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Optimizing matrix multiplication
• MM cost determined by FLOP/s and memory movement:

• 2*n3 = O(n3) FLOP/s

• Operates on 3*n2 = O(n2) numbers

• To optimize matrix multiplication, we must ensure that for every 
memory access we execute as many FLOP/s as possible.

• Outer product algorithms are faster, but for pedagogical reasons, 
let’s stick to the simple dot-product algorithm.

• We will work with work-item/work-group sizes and the 

memory model to optimize matrix multiplication

= x
A(i,:)

B(:,j)
C(i,j)

Dot product of a row of A and a column of B for each element of C
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An N-dimensional domain of work-items
• Global Dimensions:

• 1024x1024 (whole problem space)

• Local Dimensions:
• 128x128 (work-group, executes together)

• Choose the dimensions that are best for your 
algorithm

1024

1
0
2
4

Synchronization between 

work-items possible only 

within work-groups:

barriers and memory

fences
Cannot synchronize 

between work-groups

within a kernel
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OpenCL Memory model
• Private Memory

• Per work-item

• Local Memory
• Shared within a

work-group

• Global / Constant 
Memory

• Visible to all
work-groups

• Host memory
• On the CPU

Memory management is explicit: 

You are responsible for moving data from

host → global → local and back 69



OpenCL Memory model
• Private Memory

• Fastest & smallest: O(10) words/WI

• Local Memory
• Shared by all WI’s in a work-group
• But not shared between work-

groups!
• O(1-10) KBytes per work-group

• Global / Constant Memory
• O(1-10) GBytes of Global memory
• O(10-100) KBytes of Constant 

memory

• Host memory
• On the CPU - GBytes

Memory management is explicit: 

O(1-10) GBytes/s bandwidth to discrete GPUs for

Host <-> Global transfers 70



Private Memory

• Managing the memory hierarchy is one of the
most important things to get right to achieve good 
performance

• Private Memory:
• A very scarce resource, only a few tens of (32-bit) words 

per work-item at most
• If you use too much it spills to global memory or reduces 

the number of Work-Items that can be run at the same 
time, potentially harming performance*

• Think of these like registers on the CPU

* Occupancy on a GPU
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Local Memory*

• Tens of KBytes per Compute Unit
• As multiple Work-Groups will be running on each Compute Unit, this 

means only a fraction of the total Local Memory size is available to 
each Work-Group

• Assume O(1-10) KBytes of Local Memory per Work-Group
• Your kernels are responsible for transferring data between Local and 

Global/Constant memories. There are optimized library functions to 
help

• E.g. async_work_group_copy(), async_work_group_strided_copy(), …

• Use Local Memory to hold data that can be reused by all the 
work-items in a work-group

• Access patterns to Local Memory affect performance in a 
similar way to accessing Global Memory

• Have to think about things like coalescence & bank conflicts

* Typical figures for a discrete GPU
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Local Memory

• Local Memory doesn’t always help…
• CPUs don’t have special hardware for it

• This can mean excessive use of Local Memory might slow down 
kernels on CPUs

• GPUs now have effective on-chip caches which can provide 
much of the benefit of Local Memory but without programmer 
intervention

• So, your mileage may vary!
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The Memory Hierarchy

Private memory
O(10) words/WI

Local memory
O(1) KBytes/WG

Global memory
O(10) GBytes

Host memory
O(10-100) GBytes

Private memory
O(2-3) words/cycle/WI

Local memory
O(10) words/cycle/WG

Global memory
O(800-1,000) GBytes/s

Host memory
O(10) GBytes/s

Speeds and feeds approx. for a high-end discrete GPU, circa 2018

Bandwidths Sizes
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Memory Consistency
• OpenCL uses a relaxed consistency memory model; i.e. 

• The state of memory visible to a work-item is not guaranteed to be 
consistent across the collection of work-items at all times.

• For each work-item:
• Memory has load/store consistency to the work-item’s private view 

of memory, i.e. it sees its own reads and writes correctly

• Between work-items in a work-group:
• Local memory is consistent at a barrier.

