordering induced from the ordering
of A.

2:17 Definition of C(G,)

1f v = |m,mg, -+, Tm] 15 & terminal nede of T(G,w) then m,
is & discrete ordered partition, by definition. This means that m,
defines an ordering of the elements of V. We can define a graph G{v)
isomorphic to G by relabelling the vertices of G in the order that
they appear in m,. More precisely, 1f mp, = (v;|vz|: " |va), and § € S,
is the permutation taking w»; onto 3+ for 1 <4< n, then G{y)..—_G‘f. The

following lemma 1s an immediate consequence of the definitions.

2.18 Lemma IfGe G(V), 7€ V), 1 € 8 end v € T(G,) is ¢ terminal
node, then G(v") = G(v) if and only if v € Aut(G).

Proof: Let v = [m, 7, -+, Tm|, Where mm = {v1[v2]|--- | va), and take
the permutation § € S, which takes v; onto § for 1 < ¢ < n). Then
G{v) = G® by definition. Also by definitionm, mj = (v | %] --- | v3)
and so G(v') = G* %, Therefore G(v) = G(¥”) if and only 1f G* = Gt
which is possible 1f and only if 4 e Aut{G). O

Our next requirement is a linear ordering of G{V). Any such
ordering will de, but it will be convenient for us to use an ordering
defined using the adjacency matrices of elements of G(V). Given G e G(V}
we can define an integer n{G) by writing down the elements of the

adjacency matrix in a row-by-row fashion, and interpreting the result as

57

an n”-bit binary number. If G, G:e G(V) we can then define G; < G2
1f and only if =(G1) < n{G:2).

We can at last define C{G,n). let X(G,n) be the set of all
terminal ncdes of T(G,n). Choose an arbitrary (but fixed) indicator
function A. Let A" = max{A{G, m,v)| v e X(G,1)}. Then we define
C(G,m) = nax{G(v) | ¥ € X(G,7) and A(G, 7, v)=4"}.

2-19 Theorem C iz a canonical label.

Proof: We show that C has Properties C1-C3 (Section 2-1). Property
Cl is true because G(v) = G for any v e X(G, 7). Now let 7 e S,. By
Theorem 2-14, T(G",n") = T(G,n)" and so X(G7,77) = X(G,n)". Also,
by the definition of indicator function, A{G7,#7, ") = A(G, v} for
any v € X(G,m). Finally, by the definition of G(v), we find that
G"(v7) = G(v). Therefore (has Property C2.

In order ta prove Property C3 we must recall Lemma 2-8(a).
Together with the fact that any v € X{(G,n) 1s a partition nest, this
implies that £{G, %) = G° for some & € S, such that =’ = m.

Now suppose that C(&G,n") = C(G,n) for some 7 € §,. Since C
satisfies Property C2, C(G,n") = C(G‘”‘_l,w]. Therefore there are a,
B eS8, such that m* =xf =x, C(G,n7") = G7 @ and C(G,)= G°. The
assumption that C(G,n") = C(G,#) thus implies that G = @# and so
pa'v € Aut(G). Finally, %% 7 =57 since nP = ¢® =, Therefore
has Property C3, I

An elementary means of computing C(G,w) 1s now apparent. Using
Algorithm 2.12 we can generate every element of X(G,7). We can then
identify those v € X(G,m) for which A(G,m v) is maximun and so find
C(G,7) from its definition. It is not necessary to store all of X{G,w)
simul taneously; its elements can be processed as they are generated and
then discarded. However, thls process 1s not practical for use with
a great many graphs because of the size of X(G,w). One problem is
with graphs having large sutomerphism groups. Since Aut(G) acts semi-
regularly on X{G,w), |X(G,n)| nust be a multiple of Aut{G), and so can
be impossibly large, even for moderate m. Secondly, there are graphs

for which |X(G,w)| 1s very large, even if [Aut(G)] is small. We will
meel some of these graphs in §3.

The method which we will use to attack these difficulties i3 a
process of pruning T(G,w). Let us say that v e X(G,m) is & canonical
node 1f C(G,m) = G(v). Obviously, any part of T{G,n) can be ignored if
fhe remainder is known to contain a canonical node. Our guiding light
is the following theorem, which is already implicit in the foregoing.

2-20 Theorem Let G € G(V), 7 € [I(V), and A" = nax{A[G,m,v) | v €
X(G,m)}. Let X'(G, 1) be any subset of X (G, m) which contains those identity

nodes v for which A(G, 7, v) = A Then x'(aG, m) contarns ¢ canonical node.

O

In the terms of Theorem 2-20 our aim will be to reduce the size
of X*(G, 7) as much as possible. We will reduce the number of elements
of X*[G, 7} which are not identity nodes by searching for automorphisms
of G and employing any we find to delete subtrees of T(G,w). We will
reduce the number of identity nodes in X*(G,'}r) by using A.

2-21 Using automorphisms to prune T'(G, 7)

The exlstence of one or more automorphisms of G can be inferred

during the generation of T(G,ﬂ') in at least two different ways.

4D We may find two terminal nodes iy, wo € X(G,n) such that
G(1) = G(v2).

{2) We can sometimes infer the presence of automorphisms from

the structure of an equitable partition.

The first case is the more important and will be treated first.
The second case can wait until Section 2.24.

Suppose then that during the generation of T(G,n) we encounter
a terminal node vy € X(G,), compute G(ig), and discover that it is the
same as G{v;) for some earlier terminal node u. Since v, and vy are
terminal nodes, there is a unique permutation 7 € S, such that vy = v7.

It then follows from Lemma 2-18 that 4 € Aut(@). We will call 4 an
ezplteit automorphism.

59

Cnce we have found an explicit automorplhism there are several
ways we can put 1t to work. These are based on Theorem 2-15. The immediate
outcome of Theorem 2-15 is that we may ignore the remainder of the subtree
T(G,nm, vz — vy). However, we can do better than that. Since Aut(G) is a
group, not only 4 but all its powers are in Aut(G]. Moreover, i1f we have
found several automerphisms of (7, any permutation which 1s generated
by these is also in Aut(G). The following scheme for handling this mass
of information is not always the best, but has been found to work very
well in many clrcumstances.

Let ¢ € X[G,n) be the earliest terminal node. We will need the
following lemms.

2-22 Lemms Letv; < vge X(G, 7). Then |¢ —va| < |on—wa).

