COMP2300-COMP6300-ENGN2219 Computer Organization & Program Execution

Convener: Shoaib Akram shoaib.akram@anu.edu.au

Australian National University

Plan of Week 2

- Week 1: Digital abstraction and binary digits
- Week 1: Number systems for binary variables
- This Week: Boolean logic & Logic gates (contd)
- This Week: Combinational logic (more than just gates)

Classification of Digital Circuits

- Combinational Circuit: Output depends only on the combination of input values
 - Memory-less (a distinct and critical feature)
 - All logic gates are combinational
- Sequential Circuit: Output depends on the current and history of inputs
 - The sequence of inputs over time determine the output
 - Sequential circuits have a state or memory
 - Example: Elevator controller (State: on the ground, in transit, at the top)

Section 2.1 of H&H

Combinational Behavior

 Example: Suppose a combinational circuit, consisting of an AND gate, with two inputs, A and B

time 🗲	t0	t1	t2	t3	t4	t5	t6
А	0	1	1	0	1	0	1
В	0	1	0	0	1	0	1
Output	0	1	0	0	1	0	1

- At time t6, the sequence of changes to A and B between t0 t5 is irrelevant.
- Output is strictly determined by the values of A and B at t6

Combinational Circuits

- Functional specification: What is the behavior of the circuit?
- What is the output for a given combination of input values?
- Timing specification: How long does the circuit takes to produce the output?
 - Worst-case: 10 nanoseconds
 - **Best-case:** 1 nanoseconds

Combinational Circuits

- Hierarchy: The top-level circuit, C_L, is made up for of two combinational sub-circuits, CL₁ and CL₂
- Nodes: n1 is an internal wire or node
- Abstraction: The input and output interface, and the functional and timing specification is enough for someone to use C_L

Implementing Combinational Logic

- Steps in implementing combinational Logic
 - Initial specification (e.g., in English)
 - Construct the truth table
 - Derive the Boolean equation
 - Simplify the Boolean equation (use Boolean algebra)
 - Implement the equation using logic gates

Functional specification

Specification

[Happiness detector] Alex is not happy if there is a work-related deadline or the beach is closed due to bad weather. Design a circuit that outputs 1 only if Alex is happy.

[Multiplexer] Design a circuit with three inputs: D_0 , D_1 , select; and one output. The output is D_0 if select is 0, and D_1 if select is 1.

[Half Adder] Design a circuit that adds two binary variables: A and B. The circuit has two outputs: sum and carry-out (C_{out}).

[Full Adder] Design a circuit that adds three binary variables: A, B, and a carry-in (C_{in}). The circuit has two outputs: sum and carry-out (C_{out}).

Constructing Truth Tables

- Identify inputs and outputs (interface)
 - The interface may be implicit or require some thought

- Write all the possible combinations of input values
 - For each input combination, determine the output
 - All inputs to the left, outputs to the right

Truth Table: Happiness Detector

Specification: Alex is not happy if there is a work-related deadline or the beach is closed due to bad weather. Design a circuit that outputs 1 only if Alex is happy.

Interface	Truth Table
 Deadline? (D) Ou there is not a deadline 	D B H
 0: there is not a deadline 1: there is a deadline 	0 0 1
Beach is closed? (B)	0 1 0
• 0: open	1 0 0
 1: closed Happy (H): 1 → ☺, 0 → ⊗ 	1 1 0

Truth Table: Beach

Specification: IF it is warm and sunny, OR it is my birthday, THEN I am going to the beach. Write the truth table where the output is 1 when I am going to the beach

Deriving a Boolean Equation

- The truth table is the unique signature of a Boolean function
 - But it is an expensive representation
- Why is that?

Deriving a Boolean Equation

- Boolean equation is an alternative way to represent the function of a combinational logic block
- Enables the systematic transformation of the function into simpler functions (using Boolean algebra, we will see later)
 - Different hardware implementations
 - The simplification process can be automated via Computer-Aided
 Design (CAD) and Electronic Design Automation (EDA)
- Different Boolean expressions of the same Boolean function lead to different logic gate-level implementations
 - Different hardware area, cost, latency, energy properties

Definitions

- **Complement:** variable with a bar or prime (') over it \overline{A} , \overline{B} , \overline{C} , A', B', C'
- Literal: variable or its complement $A, \overline{A}, B, \overline{B}, C, \overline{C}$
- Implicant: product (AND) of literals $(A \cdot B \cdot \overline{C}), (\overline{A} \cdot C), (B \cdot \overline{C})$
- **Minterm:** product (AND) that includes **all** input variables $(A \cdot B \cdot \overline{C})$, $(\overline{A} \cdot \overline{B} \cdot C)$, $(\overline{A} \cdot B \cdot \overline{C})$
- Maxterm: sum (OR) that includes all input variables $(A + \overline{B} + \overline{C})$, $(\overline{A} + B + \overline{C})$, $(A + B + \overline{C})$

Section 2.2 of H&H

Minterms

			Minterms		
x	y	z	Term	Designation	
0	0	0	x'y'z'	m_0	
0	0	1	x'y'z	m_1	
0	1	0	x'yz'	m_2	
0	1	1	x'yz	m_3	
1	0	0	xy'z'	m_4	
1	0	1	xy'z	m_5	
1	1	0	xyz'	m_6	
1	1	1	xyz	m_7	

Each minterm is obtained from an AND term of n variables

- Use prime of the variable if the bit is 0 and unprimed if 1
- The subscript j in the symbol for each minterm (m_j) denotes the decimal equivalent of the binary number of the minterm designated