• Global memory is consistent within a work-group at a barrier, 
but not guaranteed across different work-groups!!

• This is a common source of bugs!

• Consistency of memory shared between commands (e.g. 
kernel invocations) is enforced by synchronization (barriers, 
events, in-order queue) 
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Work-Item Synchronization

• Within a work-group:
void barrier()
• Takes optional flags

CLK_LOCAL_MEM_FENCE and/or CLK_GLOBAL_MEM_FENCE
• A work-item that encounters a barrier() will wait until ALL work-items in its 

work-group reach the barrier()

• Corollary: If a barrier() is inside a branch, then the branch must be uniform, 
i.e. taken by either:

• ALL work-items in the work-group, OR

• NO work-item in the work-group

• Between different work-groups:
• No guarantees as to where and when a particular work-group will be executed 

relative to other work-groups
• Cannot exchange data, or have barrier-like synchronization between two 

different work-groups! (Critical issue!)
• Only solution: finish executing the kernel and start executing another

Ensure correct order of memory operations to 

local or global memory (with flushes or queuing a 

memory fence)
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Optimizing matrix multiplication

• There may be significant overhead to manage work-items and 
work-groups.

• So let’s try having each work-item compute a full row of C

= x
A(i,:)

B(:,j)
C(i,j)

Dot product of a row of A and a column of B for each element of C
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An N-dimension domain of work-items

• Global Dimensions: 1024 (1D)

Whole problem space (index space)

• Local Dimensions:  leave to the run-time

• Important implication: we will have a lot fewer work-
items and work-groups. Why might this matter?

1
0
2
4
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__kernel void mmul(const int N,

__global float *A, __global float *B, __global float *C)

{

int k, j;

int i = get_global_id(0);

float tmp;

for (j = 0; j < N; j++) {

// N is width of rows in C

tmp = 0.0f;

for (k = 0; k < N; k++)

tmp += A[i*N+k] * B[k*N+j];

C[i*N+j]  = tmp;

}

}

Reduce work-item overhead
Do a whole row of C per work-item
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// Setup the buffers, initialize matrices,

// and write them into global memory

cl::Buffer d_a(context, begin(h_A), end(h_A), true);

cl::Buffer d_b(context, begin(h_B), end(h_B), true);

cl::Buffer d_c(context, CL_MEM_WRITE_ONLY,

sizeof(float) * size);

cl::KernelFunctor

<int,cl::Buffer, cl::Buffer, cl::Buffer> 

krow(program, "mmul");

zero_mat(N, h_C);

start_time = wtime();

krow(cl::EnqueueArgs(queue,

cl::NDRange(N, N)),

N, d_a, d_b, d_c);

run_time = wtime() - start_time;

cl::copy(queue, d_c, begin(h_C), end(h_C));

results(N, h_C, run_time);

}

Matrix multiplication host program (C++ API)

int main(int argc, char *argv[])

{

std::vector<float> h_A, h_B, h_C; // matrices

int N; // A[N][N],B[N][N],C[N][N]

int i, err; 

int size; // num elements in each matrix

double start_time, run_time; // timing data

cl::Program program;

N     = ORDER;

size  = N*N; 

h_A = std::vector<float>(size);

h_B = std::vector<float>(size);

h_C = std::vector<float>(size);

initmat(N, h_A, h_B, h_C);

// Compile for first kernel to setup program

program = cl::Program(C_elem_KernelSource, true);

Context context(CL_DEVICE_TYPE_DEFAULT);  

cl::CommandQueue queue(context);

std::vector<Device> devices =

context.getInfo<CL_CONTEXT_DEVICES>();

cl::Device device = devices[0]; 

std::string s =  

device.getInfo<CL_DEVICE_NAME>();

std::cout << "\nUsing OpenCL Device ”

<< s << "\n";

krow(cl::EnqueueArgs(queue

cl::NDRange(N)),

N, d_a, d_b, d_c);

Changes to host program:

1. 1D ND Range set to number of rows in the C matrix
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Matrix multiplication 
performance

• Matrices are stored in global memory.