Proof: If |vn—wo| < |¢ - we|, then ws € T(G,w,¢— 1), which contradicts
the assumption that vy < vs. O

We next introduce an auxiliary partition # e JI(V). We initially
set # equal toc the discrete partition of V, and whenever we obtain an
explicit automorphism 5, we update §:= @ v #(y). This means, by Lemma
1.13, that # is at every stage the orbit partition of the group generated
by all the explicit automorphisms so far discovered., [t also nmeans that
8 < 8(Aut{G)ap)s wheTe |y, fe, -, fp] 15 any common ancestor of all the
terminal nodes we have yet considered. This is because a permutation

taking one node to ancther fixes their common ancestors.

Now consider a nede v = [m1, 2, - - -, Tm| which 1s an ancestor of §.
Because of the definition of ¢, v is also an ancestor of all the terminal
nodes generated so far. Let W = {w1,vq, ---, ¥x} be the first non-trivial
cell of smallest size of w,, where ¥ << v < - - < 9. Since § < np, B
induces & partition of W. Now the successors of v, in the order earliest
to latest, are p(v,),v(va), -, v(v), vwhere plv)) = [m, o, +* Tm, Tm L ¥
If v; < v; are in the same cell of #, there is some automorphism 7,
ngnerated by the explicit automorphisms sc far diécuvered, such that
v(v;) = v{v;)?. Therefore we can exclude the subtree T(G,w,v(v;)) from
further examination. There are two ways of doing this. The first 1s

that, as we generate successive subtrees T(G,w, v(v1)), T(G,, v(vz)),

- we only -consider those for which w; € mer(f). The second is that,
upon discovering an explicit automorphism < during the generation of
T(G,m, v{v)), and updating &, we check to see if it still true that
ws € mer(8). If not, we have found proof (namely 40 that T(G,m, v(vi))
only contains terminal nodes equivalent to those of some subtree we have
already examined. Therefore we can return at cnce to » and consider
v(vit1)-

The technique just described often allows us to jump all the
way back to an ancestor v of ¢ after only generating one terminal node of
a subtree rooted at a successor of p. Unfortunately this 1s not always
possible, for example when a new terminal node is not recognised as
being equivalent to an earlier one. 1t will also be possible (due to the
use of A — see later) for & whole subtree to be ignored without knowing

it to be equivalent to anything else. In order to put our automorphisms

to wark in such cases we have devised the following scheme,

Firstly, we maintain a store ¥ which contains (fix(y), mcr(y))
for every explicit automorphism 4 so far discovered (or some subset of
them). Then, with each non-terminal node v e T(G,) we assoclate & set
W(v) C V. The first time (if any) we encounter v in the search of
T(G,n), W{w) is set equal to the first smallest non-trivial cell of
Tms WHETE® u = [y, @2, -~ Mm]. The next time we encounter v (if any), we
redefine W(v) = W{v)Nmer(y:)Nmer{y2)N--- Nocr(y,), where 41,92, -9
are those previously encountered explicit automorphisms which fix u.
From then on we can ignore subtrees T(G,r ,v(v)) for which v ¢ W(v). This
is justified by Lemma 1-5. The reasons for deferring the modification of
W(r) until the second encounter with v are (1) that the subtree rooted
at the earliest successor of v has to be examined anyway {since the
smallest element of W(v) before the modification remains in W{v) after
the modification) and (ii) that there is often no second encounter with
¢ (we may find an automorphism allowing us to jump back to an ancestor
of). The next lemma shows that we can determine whether + fixes p by

looking at fix({y).
2-23 Lemma Let be an explicit cutomorphism. Let v = 71,72, -, i) €

T{G, 1) be derived from G, m and v1,v2, -, ¥m-1. Then q fizes v if and only
if {1-"1: Uz, ﬂm—l} g fix(’?) O

61

There is one other circumstance under which we may wish to
change W{v). If we find two equivalent terminal nodes u, w2 where

vs =] and where v is the longest common ancestor of p; and vp, We can
set W{v) = W{v)nncr(y).

2-24 Implicit Automorphisms

There are occasions when we can infer the presence of one or
more automorphisms without generating any of them explicitly. These are
based on the following lemmd.

2-25 Lemma Let G € G(V) and let 7 € [I(V) be equitable with respect to
G. If T has m non-trivial cells and either n < |7| 44, n = ||+ m or
n =|n| + m+ 1, then 71 = 6(Aut(G)y,) for any equitable m < u. 0

The most commonly cccurring case of Lemma 2.25 is when n = |n|-+4m,

which corresponds to #; only having cells of size one or two.

Lemma 2-25 can be put to several uses. The most immediate
application is that whenever we encounter a node v = [wy, s, «+e, M) foOr
which 7w, satisfies the requirements of Lemma 2.25, we can Infer that
all the terminal nodes descended from v are equivalent, and so at most
one of them is an identity node (the earllest one, if any). A less
direct technigque is to store the pair (fix(mu), mcr(mn)} in the 1list
¥, along with the along with the similar pairs derived from explicit
automorphisms. It can then become useful in pruning later parts of the

gsearch tree.

2-26 Eliminating identity nodes

The techniques of the last few sections are generally quite
efficient in removing terminal nodes which are not identity nodes.
However, there are occasions when the number of identity nodes i1s
unmanageably large. BExamples of these will be glven in later sectioms.

“Some of these can be eliminated by means of an indicator functlon A.

Suppose that during the search of T[G,ﬂ') we malntain a nede
variable p. When the first terminal node ¢ is generated, we initialise

62

g = ¢. Thereafter we update p:= v whenever we find a terminal node »
such that A(G,m,v) > AG, 7, p) or AG,7,v) = A(G, 7, 0) and G(v) > G{p).
The definition of C(G,w) ensures that by the time we have finished
searching T(G,) we have G[p) = C{G,), provided the set of terminal
nodes examined includes all the identity nodes. Now suppose that at some
instant during our search we have g = [ﬂl, o, -+, Tm] and encounter a node
vy = [r,mh, -+, k], not necessarily terminal. Let r=—min{m, k}. Then,
if MG, 1, v") < AG,7,p")), the definition of an indicator function
tells us that A(G,, ") < A[G,r,p) for every terminal node ' of T(G,).
Therefore we can safely ignore T(G,m,v) without miscalculating C(G,m).