Maxterms

			Μ	interms	Maxt	terms
x	y	z	Term	Designation	Term	Designation
0	0	0	x'y'z'	m_0	x + y + z	M_0
0	0	1	x'y'z	m_1	x + y + z'	M_1
0	1	0	x'yz'	m_2	x + y' + z	M_2
0	1	1	x'yz	m_3	x + y' + z'	M_3
1	0	0	xy'z'	m_4	x' + y + z	M_4
1	0	1	xy'z	m_5	x' + y + z'	M_5
1	1	0	xyz'	m_6	x' + y' + z	M_6
1	1	1	xyz	m_7	x' + y' + z'	M_7

Each maxterm is obtained from an OR term of n variables

Operation Precedence

- NOT has the highest precedence
- Next is AND
- Last is OR
- Example: Y = A + BC'
 - First, we find C'
 - Then, we find BC' (product/AND)
 - Finally, we perform A + (the *result* of BC')

Standardized Representations

- Enable a single, universally agreed on way of representing a Boolean function from its truth table
 - Also called canonical representations
- Sum of Products (SOP) form
- Product of Sums (POS) form

Sum of Products (SOP)

- Sum of Products Form (SOP)
 - Also known as disjunctive normal form or minterm expansion
 - SOP is canonical/standard form of a Boolean function
- We have a truth table of a Boolean Function F and we need to express the function in terms of inputs in a standard manner
 - Give it a unique algebraic signature
- Truth table is an expensive representation
 - More compact and unique signature of a Boolean function
- All Boolean equations can be written in SOP form

Key Idea of SOP

- Express the truth table as a two-level Boolean expression
 - contains all input variable combinations that result in a 1 output
 - if ANY of the combinations of input variables that result in a 1 is TRUE, then the output is 1
 - F = OR of all input variable combinations that result in a 1
- Why does it work?
 - Output is 1 whenever the corresponding minterm is 1
 - Minterm is 1 when the corresponding input combinations result in the minterm evaluating to 1

Two-Level Canonical Forms: SOP

Sum of Products Form (SOP)

Also known as **disjunctive normal form** or **minterm expansion**

All Boolean equations can be written in SOP form

Find all the input combinations (minterms) for which the output of the function is TRUE.

SOP Form – Why Does it Work?

- Only the shaded product term $-A\overline{B}C = 1 \cdot \overline{0} \cdot 1 \text{will be } 1$
- No other product terms will "turn on" they will all be 0
- So if inputs A B C correspond to a product term in expression,
 We get 0 + 0 + ... + 1 + ... + 0 + 0 = 1 for output
- If inputs A B C do not correspond to any product term in expression
 We get 0 + 0 + ... + 0 = 0 for output

The function evaluates to TRUE (i.e., output is 1) if **any** of the **Products** (minterms) causes the output to be 1

Standard Notation for SOP Form

- Standard "shorthand" notation
 - If we agree on the order of the variables in the rows of truth table...
 - then we can enumerate each row with the decimal number that corresponds to the binary number created by the input pattern

A B C F	
0 0 0 0	
0 0 1 0	
0 1 1 1	
	.00 = decimal 4 so this is minterm #4, or m4
1 0 1 1	
1 1 0 1	
1 1 1 1 1	111 = decimal 7 so this is minterm #7, or m7
f =	We can write this as a sum of products
	Or, we can use a summation notation

Canonical SOP Form

Α	B	C	minterms
0	0	0	$\overline{A}\overline{B}\overline{C} = m0$
0	0	1	$\overline{ABC} = m1$
0	1	0	$\overline{ABC} = m2$
0	1	1	$\overline{ABC} = m3$
1	0	0	$A\overline{B}\overline{C} = m4$
1	0	1	$A\overline{B}C = m5$
1	1	0	$AB\overline{C} = m6 \blacktriangleleft$
1	1	1	ABC = m7

Shorthand Notation for Minterms of 3 Variables

2-Level AND/OR Realization

F in canonical form:

 $F(A,B,C) = \sum m(3,4,5,6,7)$ = m3 + m4 + m5 + m6 + m7

F =

canonical form ≠ minimal form

F

More SOP Examples

SOP: Simple Example (1 minterm)

To write the Boolean equation for a truth table, sum each of the minterms for which the output is 1

Α	В	Y1	minterm	name
0	0	0	A'B'	m ₀
0	1	1	A'B	m ₁
1	0	0	AB'	m ₂
1	1	0	AB	m ₃

Boolean Eq
Y1 = A'B
Y1 is 1 only when A = 0 and B = 1
Conversely, when A' = 1 and B = 1

SOP: Example (2 minterms)

To write the Boolean equation for a truth table, sum each of the minterms for which the output is 1

Α	В	Y1	minterm	name
0	0	0	A'B'	m ₀
0	1	1	A'B	m ₁
1	0	0	AB'	m ₂
1	1	1	AB	m ₃

Boolean Eq Y1 = A'B + AB Y1 is 1 *either* when A = 0 and B = 1 **OR**, when A = 1 and B = 1 $Y1 = \sum (1,3)$

SOP Summary

- A Boolean function can be expressed algebraically from a given truth table
 - by forming a minterm for each combination of the variables that produces a 1 in the function
 - and then taking the OR of all those terms
- The minterms whose sum defines the Boolean function are those that give the 1's of the function in a truth table
- The sum of products canonical form can also be written in sigma notation using the summation symbol, $\sum (m1, m2, ...)$

Equation: Happiness Detector

Specification: Mr. X is not happy if there is an assignment deadline, or their favorite bar is closed. Design a circuit that outputs 1 only if Mr. X is happy.