Case GFLOP/s

CPU GPU

Sequential C (not OpenCL) 0.85 N/A

C(i,j) per work-item, all global 111.8 70.3

C row per work-item, all global 61.8 9.1

Third party names are the property of their owners.

These  are not official benchmark results.  You 

may observe completely different results should 

you run these tests on your own system.

This hasn’t helped.

Device is NVIDIA® Tesla® P100 GPU with 56 compute units, 3,584 PEs

Device is 2x Intel® Xeon® CPU, E5-2695 v4 @ 2.1GHz
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Optimizing matrix multiplication

• Notice that, in one row of C, each element reuses the same row of 
A.

• Let’s copy that row of A from global memory into private memory 
of the work-item that’s (exclusively) using it, to avoid the overhead 
of loading it from global memory for each C(i,j) computation.

= x
A(i,:)

B(:,j)
C(i,j)

Private memory of each work-
item

82



Matrix multiplication: OpenCL kernel (3/3)

__kernel void mmul(

const int N,

__global float *A,

__global float *B,

__global float *C)

{

int k, j;

int i = get_global_id(0);

float Awrk[1024];

float tmp;

for (k = 0; k < N; k++)

Awrk[k] = A[i*N+k];

for (j = 0; j < N; j++) {

tmp = 0.0f;

for (k = 0; k < N; k++)

tmp += Awrk[k]*B[k*N+j];

C[i*N+j] = tmp;

}

}
Setup a work array for A in private memory and 
copy into it from global memory before we start 

with the matrix multiplications.

(Actually, this is using far more private memory than we’ll have and so Awrk[] will be spilled to global memory)
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Matrix multiplication 
performance

• Matrices are stored in global memory.

Case GFLOP/s

CPU GPU

Sequential C (not OpenCL) 0.85 N/A

C(i,j) per work-item, all global 111.8 70.3

C row per work-item, all global 61.8 9.1

C row per work-item, A row private 9.6 24.9

Third party names are the property of their owners.

These  are not official benchmark results.  You 

may observe completely different results should 

you run these tests on your own system.

Mixed, and still slower than naïve
Device is NVIDIA® Tesla® P100 

GPU with 56 compute units, 3,584 

PEs

Device is 2x Intel® Xeon® CPU, 

E5-2695 v4 @ 2.1GHz
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Why using too much private memory can 
be a good thing

• In reality private memory is just hardware registers, so 
only dozens of these are available per work-item

• Many kernels will allocate too many variables to private 
memory

• So the compiler already has to be able to deal with this

• It does so by spilling excess private variables to (global) 
memory

• You still told the compiler something useful – that the 
data will only be accessed by a single work-item

• This lets the compiler allocate the data in such as way as 
to enable more efficient memory access
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Optimizing matrix multiplication

• We already noticed that, in one row of C, each element uses the 
same row of A

• Each work-item in a work-group also uses the same columns of B

• So let’s store the B columns in local memory (which is shared by the 
work-items in the work-group)

= x
A(i,:)

B(:,j)
C(i,j)

Private memory of each work-
item

Local memory for each work-
group
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Row of C per work-item, A row private, B columns local

__kernel void mmul(

const int N,

__global float *A,

__global float *B,

__global float *C,

__local float *Bwrk)

{

int k, j;

int i = get_global_id(0);

int iloc = get_local_id(0);

int nloc = get_local_size(0);

float Awrk[1024];

float tmp;

for (k = 0; k < N; k++)

Awrk[k] = A[i*N+k];

for (j = 0; j < N; j++) {

barrier(CLK_LOCAL_MEM_FENCE);    

for (k=iloc; k<N; k+=nloc)

Bwrk[k] = B[k*N+j];

barrier(CLK_LOCAL_MEM_FENCE);

tmp = 0.0f;

for (k = 0; k < N; k++)

tmp += Awrk[k] * Bwrk[k];

C[i*N+j] = tmp;

}

} Pass in a pointer to local memory.  