The efficiency of this technigue depends mainly on two factors.
On is the power of A in distingulshing between non-equivalent nodes.
This, of course, can only be improved by changing A, which will generally
involve a power/computatlon-time trade-off. The other factor depends on
the initial labelling of . Suppose that we wish to search the subtrees
T(G,m, 1), -, (G, m,vr), where vy, v, ---, vy are the successors of v, in
the order earliest to latest. We can use the information provided by
A by ignoring the subtree T(G,m,w) if A(G,T,uv) < A(G, 7, vy) for some
4 << 4. The number of subtrees which are thus ignored could vary from none
(if the A[f}', 7, v;) are in non-decreasing order), to the maximum number
possible (if A{G,m,v) < A(G, 7,10} for 1 <4< r). While there 1s no
efflcient way of ensuring that the best case always OCcurs we can arrange
for the worst case to be very unlikely. The simplest way of doing this
(but not the one we will adopt) 1s to label G in & random fashion before
commencing the generation of T(G, 7). A precise statistlcal analysis of
how this effects the overall efficiency would be very difficult, but
a rough idea can perhaps be gained from the following twe theorems.
We will use E(X) to denote the expectation of & random variable X.
The first theorem suggests that the number of ignored subtrees wlll not

usually be much less than the maximum number possible.

2.27 Theorem Let 8, < 6, < -« < 8§ be elements of a linearly ordered set
A. Let mi,ms, ---, my be positive integers, and put { = m1 4+ mz+--- + my.
Let z1,%s, ---, Z; be elements of A, ezactly m; of which are equal to §; for

1 < 7 < k. Now permute the z; at random to get z'!), z2 ... 2 each of
the || possible permutations being equally likely. For 1 <1 < I, mark =) if

63

) > 20) for § < 4, but £ # 8x. Let M be the number of marked elements.

Then
-1

mi
E[M):Zl—-{—mj;+1—f—mj+2+"' + me

i=1

where the sum 45 laken as 0 if k = 1.
In particular, if m; = m for 1 < j < k, then

k-1

E(M) = Z #’_‘Tl < log(2k).

_f=1

The second thecrem concerns the number of values of A(G,w,v;)
for thoze T[G,ﬂ', ¥) which are not ignored, It therefore has a bearing

on the number of identity nodes which are excluded by means of A.

2-28 Theorem Under the conditions of Theorem 2-27, let N be the number
of different values amongst the marked elements, Then

k—1

™y
= <1
BN me+mj+1+---+mr«_ °8t

i=1

where the sum is 0 if k = 1. In particular, if mi = m for 1 < 1 < k, then
E{N)=E:=2j_1£logk. 0

An alternative to this technique for using A is to compute
MG, 7, v) for 1 <4< r and then only search T(G,m,) for those w; for
which .;\L{G, ™, u.-] is the largest. This is undoubtedly the best approach in
many cases. However we are not adopting this method because it severely
degrades the average-case behaviour. This is because the discovery of

automerphisms frequently allows us to reject a subtree T(G,r, ;) without
ever computing ;.

The theorems above relate to the effect of performing an initial
random relabelling of ¢7. The reasons we are not adopting this appreach
are, firstly, that this relabelling may almost double the total exscution
time (for a very large random graph; see Section 3.10) and, secondly,

that in order to make some of the output useful (e.g. the list of

sutomorphisms produced) it may be necessary to translate it back to
the original labelling, which is inconvenient. We will describe an
alternative, but will only justify it qualitatively. A more precise
analysls would be impossibly difficult to perform.

Let A : G(V) X (V) X N(V) — A be any convenient indicator
function. Now devise a map f: A — A with the property that for pairs
z, ye A, ©—y is very poorly correlated with f(z)- f(y). (This is
not meant to be a rigorous definition). For example, take A = [-1,1]
and f{z) = sin(10'%z); the sign of £-y is very poorly correlated
with that of f(z)- f(y). Now define A by A{G, w, v)= f(A(G,m,v)). The
hope is that any tendency to an unfavourable ardering of the values
of A(G,m 1), -, A{G,m v) will not occur for A(G,n,), -, A(G, 7,).
However, as we have stated, there i1s 1ittle hope of an exact statistical
analysis. The best we can say is that the computational experience is
favourable.

2:29 Storage of identity nodes

Up to this poilnt we have been tacitly assuming that we are
keeping a record of all those identity nodes so far generated, so that
we can recognize later terminal nedes which are equivalent to any of
them, In practice this can cause & severe storage problem, since the
number of identity nodes can be very large, even 1f we don't count those
which are eliminated by use of an indicator function. Therefore it is
necessary to put & limit on the number of identity nodes (strictly,
terminal nodes not known to be equivalent to an earlier nede) to be
stored. The optimum strategy is not clear. On the one hand, storing
more identity nodes improves our chances of detecting automorphisms,
which can be put to use as we have seen. On the other hand, testing two
terminal nodes for equivalence is quite time consuming {especially for
large graphs), and having to do a lot of these tests would have a very
bad effect on the overall execution time.

The technique which we have adopted, without a great deal of
theoretical justification, is to store two identity nodes at a time.
The earliest terminal mode ¢ is always stored. The other terminal node

(which may be the same as the first) 1s our best guess so far at the

65

identity node corresponding te C(G,). This is the node p referred to
in Sectien 2-26. We also permit the algorithm to search for terminal
nodes equivalent to ¢, with the aim of using the automorphisms thus
discovered to shorten the total amount of work. This will sometimes

degrade the performance somewhat, but on the average it works very well.

We are now able to summarize the way in which terminal nodes are
processed. Suppese that we have just created a node #, not necessarily

terminal, which is not an ancestor of ¢ (i.e. 1s later than ¢).

The node p and the partition # have the same interpretation as
before. Suppose that v is the node [y, s, -+, 7] so that fu| = k. Also

define m = [¢| and r = [p|, and define variables as follows.

keh: If m, satisfies the requirements of Lemma 2-25, then hh is
the smallest value of ¢, 1 < ¢ <k, for which m; satisfies
these requirements.

Otherwise, hh = k.

ht: This 1is the smallest value of 4, 1 < i< m, for which
all the terminal nodes descended from or equal to ¢(¥) have
been shown to be equivalent.

h: The longest common ancestor of ¢ and ¢ is oA,
hb: The longest common ancestor of p and v is p®%),

hzb: This is the maximum value+of ¢, 1 <4 < nmin{k,r}, such
that AG,m, ') = A(G, r, o).

By returning to v) we mean backtracking in the search tree to
v and proceeding with the next successor of % not yet generated, 1f
any. If there are no such successors, we return to y(‘”IJ, and so forth.
Return to (% is equivalent to stop.