<u>Tru</u>	ith T	<u>able</u>	<u> </u>
D	В	Н	l
0	0	1	l
0	1	0	
1	0	0	
1	1	0	

<u>Boolean Eq</u>

H = D'B'

H = (D)' AND (B)'

From Equation to Gates

Schematic: A diagram of a digital circuits with elements (gates) and the wires that connect them together

<u>Example Boolean Eq</u>

Y = AB' + B'C'

<u>Schematic</u>

- 1. Inputs are on the left (or top) side
- 2. Outputs are on the right
- 3. Gates flow from left to right
- 4. Use straight wires
- 5. Wires connect at a T junction
- 6. A dot where wires cross indicates a connection

From Equation to Gates

Another example

 $Y = (\overline{A} \cdot \overline{B} \cdot \overline{C}) + (A \cdot \overline{B} \cdot \overline{C}) + (A \cdot \overline{B} \cdot C)$ Α В С \overline{B} √ C ¥**A** minterm: \overline{ABC} minterm: $A\overline{B}\overline{C}$ minterm: $A\overline{B}C$

Key to remember: SOP form does NOT directly lead to minimal logic (next lecture)

Specification: Mr. X is not happy if there is an assignment deadline, or their favorite bar is closed. Design a circuit that outputs 1 only if Mr. X is happy.

<u>Truth T</u>	<u>able</u>	<u>Boolean Eq</u>	Logic Gate Implementation
DB	Н	H = D'B'	
0 0	1	H = (D)' AND (B)'	B - C - H
0 1	0		
1 <mark>0</mark>	0		
1 1	0		

Specification: Mr. X is not happy if there is an assignment deadline, or their favorite bar is closed. Design a circuit that outputs 1 only if Mr. X is happy.

<u>Truth Ta</u>	<u>able</u>	<u>Boolean Eq</u>	Logic Gate Implementation
D B	Η	H = D'B'	
0 0	1	H = (D)' AND (B)'	B - C - H
0 1	0		
1 0	0	Which (monolithic) gate	
1 1	0	is this?	

Specification: Mr. X is not happy if there is an assignment deadline, or their favorite bar is closed. Design a circuit that outputs 1 only if Mr. X is happy.

Tru	<u>th T</u>	able	<u>Boolean Eq</u>	Logic Gate Implementation
D	B	Н	H = D'B'	
0	0	1	H = (D)' AND (B)'	R - H
0	1	0		
1	0	0	Which (monolithic) gate	
1	1	0	is this? Answer: NOR gate	B - D - H

Why does the happiness detector lack an OR gate in the twolevel representation as a gate-level schematic?

Combinational Building Blocks used in Modern Computers

Multiplexers

Multiplexer: T. Table + Eq

Specification: Circuit with three inputs: D_0 , D_1 , select (S), and one output (Y). The output is D_0 if select is 0, and D_1 if select is 1.

$$Y = S'D_{1}'D_{0} + S'D_{1}D_{0} + SD_{1}D_{0}' + SD_{1}D_{0}$$

$$Y = S'D_{0} (D_{1}' + D_{1}) + SD_{1} (D_{0}' + D_{0})$$

$$= 1 = 1$$

$$Y = S'D_{0} (1) + SD_{1} (1)$$

$$Y = S'D_{0} + SD_{1}$$
Boolean a
Distribution product or

Section 2.8.1 of H&H

lgebra: on of ver sums

The minimum you can do is write the truth table systematically and express the Boolean function using the SOP canonical form

But, remember, ... canonical form ≠ minimal form

Multiplexer: Gate-Level Schematic

Specification: Design a circuit with three inputs: D_0 , D_1 , select (S); and one output (Y). The output is D_0 if select is 0, and D_1 if select is 1.

 $\mathbf{Y} = \mathbf{S'}\mathbf{D}_0 + \mathbf{S}\mathbf{D}_1$

Gate-Level Schematic

S	D_1	D_0	Y
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	1

2:1 Multiplexer (Mux)

- A 2:1 multiplexer (mux)
 - Two data inputs (D₀ and D₁)
 - Another input called the select signal
 - Output is either D₀ or D₁ depending on the value of select
- We will use the high-level schematic for 2:1 mux and ignore the gate-level implementation details

High-level Schematic

Multiplexer Applications

- Heavily used in control circuitry
 - Decision making
 - Which of the many *competing outcomes* to *select*?
- Select one of the many signals and send it to another unit
- Think of if/else blocks in high-level programs

A 4:1 mux has two select signals S₀ and S₁

- A / and 2 implies a **bus width** of 2 to contrast with 1-bit wire or input
- One option is to construct the truth table and derive the Boolean equations
 - How many rows will there be in the table? (tedious!)
- Let's use intuition to build a 4:1 mux from two 2:1 multiplexers

Logic using Multiplexers

Logic Using Multiplexers

- Any truth table can be seen as a lookup table (LUT)
 - Lookup 00, and we see either 0 or 1
 - It is like looking up a dictionary

Muxes are used as LUTs to perform logic functions

- Connect the data inputs to 0 or 1
- Use inputs (A/B) as select lines

Logic Using Multiplexers

Logic Using Multiplexers

- Multiplexers can implement logic gate
 - For example, we can build a 2-input AND gate from a 2:1 multiplexer
- Can be (re)programmed to perform any N-input logic function
- Key idea: Connect multiplexer inputs to 0 (zero/ground) or 1 (high) by inspecting the truth table

A 2^{N} -input multiplexer can be programmed to perform any N-input logic function by applying O's and 1's to the appropriate data inputs

Multiplexer Logic: 3-Input Example

A	В	С	Y
0	0	0	1
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	1
1	0	1	1
1	1	0	0
1	1	1	0