Work-items in a work-group start 

by cooperatively copying the 

columns of B they need into the 

work-group's local memory.
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// Setup the buffers, initialize matrices,

// and write them into global memory

cl::Buffer d_a(context, begin(h_A), end(h_A), true);

cl::Buffer d_b(context, begin(h_B), end(h_B), true);

cl::Buffer d_c = cl::Buffer(context, 

CL_MEM_WRITE_ONLY,

sizeof(float) * size);

cl::KernelFunctor<int, cl::Buffer, cl::Buffer,

cl::Buffer> 

rowcol(program, “mmul”);

zero_mat(N, h_C);

start_time = wtime();

rowcol(cl::EnqueueArgs(queue, cl::NDRange(N)),

N, d_a, d_b, d_c);

run_time = wtime() - start_time;

cl::copy(queue, d_c, begin(h_C), end(h_C));

results(N, h_C, run_time);

}

int main(int argc, char *argv[])

{

std::vector<float> h_A, h_B, h_C; // matrices

int N; // A[N][N],B[N][N],C[N][N]

int i, err; 

int size; // num elements in each matrix

double start_time, run_time; // timing data

cl::Program program;

N     = ORDER;

size  = N*N; 

h_A = std::vector<float>(size);

h_B = std::vector<float>(size);

h_C = std::vector<float>(size);

initmat(N, h_A, h_B, h_C);

// Compile for first kernel to setup program

program = cl::Program(C_elem_KernelSource, true);

Context context(CL_DEVICE_TYPE_DEFAULT);  

cl::CommandQueue queue(context);

std::vector<Device> devices =

context.getInfo<CL_CONTEXT_DEVICES>();

cl::Device device = devices[0]; 

std::string s =  

device.getInfo<CL_DEVICE_NAME>();

std::cout << "\nUsing OpenCL Device ”

<< s << "\n";

Matrix multiplication host program (C++ API)

Changes to host program: Pass local memory to kernels. 

1. This requires a change to the kernel argument lists … an arg of 

type LocalSpaceArg is needed. 

2. Allocate the size of local memory

3. Update argument list in kernel functor

rowcol(cl::EnqueueArgs(queue, cl::NDRange(N)),

N, d_a, d_b, d_c, localmem);

cl::LocalSpaceArg localmem =

cl::Local(sizeof(float) * N);

cl::KernelFunctor<int, cl::Buffer, cl::Buffer,

cl::Buffer, cl::LocalSpaceArg> 

rowcol(program, “mmul”);
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Matrix multiplication performance

• Matrices are stored in global memory.

Case GFLOP/s

CPU GPU

Sequential C (not OpenCL) 0.85 N/A

C(i,j) per work-item, all global 111.8 70.3

C row per work-item, all global 61.8 9.1

C row per work-item, A row private 9.6 24.9

C row per work-item, A private, B local 12.3 55.4

Third party names are the property of their owners.

These  are not official benchmark results.  You 

may observe completely different results should 

you run these tests on your own system.

Device is NVIDIA® Tesla® P100 GPU with 56 compute units, 3,584 PEs

Device is 2x Intel® Xeon® CPU, E5-2695 v4 @ 2.1GHz
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Making matrix multiplication really fast

• Our goal has been to describe how to work with private, local 
and global memory.  We’ve ignored many well-known 
techniques for making matrix multiplication fast

• The number of work-items should be a multiple of the fundamental 
machine “vector width”.  This is the wavefront on AMD, warp on 
NVIDIA, and the number of SIMD lanes exposed by vector units on a 
CPU

• To optimize reuse of data, you need to use blocking techniques  
• Decompose matrices into tiles such that three tiles just fit in the fastest 

memory

• Copy tiles into local memory

• Do the multiplication over the tiles

• We have provided a very fast yet still quite simple block matrix multiply 
solution in OpenCL. This uses blocking with block sizes mapped onto 
the GPU’s warp/wavefront size. We'll come back to this later in the 
advanced section
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Matrix multiplication: sequential code

void mat_mul(int N, float *A, float *B, float *C)