Now suppose we have just created v = »®). Let A= A(G, 7 v).

(1 If (k> m or 45 AG,7¢™) and (k > r or
A< AG, 7, 0" go to (B).

(2 If v is non-terminal, proceed to search T(G, 7,).
&) If (k> m or A AG, 7, ¢)) g0 to (4.

If the permutation <4 taking ¢ onto » is an automorphism,
go to (A).

(4) If (k> r or A < A{G,m,p) or (A= AG,7,p) and
G(v) < G(p))) go to (B).

If (A> MG, 7 p) or (A= A(G,7,p) and G(¥) > G(p))) set
g .= v then go to (B).

If (A= A[G, 7, p) and G(v) = G(p}) let 4 be the permutation
taking p onto ¢ and go to (A).

(A) {At thls stage we have found an sutomorphism qr.}

(A1) Add (fix(y), mcr{y)) to ¥ (if there is room) and set

§:= 8 v (7).
(A2) If (v ¢ mcr(f)) return to ¢M). Otherwise, return to
Rl

(B {At this stage we have a terminal node v not known to be

equivalent to an earlier terminal node.}

(B1) If (hh < k) add (fix{maa), mcr{man)) to ¥ (if there
is room).

(82) Return to p{¥), where { — min{hh -1, max{it-1, het}}.

The only feature in the foregoing informal slgorithm which we
have not already justified is the use of the varlable ht in Step B2.
What we want to do in S5tep B2 1s to return to the longest ancestar
v of v which may conceivably have a terminal descendant which is
either equivalent to ¢ or improves on p as “the best canonical label so
far”. All the terminal nodes in T(G,7,v""")) are known to be equivalent
toe v, so we can assume that ¢ < hh. Furthermore, 1f ¢ > hzb, none
of the descendants of u(*) can improve on g. Finally, if ¢ > hAt, and
one of the descendants of v was equivalent to ¢ then v would be
equivalent to g“h However, all the terminal nodes descended from ;“)

67

are equivalent, and so all those descended from (¥ are equivalent,
giving & contradiction.

2-30 We will now give a formal description of the complete algorithm.

Notes: (i) lgb and dig are boolean variables. If igb= false, p is not
used, and the algorithm only searches for terminal nodes equivalent to
§- We will show in Theorem 2-33 that useful information about Aut{G) is
$tlll obtained. If dig = frue, the algorithm will not use Lemma 2-25,
and will be valid for digraphs and graphs with loops (for which Lemnma
2-25 does not held).

(11) The variable v refers everywhere to the node [ry,ms, - - -, m]-
It thus changes value if m; (1 <1< k) or k changes value.

(iii) L > 1 is an integer specifying & linmit on the number of
pairs (fix(z), mcr{z)) to be stored at one time, The result computed by the
algorithm Is independent of the choice of L, although the efficiency
in general may not be,

iv) P C [I(V) is the set of all ordered partitions of V
which satisfy the requirements of Lemma 2.25.

(v) We are assuming for convenience that AlG, 7, v) is real in
value., If this is not the case replace “gzb:= Ap—zb” by

-1, if Ap << 2bi
gzb:=4{ 0, if Ap = zb

2:31 Algorithm Given G € G(V) and m € [I(V), find generators for Aut{G),
and (opiionally) compute C(G, 7).

(1 k= stze =1
h:= hab .= tndez == | =10
6 :— discrete partition of V¥V

= R(G, 7,7}

hh = 2

If (m € P and dig = false) hh:=1
If {mr, is discrete} go to (18)
Wi = first smallest cell of m
vy :— oin W,
A i=¢e =10
) ki=k+41
Mg = k-1 L V-1
Ar = A(G, T, v)
If (h=10) go to (5
If (hef = k-1 and Ay = zfi) haf =k
If (lab = false) go to (3)
gab = A — zbs
If (heb= k-1 and gab=0) hzb:=k
If (geb > 0) 2b = A;
3 1f (hzb =k or (lab—=true and gzb > 0)} go to (4
Go to (&)
(4) 1f {m, 1s discrete) go to (M
W, = first smallest cell of
vg ;= min Wi
If (dig =true or mpe P) hh =k 41
e =10
Go to (2)
(5) 2fk = by 1= Ay
Go te (4)

(62 K=k

69

k= min{hh— 1, max{kt~ 1, h2b}}
1f (k' = hh) go to (13)

= min{{ + 1, L}

.—‘1; =] mcr[frh;,,]
;= £ix(mpz)
Go to (12)

(70 1f (h=0) go to (18
If (k5 hzf) g0 to (8)
Define 7€ 8, by ¢" = v
If (G"=G) go to (1D
(8 If (lab= false or qzb < 0) go to (6
1f (gzb > 0 or & < |p|) g0 to (9)
If {G{r) > G(p)) g0 to (B
If (G(r) < G{p)) g0 to (6)

Define 7€ 8, by w7 =p

Go to (10)
1§ gi=u
gzb =10
ht ;= hzb =k

2biy = 00
Go to (&)
(10) ¢:=nmin{l+41,L}
(2, := mcr(q)
& == f£ix(n)

If (8(7) <6) go to (A1)

T0

6:= 8 v)
Quiput

If {tvc e mcr{f)) go to (11D

k:=h
Go to (13
(11 k:= kb

(12 If (ex = 1) Wi:= WaN 1
(133 If (k= 0) stop
If (k> k) go to (A7)
If (k=4h) g0 to (18
h:=k
tve :=tvh = win W
(14) If (v and fvh are in the same cell of §) inder := indexr 41
v =min{v e Wi | v > v }
If (ve = o0) go to (16)
If (ve € mer(f)) ge to (14)
(15) hh:= nin{hh, k + 1}
hzf :— win{hzf, k}

If (lab = false or hzb < k) go ta (2)

hezb =k
gzb:=20
Go to (23

(16) If (|Wi| =1index and ht = k+ 1) ht ==k
size ;= gize X index

«—A

indexr (=0

|

k=k-1
Go to (1D

(17} If (er==0) set W := Wi {% for each i, 1<{<<{, such
that {1.-'1, Vo, - 'Uk.._j} C &,

er =1
ver=nin{v e Wi | v > u }
If (ux # 00) go to (15)
ki=k-1

Go to (13)

(18) h=ht:=hzf =%

2fg41:= o0
g =
«—B

k:=k-1

If (lab= false) go to (1)

pi= v

hab:=hb:=k+1

Zbg4o = o0

gzb:=0

Go to (13) a
232 Consider the stage during the execution of Algorithm 2.31 that

we pass the point marked B (in Step (18)). At this instant define
K=k-1and wy=19 (1<1i<K).

