Modal SAT solving

Abigail Thomas
Supervisor: Rajeev Goré,
Research School of Computer Science
Australian National University
Modal Logic Intro/Refresher

- **Syntax**
 - Atomic formulae p_n
 - Formulae $\phi := p, \neg \phi, \Diamond \phi, \Box \phi, \phi_n \land \phi_m, \phi_n \lor \phi_m, \phi_n \rightarrow \phi_m$

- **Kripke semantics**
 - Kripke model (W, R, v)
 - Interpretation of modal connectives

- **Modal satisfiability**
 - ϕ is *satisfiable* iff $\exists (W, R, v)$ s.t. $\exists w \in W$ s.t. $w \models \phi$
Previous work

<table>
<thead>
<tr>
<th>Solver</th>
<th>Date</th>
<th>Logics</th>
<th>Main technique</th>
<th>Main reasoning tool</th>
</tr>
</thead>
<tbody>
<tr>
<td>*SAT</td>
<td>1999</td>
<td>Modal, basic DL</td>
<td>Lookup of variables</td>
<td>SAT solver</td>
</tr>
<tr>
<td>FaCT++</td>
<td>2006</td>
<td>Expressive DL</td>
<td>KB satisfiability</td>
<td>Tableau calculus</td>
</tr>
<tr>
<td>InKreSAT</td>
<td>2013</td>
<td>Modal</td>
<td>Labelled tableaux</td>
<td>Incremental SAT solver</td>
</tr>
<tr>
<td>BDDTab</td>
<td>2014</td>
<td>Modal and ALC</td>
<td>Tableau calculus</td>
<td>BDDs</td>
</tr>
<tr>
<td>Aalta_v2.0</td>
<td>2015</td>
<td>LTL</td>
<td>Lasso search</td>
<td>SAT solver</td>
</tr>
</tbody>
</table>

Table 1: main features of several existing solvers
Clausal technique

- Modal clauses:
 - \(\bot \)
 - \(\Box[p_1, \ldots, p_k] \)
 - \(\Box[p, \Box q] \)
 - \(\Box[p, \Diamond q] \)
 - \(\Box \Diamond q \)

- Clause conversion and tableau procedure
Measures of performance

- Performance on benchmarks
- Range of application - outside current scope
 - Particularly multimodal logics, for which the clause system was developed
 - Clause conversion procedure can be made to work for all normal modal logics

Figs 1,2: Efficiency of existing modal SAT solvers on different benchmarks. From Goré et al, 2014.
References