 $Y = A\overline{B} + \overline{B}\overline{C} + \overline{A}BC$

3-Input Lookup Table (LUT)

- LUTs are building blocks of Field Programmable Gate Array (FPGA)
- Many LUTs in an FPGA chip to implement logic functions with many variables
- The data inputs are stored as configuration memory

3-Input Lookup Table (LUT)

3-Input Lookup Table (LUT)

Modern FPGA

Modern FPGA

- Each 3-LUT performs the subset of the logic function (N is large)
- Signals are routed b/w CLBs using reconfigurable connections

Topics Covered So Far

- Binary number system
- Transistor (basic building block)
- Logic gates
- Combinational circuits
 - English specification
 - Transformation to truth tables
 - Sum of Products (SOP)
 - Two-level implementation
- Multiplexers & lookup tables

Continuing

More combinational circuits

- Adders
- ALU
- Decoder
- Comparator
- PLA
- Tri-state buffer
- Timing issues in combinational circuits
- Logic minimization with Boolean algebra

Adders & Timing in Combinational Circuits

Half Adder

Specification: Design a circuit that adds two binary variables: A and B. The circuit has two outputs: sum and carry-out (C_{out}).

<u>Trı</u>	uth T	able		<u>Boolean Eq</u>	<u>Schematic</u>
Α	В	C _{out}	S	S = A'B + AB'	
0	0	0	0	$S = A \bigoplus B$	
0	1	0	1	C _{out} = AB	Cout
1	0	0	1		
1	1	1	0		

Section 5.2.1 of H&H

Full Adder

- Limitation of half adder: No carry input
- Problem: Adding multiple bits requires the need to add carry out from the previous column to the next column
- Full adder solves the problem
 - Accepts three inputs, including a carry input
 - Signals flow from right to left reflecting the carry propagation in arithmetic circuits

1001

0101

1110

Sum of products form != minimal form

$\mathbf{S} = \mathbf{C}_{in} \mathbf{A} \mathbf{B} + \mathbf{C}_{in} \mathbf{A} \mathbf{B} \mathbf{B} + \mathbf{C}_{in} \mathbf{A} \mathbf{B} \mathbf{B} \mathbf{A} \mathbf{A} \mathbf{B} \mathbf{A} \mathbf{B} \mathbf{A} \mathbf{A} \mathbf{A} \mathbf{B} \mathbf{A} \mathbf{A} \mathbf{B} \mathbf{A} \mathbf{A} \mathbf{A} \mathbf{B} \mathbf{A} \mathbf{A} \mathbf{A} \mathbf{B} \mathbf{A} \mathbf{A} \mathbf{A} \mathbf{A} \mathbf{A} \mathbf{A} \mathbf{A} A$	B
$C_{out} = C_{in}'AB + C_{in}A'B + C_{in}AB' + C_{in}$	AB

C _{in}	Α	В	C _{out}	S
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

$$S = C_{in}'A'B + C_{in}'AB' + C_{in}A'B' + C_{in}AB$$
$$C_{out} = C_{in}'AB + C_{in}A'B + C_{in}AB' + C_{in}AB$$

Simplification via Boolean algebra $S = A \bigoplus B \bigoplus C_{in}$

 $C_{out} = C_{in}(A \bigoplus B) + AB$

C _{in}	Α	В	C _{out}	S
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

 $C_{out} = C_{in}'AB + C_{in}A'B + C_{in}AB' + C_{in}AB$

Insight about Cout

- 1 when both A and B are 1
 - Carry Generation (G)
- 1 when there is a C_{in} and one of A and B is 1
 - Carry Propagation (P)

C _{in}	Α	В	C _{out}	S
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

Full Adder: Schematic

 $S = A \bigoplus B \bigoplus C_{in}$ $C_{out} = C_{in}(A \bigoplus B) + AB$

C _{in}	Α	В	C _{out}	S
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

Ripple Carry Adder

What if we want to add two N-bit numbers?

Ripple Carry Adder

- What if we want to add two N-bit numbers?
 - Connect a chain of full adders from right to left

Ripple carry adder has a critical drawback!

Timing in Combinational Circuits

- Every combinational circuit has a delay (seconds)
 - The time it takes for the *output to reach a final stable value* when the input changes (typically nanoseconds or picoseconds)

Examples

- Inputs of the AND gate change from (0,0) to (1,1)
 - Output of AND gate change from 0 to 1
 - How long does it take to for the output to change?

- When A, B, and C_{in} are inputs to a full adder
 - How long does it take to observe the final (and stable) S and C_{out}?

Examples of Timing/Delay

Each gate has a delay

Chain of gates: Sum the delay of each gate in the chain 2 X t_{INV}

Multiple paths from input to output $t_{path1} = t_{INV1} + t_{AND}$

 $t_{path2} = t_{INV2} + t_{AND}$

Critical and Shortest Path

- Most useful combinational circuits have multiple paths from input to output
 - Critical path: The slowest path (with longest delay)
 - Critical path limits the speed at which the circuit operates
 - In contrast, the shortest path is the fastest
- For simplification, we will ignore the delay of nodes (wires)
 - Although the delay is non-trivial, it is studied best at the analog level of abstraction

Multiplexer and Adder Delay

 Assume component-level delay and don't worry about delay of individual gates (unless necessary)

Example (1)

The propagation delay of a combinational circuit is the sum of the propagation delays through each element on the critical path

Example (2)

Example Circuit

Critical Path

Shortest Path

Drawback: Ripple Carry Adder

If we abstract the delay of full adder as t_{FA}, then what is the delay of the ripple carry adder, t_{ripple}?