Now let I = — Aut(G}r, and define P09 = Loy waw; (POIDT-
wise stabiliser) for 1< ¢ < K. Since ¢ is a terminal node, the coarsest
equitable partition which is finer than 7 and fixes wi,wsg, ---, wx 1is
discrete. Therefore &) — 1,

72

2-33 Theorem During the ezecution of Algorithm 281, each time we pass
point A (in Step (16)) or point B (in Step (18)) the foliowing are true:

) indez = |[PEU/|P®) (point A only)
(1) size = |[FY)
(11i) §= ok

(ivy % U =|{Y), whereY 1sthe set of all automorphisms ouipui
up to the present stage (in Step (10)).

(v) Y] < n-—|8

Proof: The theorem follows readily from the theory that we have already

discussed, so we will only describe briefly how this needs to be assembled.

Point B is only passed once, when ¢ is created, and k= K+1
at this stage. Point A is then passed K times, at which stages k has
the values K,K -1,---,1 in that order.

We prove the theorem by backward induction on k. For k=K +1
it is obvious. Now assume it for k', for some k', 2 < k' < K-+1, eand
let k=4 -1.

Consider v = |m, 7 ---,Mx]- The successors of v, in the
order earlliest to latest are vy, v, -+, Vm Where v = v(w;), and Wi =
{w1, Wy, ---, Wm}. The previous time we passed polnt A (or B) was when we
completed our examination of the subtree TG, w,u;). We now claim that,
for 1 <1< m, by the time we have completed examinaticn of T(G,w,),
w; is in the same cell of # as w; 1f and enly 1f py ~ vy,

Suppose on the contrary that there is an earliest i for which
outr assertion is not true. If 4 is not equivalent to ¢y then w; and w,
are obviously in different cells of §, since # is the orblt partitiom
of some subgroup of Aut{G)y,. On the other hand, 1f v~ 4, T(G,ﬂ,)
contains one or more terminal nodes equivalent to ¢. The nature of the
algorithm is such that if one of these nodes is generated, it will be
recognized as being equivalent to ¢, and if it is not generated this will
only be because it has been shown to be equivalent to an earlier termlnal
node. Furthermore, implicit automorphisms are never used to reduce Wi,
and during the examination of T(G,w,u;), 1f any, the only stored palrs

73

{®5, 2;) which are used to reduce any W, have v, e ®,. Therefore, either
w; 15 already in the same cell of & as Wi Oor we are sure to discover
some automorphism g such that »7 < vi. By the induction hypothesis w?
is in the same cell of f as w;, and so the update @ :— v 8(y) merges

the cells of # containing w, and w, contrary to hypothesis. Note also
that we have just proved that yeY.

We have thus concluded that the cell of § containing w; is
the orbit of 1) containing wi. Since § = §(Y) by construction,
and I'*} < {¥) by the original induction hypothesis, we must have
I —(y), since (¥} contains a full set of coset-representatives for
r® in p®-1, This proves that ¢ = B(I"*~1)), The variable indezr merely
counts the number of elements in the cell of § contalning w,, so claims

(i) and (ii) follow immediately.

Claim (v) follows from the simple observaticn that the number
of cells of § starts at » and decreases by at least one for sach new
element of Y. Ij

In closing we note a few simple properties of the set of
generators of I found by Algorithm 2.-31. These are essentially the same
as those given in Theorems 36—38 in [13] and the proofs given there apply
with only notational changes. lLet ¥ be the full set of automorphisms
output by Algorithm 2.31, and let I = Aut(G).

2-34 Theorem (1) Y does not contein any elements of the form 48, where
v, & €T, supp(7) N supp(5) = B and 735£ (1) 5 6.

(2) Supposethat for some subsetY" CY, we have (¥*) = (At Ale},
where AV and A®) are non-trivial subgroups of I' with disjoint support. Then
Y =YOUY®, where YO N YD =g, (YO = 4D gng (Y) = A(®),

{8) Suppose thai for some subset W C V the point-wise stabiliser
Iw has only one non-trivial orbit. Then some subset of Y generates a con-
jugate of Pw in I O

T4

IMPLEMENTATION CONSIDERATIONS

In this section we will discuss some of the problems that arise in
the implementation of Algorithm 2.31 and how these have been approached.
We will then examine the theoretical and empirical performance of our
implementation. Finally, we will mention & few of the practical uses
to-which our implementation has been put.

3.1 Time versus storage

The program described in McKay [14] worked so efficiently for
many classes of graphs that the practical limit on the size of graph
that could be processed was set by the amount of storage available,
rather than by execution time considerations. Consequently the present
implementation places rather more emphasis on storage conservation, in
some places to the slight detriment of time efficlency.

The varlable types used by Algorithm 2.31 include graphs, sets,
partitions and partition nests. We will now describe the data structures
used in our implementatien for each of these variable types.

3-2 Partition nests

Let v = [my,ma, -, | € N(V). Then v can be represented by two
arrays g and b of length n as follows. Define my = (V).

i) The array g contains the elements of ¥V in any order
consistent with me. Precisely, if wu(a(1), ms) < ule(s), m)
then ¢ < 5, for any %, jeV.

(11) Each entry of & is an integer in the interval [0, n -} 1]
chosen thus:

(a) If wufa[?), me) = u[e(t + 1),m), then b(f) = n-41
1<i<n-1.

® 12 uali) i) = ulefi + 1), mim) but uleli),n) <
ulali +1),7;), then b{i)=35 A< <k 1<i< n-1).

¢y ¥n)=0.

75

3-3 Unordered partitions

The only unordered partition used by Algorithm 2.31 1s §. For
any v eV let §, denote the cell of § containing v and let p{v) = mninf,.
Clearly & can be uniquely represented by the array p, and most of the
necessary questions about & can be answered very quickly by reference
toc p. For example, if %, w e V then v and w are in the same ¢ell of
0 1f and only 1f p(v) = p{w), and v e mcr(f) if and only 1f p(v) = v.

This representation of # suffers from the disadvantage that
updates of the form @ ;= @v8(v), for 7€ 8, are gquite expensive in terms
of computation time. This problem has been considerably alleviated by
the use of a second array ¢ which “chains together” the elements of each
cell. More precisely, if 1emer(d), then 8 = {i, q(5), a{a(s)), glalq())),- - - },
where the sequence terminates on the term before the first zero..

