Generating Complex Melodies on the Edge TPU
Introduction

• On-device inferencing capabilities allow user to build products that are efficient, private, fast and offline.

The picture is taken from https://coral.ai/
Motivation

• Deploy a music model on the Dev Board
 – Gain understanding of the frontiers of on-device intelligence e.g. Google Glasses
 – Exploring business use
Background

• Coral Dev board
 – Single-board compute, Edge TPU coprocessor

• Recurrent Neutral Network model
 – TensorFlow Lite Format
Edge TPU

Google’s purpose-built ASIC designed to run inference at the edge.
TensorFlow Lite Format

Latency: there's no round-trip to a server
Privacy: no data needs to leave the device
Connectivity: an Internet connection isn't required
Power consumption: network connections are power hungry
Get started with the Dev Board

• Flash the board
• Connect to the board shell via MDT
• Connect to the internet
• Run a model using TensorFlow Lite API
Evaluation

• Human-centered
 – Inference and play music on the board
Application

• Explore the business use of the Dev Board with RNN model
Arrangements

<table>
<thead>
<tr>
<th>Weeks</th>
<th>Tasks</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-2</td>
<td>Reading relevant instructions</td>
</tr>
<tr>
<td>3</td>
<td>Test the board with Demo app</td>
</tr>
<tr>
<td>4-6</td>
<td>Converting Model format</td>
</tr>
<tr>
<td>7-8</td>
<td>Displaying Model on the board</td>
</tr>
<tr>
<td>9-10</td>
<td>Exploring use and Writing final report</td>
</tr>
<tr>
<td>11</td>
<td>Writing final report</td>
</tr>
<tr>
<td>12</td>
<td>Final presentation</td>
</tr>
</tbody>
</table>
Question

• Thank you for listening!
• Any questions?