{

int i, j, k;

for (i = 0; i < N; i++) 

for (j = 0; j < N; j++) 

for (k = 0; k < N; k++)  

C[i*N+j] += A[i*N+k] * B[k*N+j];

}
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Matrix multiplication: sequential code
void mat_mul(int N, float *A, float *B, float *C)

{ // assume N % block_size = 0

int i, j, k;

int NB = N/block_size; 

for (ib = 0; ib < NB; ib++) 

for (i = ib*NB; i < (ib+1)*NB; i++)

for (jb = 0; jb < NB; jb++) 

for (j = jb*NB; j < (jb+1)*NB; j++)

for (kb = 0; kb < NB; kb++) 

for (k = kb*NB; k < (kb+1)*NB; k++)

C[i*N+j] += A[i*N+k]*B[k*N+j];

} 

Break each loop 

into chunks with a 

size chosen to 

match the size of 

your fast memory

Break each loop 

into chunks with a 

size chosen to 

match the size of 

your fast memory
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Matrix multiplication: sequential code
void mat_mul(int N, float *A, float *B, float *C)

{ // assume N % block_size = 0

int i, j, k;

int NB = N/block_size; 

for (ib = 0; ib < NB; ib++) 

for (jb = 0; jb < NB; jb++) 

for (kb = 0; kb < NB; kb++) 

for (i = ib*NB; i < (ib+1)*NB; i++)

for (j = jb*NB; j< (jb+1)*NB; j++)

for (k = kb*NB; k < (kb+1)*NB; k++)

C[i*N+j] += A[i*N+k]*B[k*N+j];

} 

Rearrange loop nest to 

move loops over blocks 

“out” and leave loops 

over a single block 

together

Rearrange loop nest to 

move loops over blocks 

“out” and leave loops 

over a single block 

together
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Matrix multiplication: sequential code
void mat_mul(int N, float *A, float *B, float *C)

{ // assume N % block_size = 0

int i, j, k;

int NB = N/block_size; 

for (ib = 0; ib < NB; ib++) 

for (jb = 0; jb < NB; jb++) 

for (kb = 0; kb < NB; kb++) 

for (i = ib*NB; i < (ib+1)*NB; i++)

for (j = jb*NB; j< (jb+1)*NB; j++)

for (k = kb*NB; k < (kb+1)*NB; k++)

C[i*N+j] += A[i*N+k]*B[k*N+j];

} This is just a local matrix 

multiplication of a single block

This is just a local matrix 

multiplication of a single block
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Matrix multiplication: sequential code
void mat_mul(int N, float *A, float *B, float *C)

{ // assume N % block_size = 0

int i, j, k;   

int NB = N/block_size; 

for (ib = 0; ib < NB; ib++) 

for (jb = 0; jb < NB; jb++) 

for (kb = 0; kb < NB; kb++) 

sgemm(C, A, B, …)       // Cib,jb = Aib,kb * Bkb,jb

} 

Note: sgemm is the name of the level three BLAS routine to multiply two matrices

= x

A(ib,:) B(:,jb)C(ib,jb)
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Blocked matrix multiply: kernel
#define blksz 16

__kernel void mmul(

const unsigned int N,

__global float* A,

__global float* B,

__global float* C,

__local  float* Awrk,

__local  float* Bwrk)

{

int kloc, Kblk;

float Ctmp=0.0f;

//  Compute element C(i,j)

int i = get_global_id(0);

int j = get_global_id(1);

// Element C(i,j) is in block C(Iblk,Jblk)

int Iblk = get_group_id(0);

int Jblk = get_group_id(1);

// C(i,j) is element C(iloc, jloc) 

// of block C(Iblk, Jblk)

int iloc = get_local_id(0);

int jloc = get_local_id(1);

int Num_BLK = N/blksz;

// Upper-left-corner and inc for A and B

int Abase = Iblk*N*blksz;    int Ainc = blksz;

int Bbase = Jblk*blksz;       int Binc = blksz*N;

// C(Iblk,Jblk)=(sum over Kblk) A(Iblk,Kblk)*B(Kblk,Jblk)

for (Kblk = 0;  Kblk<Num_BLK;  Kblk++)

{

// Load A(Iblk,Kblk) and B(Kblk,Jblk).