34 Graphs

Algerithm 3-31 requires the ipput graph & and, for Teasonably
efficient operation, requires the graph variable G{g). From the great
number of possible ways of representing these graphs in the computer, we
have chosen an adjacency matrix representation because of its greater
storage economy. More precisely, G is stored as a list of n bit-
vectors representing N(1, G), N(2, G),---,N(»n, @), and so requires around
n® bits of storage. Since Algorithm 3-31 is valid also for digraphs, it
is clearly not possible to reduce this storage requirement in general.
However if the program was only intended to be applied on graphs with
very low degree, a different sort of representation would save space,
and probably time as well.

3-5 Efficiency of Algorithm 2.5

Algorithm 2-5 can easily be implemented using the dats structures
above. We will now consider the efficiency which.can be achieved in
such &n implementation. The following complexity result was suggested
by a related result in Gries [7]. For the necessary definitions, refer
back to Section 2.9.

76

3.6 Theorem For any G € G(V), 7 € (V) ond distsnct v1,v2, -+, ¥m-1 €
V, the derived partition nest [m1, 72, -+, mm] cen be computed in O(n®logn)
tHime, assuming an implementation in whick d(v, W) can be computed in time
proportional to |W|, foranyveV, WC V.

Proof: It is obvious that the time cccupied in the computation of miow;
for 1<+<m-1and in Step (1) of Algorithm 2-5 will be O{n?). Since
each execution of Step (2) of Algorithm 2-5 requires only a fixed amount
of time and leads to an execution of Step (3), we are justified in

resfricting ocur attention to Step (3).

For any given W, the necessary r executions of 5tep (3} can be
performed in O(n|W|) time. Therefore the total tinme for the computation
of [, Mg, -+, m] is O(n® 4 n) |W]), where the sum is over all sets
assigned to W during any execution of Step (2) (for any execution of
Algorithm 2.5).

Let z € V and consider the real variable g, defined at any
point of time during any execution of Algorithm 2.5 by gz = hg + 108310z
Here h; is the number of sets containing 2 which have been previously
assigned to W during an execution of Step (2), plus the number of sets
W; (m < j < M) which contain z, plus one for the set {z} = {w}
created by the operation miow;, if it exists and has not already been
counted. Alsc {; is the current size of the cell of & which contains
z. Note that hs, {. and g, are variables which frequently change value
during Algorithm 2.5.

The value of g, clearly remains constant or decreases between
different executions of Algorithm 2-5. The only other place where 1% can
change is during Step (3), when h, remains fixed while [decreases, or
h, increases by one. In the latter case [, decreases by at least a factor
of two, so that g, does not increase. Therefore g, is non-increasing
throughout the computation, implying that its last value 1s bounded
above by its first, which is bounded above by 24 log,n. Therefore the
final value hy of hg is at most 24 log,n.

We conclude that the total time required for the computation
of [my,ma, +++, Tm] is O(n2+nzzevﬁz}=0(n2logn), as required. 0

T

For our particular choice of data structures, and cur particular
implementation environment, we have found that the fastest way to compute
d(v, W) for /30 < |W| < n approximately 1s to represent W as a bit-
vector and to count the number of one-bits in the bit-vector representing
N{v,G})NW. Although this technique (used for |W| > 1) appears to reduce
the total time in “the majority” of cases, 1t has the unfortunate side-
effect of invalidating the premises of Theorem 3.6. The best replacement
for the bound O(n’logn) which we have been able to prove is O(n®).
Since the time required for the computation of d[u,W) is now essentially
independent of EW|, Step (3) of Algorithm 2.5 can be simplified by using
t = 1. This is especially convenient if the sequence a is represented
43 & set of pointers to the array ¢ (see Section 3-2).

3.7 Efficiency of Algorithm 2.31

Let T7(G,7) be a portion of the search tree T(G,w) which is
examined by Algorithm 2.31. Let m; be the pumber of terminal nodes of
T'{G, 7} which are equivalent to the earliest terminal node ¢ (including
¢ itself). Let mo be the number of nodes of T*I:G,‘JT) which are not
equivalent to ¢ and which do not have any descendants in T'(G‘, 7). Let L
be the constant defined in Section 2-30. Then the total time required by
Algorithm 2-31 is O(min®logn 4 man®(L 4 logn)), under the conditions
of Theorem 3-6, where mz may depend on L. For our implementation, this
nust be increased to O(n’(mi -+ msz)+ manL). By Theorem 233, my < n,
but we have not found any reascnable bound on mg. It varies in a very
complicated manner with the initial labelling of the input graph and
the value of L.

3-8 Other implementation details

Algorithm 2.31 has been implemented on a Cyber 170 computer,
mainly in Fortran. Because of the difficulty in manipulating bit-vectors

efficiently in Portran, several small subroutines are coded in assembler
language.

The indicator function A is evaluated by the subroutine which
implements Algorithm 2.5. It is formed by taking cell sizes, relative

vertex degrees and other information which is computed in the course

78

of Algorithm 2-5, and merging these into a2 single integer value 1n &
#random” fashion (see Section 2.28).

4 technique which produced considerable improvements in ef-
ficiency in some cases invelves the updating of the graph G(p) when p is
updated. The computation of G(p) is quite time-consuming (up to about
6 seconds for n»n = 1000}, so this computation is delayed for as long &as

possible, in case it iIs not necessary.

3.9 Storage requirements

Let m be the number of machine-words required te hold a bit-
vector of size m. Let K be the maximum length of a node of T*(G,vr}.
Obviously K < n, but very much smaller values are normal. Define I as
before. The total amount of storage required by our implementation, ig-
noring & minor amount independent of m, is 2mn-+ 10n+m-4(m+ 4)K +2mL
words. This figure includes 2mn words for the storage of G and G{p).

I1f lab = false (see Algorithm 2-31), the storage requirement is reduced
by mn -+ 2n words.

3-10 Experimental performance

In figure 3-1 we give the execution time required for several
familles of graphs. In each description below, § gives the approximate
slope of the curve in the region 50 < » < 200, Although the results of
Section 3-8 predict a value of § > 4, even when m. = 0, the experimental
value of § 1s less than 3 in each of these classes.

enpty graph on n vertices (F — 2.8).

m-dimensional cube, where n= 2" (§ = 2-3).