- The critical path consists of N full adders (slow when N is large)
 - The critical path runs through the chain of full adders
 - Every full adder is on the critical path

Section 5.2.1 of H&H

Carry-Lookahead Adder

- Motivation: When the delay of a circuit grows with the number of input bits, the design is not scalable
 - We try to find a way to optimize the circuit to reduce the delay
- Ideally, we want circuits that take constant time regardless of the input size
- Optimization: We try to optimize the circuit using intuition and insight and keep the delay reasonable
 - There is aways a tradeoff (nothing is free

Section 5.2.1 of H&H

Carry-Lookahead Adder (CLA)

- Another one in the class of carry propagate adders that accelerates carry generation
- Insight of CLA: As soon as C_{in} is known, C_{out} for an k-bit ripple carry adder can be calculated
- When do we have a carry out from a column?
 - A = 1 AND B = 1, C_{out} is 1 \rightarrow Carry Generation
 - $C_{in} = 1, A = 1 \text{ OR } B = 1, C_{out} \text{ is } 1 \rightarrow Carry Propagation$
 - Recursively combine G and P signals to compute the carry out

CLA Equations

$$C_i = A_i B_i + (A_i + B_i) C_{i-1} = G_i + P_i C_{i-1}$$

one column
 $G_{3:0} = G_3 + P_3 (G_2 + P_2 (G_1 + P_1 G_0))$
 $P_{3:0} = P_3 P_2 P_1 P_0$
 $C_i = G_{i:j} + P_{i:j} C_{j-1}$
4-bit block

A block generates a carry if the most significant column generates a carry, or if the most significant column propagates a carry and the previous column generated a carry, and so forth. For example, the generate logic for a block spanning columns 3 through 0 is

Section 5.2.1 of H&H

CLA Design

Specialized logic for fast carry generation

Optional study: Section 5.2.1 of H&H

Things to Consider

 Each CLA block is busy generating a carry for the next block simultaneously (in parallel)

- Is there still a bottleneck in the design?
 - What is the propagation delay of an N-bit carry-lookahead adder?

$$t_{CLA} = t_{pg} + t_{pg_block} + \left(\frac{N}{k} - 1\right) t_{AND_OR} + kt_{FA}$$

Lessons from CLA

- Speed-Area Tradeoff: In digital systems, there is a tradeoff
 b/w performance (speed) and hardware cost (area/power)
 - CLA speeds up addition but requires extra logic gates that take up additional area and dissipate more power

- Logic Specialization: Logic specialization for frequently used but slow tasks is often necessary
 - CLA uses specialized logic for fast carry generation

- N inputs and 2^N outputs
- For each input combination, only one of the outputs is 1 (one-hot)
 - It detects an input pattern and outputs a 1 corresponding to it

Section 2.8.2 of H&H

- N inputs and 2^N outputs
- For each input combination, only one of the outputs is 1
 - The outputs are affectionately called one-hot

2:4 Decoder Truth Table

- N inputs and 2^N outputs
- For each input combination, only one of the outputs is 1
 - The outputs are affectionately called one-hot

2:4 Decoder Truth Table and Boolean Equations

- N inputs and 2^N outputs
- For each input combination, only one of the outputs is 1

- Think of 00, 01, 10, and 11 codes as instructions to four different devices
 - Each device reacts to a specific instruction in a specific way
- We have created a new 2-bit language
 - With an interpreter or decoder
- We will need the decoder for building the control unit of our QuAC computer that decodes instructions

Logic Using Decoders

 Decoders can be combined with OR gates to build logic functions

Programmable Logic Array (PLA)

- SOP (sum-of-products) leads to two-level logic
- Example: Y = A'B'C' + AB'C' + AB'C

- We can use a PLA to implement any N-input P-output function
- PLA is built once in the factory and programmed later in the house to implement any logic function

Programmable Logic Array (PLA)

- Common building block for implementing any collection of logic functions
- An array of AND gates followed by an array of OR gates
- How many AND gates?
 - Recall SOP: the number of possible minterms
- How many OR gates?
 - The number of output columns in the truth table

Programmable Logic Array (PLA)

- How do we implement a logic function?
 - Connect the output of an AND gate to the input of an OR gate if the corresponding minterm is included in the SOP
- Programming a PLA: we program the connections from AND gate outputs to OR gate inputs to implement a desired logic function

Section 5.6.1 of H&H

Programmable Devices

- Programmable devices we have talked about
 - CPU/processor (programmed using instructions stored in memory, aka, executable file)
 - FPGA (programmed by storing bits inside LUTS, aka, bit file)
 - PLA (programmed by burning fuses)

PLA Example (I)

- **M** inputs, **N** implicants, and **P** outputs
- Chips are manufactured in bulk with the same layout (low cost)
- Programmed once to implement the required function by programming connections

PLA Example (II)

PLA Example (III)

Implementation: Pick the literals & implicants by programming connections

Full Adder Implementation w/t PLA

Truth table of a full adder b_i carry_i | carry_{i+1} S_i ai

Implementation: Pick the **implicants** by programming connections 105

Lessons from PLA

- Programmability: Programmable devices incur a cost
 - Some logic in PLA is redundant if a subset of minterms are needed
 - On the other hand, PLAs can be programmed after bulk manufacturing which is their key programmability advantage

ALU

Arithmetic and Logic Unit (ALU)

- The circuits we have looked so far can do one useful thing
 - XNOR gate performs equality testing
 - Adder performs addition
 - Multiplexer performs selection
- ALU is our first general purpose circuit
 - Performs a variety of arithmetic/logical operations
 - ADD, SUB, AND, OR, XOR,
- It has a 2-bit control input
 - The language ALU speaks or the instructions it understands