// Each work-item loads a single element of the two 

// blocks which are shared with the entire work-group

Awrk[jloc*blksz+iloc] = A[Abase+jloc*N+iloc];

Bwrk[jloc*blksz+iloc] = B[Bbase+jloc*N+iloc];

barrier(CLK_LOCAL_MEM_FENCE);

#pragma unroll

for (kloc=0; kloc<blksz; kloc++)

Ctmp+=Awrk[jloc*blksz+kloc]*Bwrk[kloc*blksz+iloc];

barrier(CLK_LOCAL_MEM_FENCE);

Abase += Ainc;       Bbase += Binc;

}

C[j*N+i] = Ctmp;

}
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Blocked matrix multiply: kernel
#define blksz 16

__kernel void mmul(

const unsigned int N,

__global float* A,

__global float* B,

__global float* C,

__local  float* Awrk,

__local  float* Bwrk)

{

int kloc, Kblk;

float Ctmp=0.0f;

//  Compute element C(i,j)

int i = get_global_id(0);

int j = get_global_id(1);

// Element C(i,j) is in block C(Iblk,Jblk)

int Iblk = get_group_id(0);

int Jblk = get_group_id(1);

// C(i,j) is element C(iloc, jloc) 

// of block C(Iblk, Jblk)

int iloc = get_local_id(0);

int jloc = get_local_id(1);

int Num_BLK = N/blksz;

// Upper-left-corner and inc for A and B

int Abase = Iblk*N*blksz;    int Ainc = blksz;

int Bbase = Jblk*blksz;       int Binc = blksz*N;

// C(Iblk,Jblk)=(sum over Kblk) A(Iblk,Kblk)*B(Kblk,Jblk)

for (Kblk = 0;  Kblk<Num_BLK;  Kblk++)

{

// Load A(Iblk,Kblk) and B(Kblk,Jblk).

// Each work-item loads a single element of the two 

// blocks which are shared with the entire work-group

Awrk[jloc*blksz+iloc] = A[Abase+jloc*N+iloc];

Bwrk[jloc*blksz+iloc] = B[Bbase+jloc*N+iloc];

barrier(CLK_LOCAL_MEM_FENCE);

#pragma unroll

for (kloc=0; kloc<blksz; kloc++)

Ctmp+=Awrk[jloc*blksz+kloc]*Bwrk[kloc*blksz+iloc];

barrier(CLK_LOCAL_MEM_FENCE);

Abase += Ainc;       Bbase += Binc;

}

C[j*N+i] = Ctmp;

}

Load A and B blocks, 

wait for all work-

items to finish

Wait for everyone to finish before 

going to next iteration of Kblk loop.

It’s getting the indices 

right that makes this hard



#define DEVICE 
CL_DEVICE_TYPE_DEFAULT

int main(void)

{  // Declarations (not shown)

size = N * N; blksz = 16;

std::vector<float> h_A(size); 

std::vector<float> h_B(size); 

std::vector<float> h_C(size); 

cl::Buffer d_A, d_B, d_C; 