QG © ;b

: random circulant graph of degree 10 (8 — 2.2). This is
defined by V(G)=V and E(G)= {zy||z-y| € W(nodn)},
where W is 2 random subset of {1,2,---,|(n—1)/2]} of size
5.

Res : “randon” regular graph of degree ¢ (f = 2.9). There
is no known practical algorithm for randomly generating

regular graphs so that each graph appears with equal

79

1004
time
in
seconds

104

-0l

10

L]
100C

number of wvertices

Rag

Gy

Ge

frequency. The graphs represented by the curve Ra were
made by randomly generating three permutations 5, ~2 and
43 € Sn such that 2% A z (5 € {7},95,4%} and z71 £ U
(1<i1<j< 3 for each z € V. Define G by V(G =V
and E(G)={=zz""|zeV,1<{<3} For »> 40 all those
graphs constructed had trivial automorphism groups, and
produced search trees with maximum depth Z.

same 43 Iy but with degree 20 (f = 2.6).

random graph (f — 2-0}. Each possible edge is independ-
ently chosen or not chosen with probability 1. The dashed
line marked P in figure 51 gives the average time required
for the computation of G(p) for some p. At least one
such step is essential for any program which computes
C(G,r) from G using an adjacency matrix representation.
Therefore figure 3-1 suggests that the performance of our

program is close to optimal for large random graphs.

¢ same as <1 but with {ab = false.

3.11 Harder examples

We have also tested our program on 4 number of graphs which have
traditionally been regarded as difficult cases for graph isomorphism

programs.

1)

(i1)

(1ii}

The strongly regular graphs with 25 vertices requirsd
between 0-1 and 2.4 seconds, with the average time belng

1-0 seconds.

& strongly regular graph G with 35 vertices can be formed
from a Steiner Triple System (ST3) with 15 points. The
vertices of & are the blocks of the 5TS, and two vertices
are adjacent if the corresponding blocks overlap. For the
80 graphs so formed, our progranm required between 0-3 and
7 seconds, with an average of 4.8 seconds. Most of these

graphs have a trivial automorphism group.

Certain strongly regular graphs (7 with n vertices can be
extended to graphs E(G), having 2n+2 vertices, which are

81

2-level regular (see Mathon [101). There are good theoreti-
cal reasons [10]1 to expect 2-level regular graphs to be
particularly difficult to process, and this is borne out
by experience. The graphs Aeo and Bag (60 vertices; see
(10]) required 79 and 180 seconds respectively, while the
graphs Ass — D7z (72 vertices) required about 500 seconds
each.

3-12 Design isomorphism

A design D (also known as & hypergraph) 1s a pair of sets
(P, B), where B is a collection of subsets of P. The elements of P
are called poinis and the elements of B are called blocks. Two desligns
Dy = (P, B)) and Dy = (P, B,) are isomorphic 1f there are bijections
fi: P — P; and f,: B, > B, such that z e X implies fi(z) € fo(X) for
all z e P, and X € B,.

Given & design D = (P, B) we can construct a graph G = G(D),
wvhere V(G)=PUB and E(G)={zX [z eP,X c B,z X} It s easy
to prove ([31, [17]) that two designs D, = (P, B,) and Dy = (P, Bs)
are isomorphic if and only if there is an isomorphism f:G(D;) — G[D-)
such that f(P) = P, and f(B;) = B,. Therefore Algorithm 2.31 can be
used for design isomorphism.

If D is a balanced incomplete block-design (BIBD) then G(D}
is known to present difficulties for many graph isomorphism programs,
and ours is no exception. Two 50-vertex graphs G(D), named Asp and Bso
in [101, required about 60 seconds each. In another experiment [18], we
established the isomorphism of six BIBDs with 36 points and 36 blocks
(s0 m==1T2) using about 6.6 seconds of machipe time each. The spmallness
of this figure is principally due to the reasonably rich automorphism

groups of the designs.

A much more difficult problem posed by two BIBRDs with 126 points
and 525 blocks has been previously discussed in Stanton and McKay [17].

3-13 Hadamard equivalence

Let M; and Ms be two m X n matrices with =+1 entries. We say
that M, and My are Hadamard equivalent 1f M, can be obtained from

82

M by applying an element of the group I generated by the following
pperations.

To @ Permute the rows according to o € 8.
gz + Permute the columns according to § e Sy.
re @ Multiply row s by -1 (1 <1< m).

¢; © Multiply column 7 by -1 (1< 7 < n).

Suppose that M is any mX n matrix with +1 entries. Define G =
G(M) to be the graph with V(G) = {v;, 8, w;,#; |1 <i<m1<j<n}
and E(G) = {vew;,0:; |1 € 1< m,1 <7< n My; = 1}U {wd;, 5w |
1<t+<m1<7<nM;=-1} We will refer to the vertices »; and #;
as v-iype vertices. The following theorem first appeared 1n McKay [16].

3-14 Theorem Let G; = G(M,) and Gz = G{Ms). Then M; and M, are
Hadamard equivalent if and only if there is an isomorphism from G, to Gy
which maps the v-type vertices of Gy onto those of Gs. O

If M is a Hadamard matrix (m=n and M™M = nl) then the
graph G(M) may prove exceedingly difficult for Algorithm 2-31. This was
dliscovered when our implementation was applied to a collection of 126
Hedamard matrices of order 24, produced by . Dibley and W.D. Wallis, in
an attempt to determine the equivalence classes. Several of the graphs,
having large automorphism groups, were processed in about 300 seconds,
but some of those with smaller automorphism groups would require more
than 1800 seconds — the program was not run to completion. These graphs
are all 2-Tevel regular in the sense of Mathon [10], but are very much
harder than those given in [10], even though they have larger groups. The
reason for this is that the search tree T*(G, w) has depth 7 or 8 (compared
with 4 for the graphs in [101), although only 2 or 3 vertices generally
need to be fixed in order to eliminate any non-trivial automorphisms.

This means that the automorphism group is of no use for a large part of
(G, 7).

Other workers (see [6] for example) have found that a count of

small subgraphs (e.g. cliques) can often be used to provide an initial

83

partitioning of the vertices of a difficult graph, which greatly speeds
up & subsequent isomorphism test. Similar techniques can be used here,
but they are of no use in many cases. Some of the hardest graphs amongst
the 126 mentioned above have only two crbits (the v-type vertices and the
others) — the initial partitioning which we were using anyway (because of
Theorem 3-15). However we have devised a method based on a generalisation
of the profile defined in [5] which can be used to refine the partitions
at the immediate successors of the root node in T*U?,w). With this
improvenment, wWe can now process these graphs in ahout 20 seconds on the
average.