Section 5.2.4 of H&H

N-bit ALU

ALU Interface/Instructions

- N-bit data inputs and outputs
- 2-bit control input (ALUControl)
 - Specifies one of four functions
 - Setting ALUControl to 00, 01, 10, and 11 is giving ALU instructions
- The assignment of binary codes to ALU functions is **not** arbitrary
 - It is clever (01 for Subtract in particular) as we will reveal

ALUControl _{1:0}	Function
00	Add
01	Subtract
10	AND
11	OR

data inputs/signals Α łΝ ĮΝ ALUControl_{1:0} Function N-bit Add-subtract circuitry 00 Add 01 Subtract łΝ 10 AND 0 ALUControl₀ 11 OR ŁΝ control signals C_{out} Sum N-bit Logic circuitry AND, OR V M VM 10 11 01 00 4:1 multiplexer 5 **ALUControl**

17 Result

ALU Implementation

Add-Subtract Circuitry

- A + B
 - Normal addition
- A B
 - A + (−B)
 - In 2's complement, −B = B' + 1
 - An inverter performs B'
 - We send ALUControl₀ as the carry input of the adder
 - ALUControl₀ is 1 when the ALU function is Subtract

The Nature of Hardware

- Parallelism: Hardware is inherently parallel
 - All logic gates in the ALU work in parallel when the circuit is presented with valid input

Redundancy: Generality leads to redundancy

- ALU is a general-purpose circuit that can perform a variety of operations.
 Some work/effort is wasted
 - The output of OR/AND is wasted when ALUControl is 01

Control: Control circuitry comes with a cost

 ALU consumes more area than the individual functional units it combines (4:1 multiplexer is for controlling output)

ALUFLAGS NZCV

- We need meta-information about the ALU result
 - Is the result negative (N)?
 - Is the result zero (Z)?
 - Is there a carry out (C)?
 - Is there an overflow (V)?
- Many scientific algorithms rely on flags for the next step
 - If overflow: discard result, and redo
 - Carry out is the carry in for another operation
 - If the result is negative: do {...}; else do {...}

Flags are only relevant for arithmetic operations $(ALUControl_1 = 0)$

ALUFLAGS NZCV

- Negative
 - Check the MSB of result
- Zero
 - NOR all bits of the result (same as invert then AND)
- Carry
 - AND ALUControl₁ with C_{out} from the adder
- Overflow
 - **Option # 1:** Use A and B to compute overflow
 - Option # 2: Use A and the output of 2:1 multiplexer to compute overflow

Option # 1 for Overflow

The following scenarios generate overflow: overflow flag is 1

	ALControl ₀	A_{31}	B_{31}	S ₃₁
Scenario # 1		0	0	1
Scenario # 2	<mark>0</mark> (Add)	1	1	0
Scenario # 3	1 (Subtract)	0	1	1
Scenario # 4	1 (Subtract)	1	0	0

Case # 1 in plain English: When doing **A + B**, if A and B are +ve, and the sum is –ve

Case # 2: A + B, if A and B are –ve, and the sum is +ve

Case # 3: A – B, if A is +ve and and B is –ve, and the sum is –ve

Case # 4: A – B, if A is –ve and and B is +ve, and the sum is +ve

Option # 1 for Overflow

The following scenarios generate overflow: overflow flag is 1

	ALControl ₀	A_{31}	B_{31}	S_{31}
Scenario # 1		0	0	1
Scenario # 2			1	0
Scenario # 3	1 (Subtract)	0	1	1
Scenario # 4	1 (Subtract)	1	0	0

- Overflow is 1 whenever there is an even number of 1's among ALUControl₀, A₃₁, and B₃₁
 - XNOR ALUControl₀, A₃₁, and B₃₁
- Overflow is 1 whenever A₃₁ and S₃₁ are different
 - XOR A₃₁ and S₃₁

Option # 1 for Overflow

Option # 2

- Use A and the output of 2:1 mux
 - B if the instruction is an Add and –B if the instruction is a subtract
- Easy to reason conceptually
 - If A B is the same as A + (–B) then everything is an add
 - There is no need to consider subtract separately when reasoning about overflow generation
- The circuitry is also much simpler
 - Homework assignment: Figure out the circuitry for overflow generation with option # 2

ALU Timing Analysis Homework

- Find t_{Result} in ps for the four ALU functions. (Ignore overflow generation)
 - Which function takes the longest time (and is the critical path)? Ignore wire delay
- Express t_{Result} in the form of an equation for Add and Subtract. What is the difference?

Comparator

Comparator (Equality Checker)

- Checks if two N-input values are exactly the same
 - Example: 4-bit Comparator

What about magnitude comparison (relative values of A and B)?

A tri-state buffer enables gating of different signals onto a wire
 Tristate Buffer

A tri-state buffer acts like a switch but can pass both 0's and 1's if E is asserted

Figure 2.40 Tristate buffer

Section 2.6.2 of H&H

A tri-state buffer enables gating of different signals onto a wire
 Tristate Buffer

A tri-state buffer acts like a switch

Figure 2.40 Tristate buffer

- When E is HIGH, the output Y is whatever A is
 - Same behavior as a regular buffer

A tri-state buffer enables gating of different signals onto a wire
 Tristate Buffer

A tri-state buffer acts like a switch

Figure 2.40 Tristate buffer

- When E is LOW, output is a floating signal (Z)
- **Floating:** Signal not driven by any circuit (open circuit, floating wire)

Use of Tri-State Buffers

Imagine a wire shared by the CPU and memory or two I/O peripherals

At any time, only one of them can place a value on the wire, but not both

- Use two tri-state buffers
 - One driven by CPU, and one driven by memory
 - Ensure at most one is enabled at any time

Example: Use of Tri-State Buffers

Another Example

Recall: A 4:1 Multiplexer

Multiplexer Using Tri-State Buffers

$$Y = D_0 S + D_1 S$$

Figure 2.56 Multiplexer using tristate buffers

Combinational Composition Rules

Combinational Composition Rules

Every circuit element is itself combinational

 Each node is either an input to the circuit or connects to exactly one output terminal of a circuit element

The circuit contains no cyclic paths. Every path through the circuit visits each circuit node at most once

Which circuits are combinational?