// Initialize matrices and setup

// the problem (not shown)

cl::Context context(DEVICE);

cl::Program program(context,
util::loadProgram("mmul.cl", 

true));

cl::KernelFunctor
<int, cl::Buffer, cl::Buffer, cl::Buffer,
cl::LocalSpaceArg, cl::LocalSpaceArg > 

mmul(program, "mmul");

d_A = cl::Buffer(context, begin(h_A), end(h_A),true);

d_B = cl::Buffer(context, begin(h_B), end(h_B),true);

d_C = cl::Buffer(context, 
CL_MEM_WRITE_ONLY, sizeof(float) * size);

cl::LocalSpaceArg Awrk =
cl::Local(sizeof(float) * blksz * blksz);

cl::LocalSpaceArg Bwrk =
cl::Local(sizeof(float) * blksz * blksz);

mmul(cl::EnqueueArgs( queue, 
cl::NDRange(N,N), cl::NDRange(blksz, blksz)), 

N, d_A,  d_B,  d_C, Awrk, Bwrk);

cl::copy(queue, d_C, begin(h_C), end(h_C));

// Timing and check results (not shown)

}

Blocked matrix multiply: Host
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#define DEVICE 
CL_DEVICE_TYPE_DEFAULT

int main(void)

{  // Declarations (not shown)

size = N * N; blksz = 16;

std::vector<float> h_A(size); 

std::vector<float> h_B(size); 

std::vector<float> h_C(size); 

cl::Buffer d_A, d_B, d_C; 

// Initialize matrices and setup

// the problem (not shown)

cl::Context context(DEVICE);

cl::Program program(context,
util::loadProgram("mmul.cl", 

true));

cl::KernelFunctor
<int, cl::Buffer, cl::Buffer, cl::Buffer,
cl::LocalSpaceArg, cl::LocalSpaceArg > 

mmul(program, "mmul");

d_A = cl::Buffer(context, begin(h_A), end(h_A),true);

d_B = cl::Buffer(context, begin(h_B), end(h_B),true);

d_C = cl::Buffer(context, 
CL_MEM_WRITE_ONLY, sizeof(float) * size);

cl::LocalSpaceArg Awrk =
cl::Local(sizeof(float) * blksz * blksz);

cl::LocalSpaceArg Bwrk =
cl::Local(sizeof(float) * blksz * blksz);

mmul(cl::EnqueueArgs( queue, 
cl::NDRange(N,N), cl::NDRange(blksz, blksz)), 

N, d_A,  d_B,  d_C, Awrk, Bwrk);

cl::copy(queue, d_C, begin(h_C), end(h_C));

// Timing and check results (not shown)

}

Blocked matrix multiply: Host

One work-item per element of the C matrix organized into 16 by 16 blocks.  

Setup local memory 

with blocks of A and B 

(16 by 16) that should 

fit in local memory.  
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Matrix multiplication performance
• Matrices are stored in global memory.

Case GFLOP/s

CPU GPU

Sequential C (not OpenCL) 0.85 N/A

C(i,j) per work-item, all global 111.8 70.3

C row per work-item, all global 61.8 9.1

C row per work-item, A row private 9.6 24.9

C row per work-item, A private, B local 12.3 55.4

Block oriented approach using local 138.0 1,801.8

Third party names are the property of their owners.
These  are not official benchmark results.  You may observe completely 

different results should you run these tests on your own system.

P100 peak is ~8.5 TFLOP/s single precision.

E5-2695 peak is ~1.2 TFLOP/s s.p.

Device is NVIDIA® Tesla® P100 

GPU with 56 compute units, 3,584 

PEs

Device is 2x Intel® Xeon® CPU, 

E5-2695 v4 @ 2.1GHz

11.5% of peak 21.2% of peak
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Matrix multiplication performance
• Block sizes are crucial to performance

Case GFLOP/s

CPU GPU

Block oriented approach using local, 8x8 67.5 1,511.3

Block oriented approach using local, 16x16 109.6 1,801.8

Block oriented approach using local, 32x32 134.9 1,796.0

Block oriented approach using local, 64x64 138.0 N/A

Vendor SGEMM (MKL / NVIDIA CuBLAS) 5,550.3

Third party names are the property of their owners.
These  are not official benchmark results.  You may observe completely 

different results should you run these tests on your own system.

Device is NVIDIA® Tesla® P100 

GPU with 56 compute units, 3,584 

PEs

Device is 2x Intel® Xeon® CPU, 

E5-2695 v4 @ 2.1GHz
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