An algorithm specifically for eguivalence of Hadamard matrices
has been defined by Leon [%], The details given in [9] are insufficient to
permit a direct comparison with our technique, but a cursory examination

suggests that Leon's fechnique may be competitive with ours for this
particular problem.

EXAMPLES

In this section we give two examples of the automorphism group
generators produced by Algorithm 2.31. In each case we will use the
notation defined in Section 2.32.

4-1 First example

In our first example & is the S-dimensionzl cube defined as
follows.

V(G) :{(ilj-Jklifm] |£ljfklglme{01 1}}
E(G) = { (i1, 1, k1, b, m1)(¥z, 2, ke, o, ma) | (51— 12)* + (51— Jo)°
~+- (k] — kz)z —I— (Il — !2]2 + (m1 - mg}2 =1 }

The elements of V(G) are numbered 1,2,-..,32 in lexicographic order.

For this graph we find K =5, %, =1, ws; = 18, ws; = 24,
wy = 28 and wy; = 30. The output produced is as below. The execution
time was 0-18 seconds.

(3 53 (4 6) (11 13> (12 14) (19 21) (20 22) (27 29) (28 I0)
Ir® = 2 |gr*) = 24

(2 36 70 11) {14 15> (18 19) (22 23) (26 27) (30 31)

[r®) = 6 |6(reN] = 16
(5 9) (6 10) (7 11) (8 12) (21 25) (22 26) (23 27) (24 28)
Ir® = 24 |6(r®) = 10

(9 17) (10 18) (11 18) (12 20) (13 21) (14 22) (15 23) (16 24)

r@i= 120 grY) = s

(123 4 (5 6)(7 8 (9 10) (11 12) (13 14) (15 16) (17 18) (19 20
(21 22) (23 24) (25 26) (27 28) (29 30) (31 32)

IF| = 3840 [8(I)] = 1

4.2 Second example

In our second example G is the lexicographic product Cj[Cy

defined as follows.
Vig)={(7|1<+7<5}
E(G} = {{{1, 71)(2, 32) | i1~ 42| = 1(mod 5) or
11 =1z ond |51 - jo| = I(mod 5) }

The vertices are labelled 1,2,---,25 in lexicographic order.

For this graph we find K =10, w1 =1, we =3, wz =11,
wy = 13, ws =16, wg=18, wr = 21, wg= 23, wy =26 and wio = 8. The

output below was generated in 0, 23 seconds.

(7 10) (8 9)

[r@) = 2 Br®) =13
(6789 10)

Ir®) = 10 areh = 21
(22 25) (23 24)

|FM) = 20 |o(ry = 19
(21 22 23 24 25)

Ir®) = 100 |or®) = 17
(17 20) (18 19)

[P = 200 |G = 15
(16 17 18 19 20

P = 1000 A= 13
(12 15) (13 14

Ir® = 2000 Je(r®Y = 11

85

(11 12 13 14 15
6 213 (7 223 (B 233 (9 24) (10 25) (11 163 (12 17) (13 18> (14 19) (15 20)

r® = 20000 |6r®) = 7
25349
I = 0000 [= &
(12345

(16 1116 2152 7 12 17 22) (3 8 13 18 23) (4 9 14 19 24) (5 10 15 20 25)
|| = 1000000 |8(F) = 1

REFERENCES

[11 V.L. Arlazarov, I.I1. Zuev, A.V. Uskov and I.4A. Faradzev: An
algorithm for the reduction of finite non-oriented graphs to
canonical form. Zh. vfchisi. Matl. mai. Fiz. 14, 3 (1974
737-743.

[2] T. Beyer and A. Proskurowski: Symmetries in the graph coding
problem. Proc. NW76 ACM/CIPC Pac. Symp. (1976) 198-203.

[2] C. Bohm and A. Santolini: A quasi-decision algorithm for the
p-equivalence of two matrices. ICC BULLETIN 3, 1 (13%64)
57-68.

[41 J.A. Bondy and U.35.R. Murty: Graph Theory with Applications,

Macmillan {1976).

{5] J. Cooper, J. Milas and W.D, Wallis: Hadamard egulvalence.
International Conference on Combinatorial Mathematics, Canberra

(1877), Lecture Notes in Mathematics 686, Springer-Verlag
126135,

[6] D.G. Cornell and R.A. Mathon: Algorithmlc techniques for the
generation and analysis of strongly regular graphs and other
combinatorial configurations. Annals of Discrete Math. 2 (1978)
1-32.

71 D. Gries: Describing an algorithm by Hopcroft. Acte Informatica
2 (1973) 97-109.

86

[al

(9]

[10]

(111

[12]

[13]

[141

[15]

[16]

[17]

(181

[19]

J. Hopcreft: An nlogn algorithm for minimizing states in

a finite automaton. Theory of Machines and Computations.
Academic Press (1371) 189-196,

J.S5. Leon: An algorithm for computing the automorphism group

of a Hadamard matrix. J. Combinatorial Theory (A) 27 (1979)
289-306.

R, Mathon: Sample graphs for isomorphism testing. Proc.

gth. Southeastern Conf. on Comb., Graph Theory and Compuling
{1978), to appear.

R. Mathon: FPersonal communication.

B. 0. McKay: Beacktrack programming and the graph isomorphism
problem. M. Sc. Thesis, University of Melbourne (1976).

B.D. McKay: Backtrack programming and isomorph rejection on
ordered subsets. Ars Combinatortg 5 (1978) 65-99,

B.D. McKay: Computing automorphisms and canonical labellings of
graphs. International Conference on Combinatorial Mathematics,

Canberra (1877), Lecture Notes in Mathematics 686, Springer-

Verlag, 223-232.

B.D. McKay: Topics in Computational Graph Theory. Ph. D.
Thesis, University of Melbourne (1580).

B.D. McKay: Hadamard equivalence via graph isomorphism. Discrete
Math. 27 (1979) 213-214.

B.D. McKay and R.G. 3Stanton: Isomorphism of two large designs.
Ars Combinatoria 6 (1978) 87-90.

B.D. McKay and R.G. Stanton: Some graph iscmorphism computa-
tions. Ars Combinatoria, 9 (1980) 307-313.

H. Wielandt: Finite Permutafion Groups. Academic Press (1964).