Assume n5 is 0 and the other input of XOR is 1

We Study Boolean Algebra for Logic Minimization

Because we care about minimizing area, cost, logic complexity, energy, footprint, ...

Boolean Algebra (Logic Minimization)

- The sum-of-products (SOP) canonical form does not lead to the simplest logic gate implementation
- We can eliminate some minterms → Less # logic gates
- We can reduce the **# literals** in minterms \rightarrow Smaller gates
- We use Boolean algebra to simplify Boolean equations
 - Similar in spirit to simplification in ordinary algebra except we are dealing with 0 and 1 (much easier)

Boolean Algebra

- Boolean algebra consists of
 - Axioms (correct by definition)
 - Theorems of one variable
 - Theorems of several variables
- Any theorem can be proved via the axioms
 - An axiom is the ground truth and cannot be proven wrong
- The Principle of Duality
 - If the symbols 0 and 1 and the operators AND and OR are interchanged, the statement will still be correct

Boolean Axioms

Number	Axiom	Dual	Name
A1	B = 0 if B ≠ 1	B = 1 if B ≠ 0	Binary Field
A2	$\overline{0} = 1$	1 = 0	NOT
A3	$0 \bullet 0 = 0$	1 + 1 = 1	AND/OR
A4	1 • 1 = 1	0 + 0 = 0	AND/OR
A5	$0 \bullet 1 = 1 \bullet 0 = 0$	1 + 0 = 0 + 1 = 1	AND/OR

Dual: Replace: • with + 0 with 1

Boolean Theorems of One Variable

Number	Theorem	Dual	Name
T1	B • 1 = B	B + 0 = B	Identity
Т2	B • 0 = 0	B + 1 = 1	Null Element
Т3	$B \bullet B = B$	B + B = B	Idempotency
Т4	B = B		Involution
Т5	$B \bullet \overline{B} = 0$	$B + \overline{B} = 1$	Complements

Dual: Replace: • with + 0 with 1

Theorems: Several Variable

#	Theorem	Dual	Name
Т6	$B \bullet C = C \bullet B$	B+C = C+B	Commutativity
Т7	$(B \bullet C) \bullet D = B \bullet (C \bullet D)$	(B + C) + D = B + (C + D)	Associativity
Т8	$B \bullet (C + D) = (B \bullet C) + (B \bullet D)$	$B + (C \bullet D) = (B+C) (B+D)$	Distributivity
Т9	B ● (B+C) = B	$B + (B \bullet C) = B$	Covering
T10	$(B \bullet C) + (B \bullet \overline{C}) = B$	$(B+C) \bullet (B+\overline{C}) = B$	Combining
T11	$(B \bullet C) + (\overline{B} \bullet D) + (C \bullet D) =$ $(B \bullet C) + (\overline{B} \bullet D)$	$(B+C) \bullet (\overline{B}+D) \bullet (C+D) =$ $(B+C) \bullet (\overline{B}+D)$	Consensus

Warning: T8' (dual of T8) differs from traditional algebra: OR (+) distributes over AND (•)

Proving Theorems

Method 1: Perfect induction

- Proof by exhaustion: Check all possible input combinations
- Two expressions are equal if they produce the same value for every possible input combination
- Method 2: Use other theorems/axioms to simplify equations
 - As in ordinary algebra, make one side of the equation look like the other side of the equation

Example: Perfect Induction

Number	Theorem	Name
Т6	$B \bullet C = C \bullet B$	Commutativity

B	C	BC	СВ	
0	0	0	0	
0	1	0	0	
1	0	0	0	
1	1	1	1	

Example: Perfect Induction

Number	Theorem	Name
Т9	B● (B+C) = B	Covering

 B	С	(B+C)	B(B+C)
0	0	0	0
0	1	1	0
1	0	1	1
1	1	1	1

Method 2: T9 (Covering)

Number	Theorem	Name
Т9	B● (B+C) = B	Covering

Method 2: Prove true using other axioms and theorems.

B•(B+C)	$= B \bullet B + B \bullet C$	T8: Distributivity
	= B + B●C	T3: Idempotency
	= B•(1 + C)	T8: Distributivity
	= B•(1)	T2: Null element
	= B	T1: Identity

Method 2: T10 (Combining)

Number	Theorem	Name
T10	$(B \bullet C) + (B \bullet \overline{C}) = B$	Combining

Prove true using other axioms and theorems: $B \bullet C + B \bullet \overline{C} = B \bullet (C + \overline{C})$ T8: Distributivity $= B \bullet (1)$ T5': Complements = B T1: Identity

Simplifying Boolean Equations

- A basic principle for simplifying sum-of-product equations
 - **P**A + **P**A' = **P**
 - P is any implicant
 - Y = A'B + AB = B(A'+A) = B(1) = B

An equation is minimized if

- it uses the fewest number of implicants
- if there are multiple equations with the same number of implicants, then the one with the fewest literals

Simplification Example – 1

Y = **AB** + **AB**'

Y = A T10: Combining

or

= A(B + B')T8: Distributivity= A(1)T5': Complements= AT1: Identity

Simplification Example – 2

Y = **A**(**AB** + **ABC**)

- = A(AB(1+C))
- = A(AB(1))
- = A(AB)
- = (AA)B
- = *AB*

- T8: Distributivity
- T2': Null Element
- T1: Identity
- **T7: Associativity**
- T3: Idempotency

Simplification Example – 3A

Y = AB'C + ABC + A'BC

- = AC(B + B') + A'BC T8: Distributivity
- = AC(1) + A'BC T5: Complements
- = AC + A'BC T1: Identity
- The two implicants AC and BC share the minterm ABC
- Are we stuck with simplifying only one of the minterm pairs?

Simplification Example – 3B

Y = AB'C + ABC + A'BC

- = AB'C + **ABC** + **ABC** + A'BC T3': Idempotency
- = (AB'C+ABC) + (ABC+A'BC) T7': Associativity = AC + BC T10: Combining
- The two implicants AC and BC are called prime implicants
- They cannot be combined with any other implicants in the equation to get a new implicant with fewer literals

Simplification Example – 4

Y = **A'B'C'** + **AB'C'** + **AB'C**

De Morgan's Theorem

#	Theorem	Dual	Name
T12	$B_0 \bullet B_1 \bullet B_2 \dots =$	$B_0 + B_1 + B_2 =$	DeMorgan's
	$\overline{B}_0 + \overline{B}_1 + \overline{B}_2 \dots$	$B_0 \bullet B_1 \bullet B_2 \dots$	Theorem

- The complement of the product is the sum of the complements
- Dual: The complement of the sum is the product of the complements

Section 2.2 of H&H

De Morgan's Theorem

•
$$Y = \overline{AB} = \overline{A} + \overline{B}$$

•
$$Y = \overline{A + B} = \overline{A} \cdot \overline{B}$$

Bubble Pushing Rules

- Pushing bubbles backward/forward changes the body of the gate from AND/OR to OR/AND
- Pushing a bubble *from output back to inputs* put bubbles on all gate inputs
- Pushing bubbles on all gate inputs forward towards the output puts a bubble on the output

Section 2.5.1 and 2.5.2 of H&H

Bubble Pushing Example

154

Priority Circuit

Priority Circuit

- Priority circuit
 - Inputs: "Requestors" with priority levels
 - Outputs: "Grant" signal for each requestor
- Example: n-bit priority circuit
 - Room reservation system
 - Computer bus demanded by four CPUs

Example 2.7 of H&H

Priority Circuit

A ₃	A 2	<i>A</i> ₁	A_0	Y ₃	<i>Y</i> ₂	<i>Y</i> ₁	Y ₀
0	0	0	0	0	0	0	0
0	0	0	1	0	0	0	1
0	0	1	0	0	0	1	0
0	0	1	1	0	0	1	0
0	1	0	0	0	1	0	0
0	1	0	1	0	1	0	0
0	1	1	0	0	1	0	0
0	1	1	1	0	1	0	0
1	0	0	0	1	0	0	0
1	0	0	1	1	0	0	0
1	0	1	0	1	0	0	0
1	0	1	1	1	0	0	0
1	1	0	0	1	0	0	0
1	1	0	1	1	0	0	0
1	1	1	0	1	0	0	0
1	1	1	1	1	0	0	0

					1			
	<i>A</i> ₃	<i>A</i> ₂	<i>A</i> ₁	<i>A</i> ₀	Y ₃	<i>Y</i> ₂	<i>Y</i> ₁	<i>Y</i> ₀
-	0	0	0	0	0	0	0	0
	0	0	0	1	0	0	0	1
	0	0	1	Х	0	0	1	0
	0	1	Х	Х	0	1	0	0
	1	X	Х	Х	0 0 0 1	0	0	0
					•			
F	igure	2.29	Prior	rity	circuit	truth	table	with
don't cares (X's)								

 $Y_3 = A_3$ $Y_2 = A_3'A_2$ $Y_1 = A_3'A_2'A_1$ $Y_0 = A_3'A_2'A_1'A_0$ 157

X (Don't Care) means We don't care what the value of this input is

Logical Completeness

- Any logic function can be implemented with a PLA
- PLA needs only AND, OR, and NOT gates

 The set of gates {AND, OR, NOT} is logically complete because we can build a circuit from a truth table without needing any other gate

Logical Completeness of NAND

- Can we implement a **NOT** gate using a **NAND** gate?
- What about implementing AND gate using NAND gate ?
- What about implementing OR gate using NAND gate?
- If all of above is true, then we can build computers from one gate only, the NAND gate
- Prove yourself that NAND is logically complete
- Most computer today are built using billion of NAND gates

Optional Self-Study

- Product of Sums (POS)
 - Interesting but not entirely needed if you understand SOP well
 - Follows from Demorgan

Section 2.2.3 of H&H

Alternative Canonical Form: POS

- Product of Sums (POS)
- DeMorgan of SOP of F
- Find all the input combinations (maxterms) for which the output of the function is FALSE
- The function evaluates to FALSE (i.e., the output is 0) if any of the Sums (maxterms) causes the output to be 0

Optional Self-Study

- More combinational circuits
 - Shifters
 - Rotators
 - Multiplication
 - Division
 - FPGAs

Section 5.2.5, 5.2.6, 5.2.7, 5.6.2 of H&H

What We Have Done So Far

- Building blocks of modern computers
 - Transistors
 - Logic gates
- Combinational logic fundamentals
- Boolean algebra
- Using Boolean algebra to implement combinational circuits
- Basic combinational logic blocks
- Simplifying combinational logic circuits