
Convener: Shoaib Akram
shoaib.akram@anu.edu.au

Plan of Week 2

§ Week 1: Digital abstraction and binary digits

§ Week 1: Number systems for binary variables

§ This Week: Boolean logic & Logic gates (contd)

§ This Week: Combinational logic (more than just gates)

Broadening our horizon
“one layer at a time”

Classification of Digital Circuits
§ Combinational Circuit: Output depends only on the

combination of input values
§ Memory-less (a distinct and critical feature)
§ All logic gates are combinational

§ Sequential Circuit: Output depends on the current and
history of inputs
§ The sequence of inputs over time determine the output
§ Sequential circuits have a state or memory
§ Example: Elevator controller (State: on the ground, in

transit, at the top)
Section 2.1 of H&H

§ Example: Suppose a combinational circuit, consisting of an
AND gate, with two inputs, A and B

time à t0 t1 t2 t3 t4 t5 t6
A 0 1 1 0 1 0 1
B 0 1 0 0 1 0 1

Output 0 1 0 0 1 0 1

§ At time t6, the sequence of changes to A and B between t0 – t5
is irrelevant.

§ Output is strictly determined by the values of A and B at t6

Combinational Behavior

Combinational Circuits

Functional Spec
Timing Spec

§ Functional specification: What is the behavior of the circuit?

§ What is the output for a given combination of input values?

§ Timing specification: How long does the circuit takes to produce
the output?
§ Worst-case: 10 nanoseconds
§ Best-case: 1 nanoseconds

inputs outputs

Combinational Circuits

§ Hierarchy: The top-level circuit, CL, is made up for of two
combinational sub-circuits, CL1 and CL2

§ Nodes: n1 is an internal wire or node

inputs outputsCL1 CL2

n1

CL

§ Abstraction: The input and output interface, and the
functional and timing specification is enough for someone
to use CL

§ Steps in implementing combinational Logic

§ Initial specification (e.g., in English)

§ Construct the truth table

§ Derive the Boolean equation

§ Simplify the Boolean equation (use Boolean algebra)

§ Implement the equation using logic gates

Implementing Combinational
Logic

Functional
specification

[Happiness detector] Alex is not happy if there is a work-related deadline
or the beach is closed due to bad weather. Design a circuit that outputs 1
only if Alex is happy.

[Multiplexer] Design a circuit with three inputs: D0, D1, select; and one
output. The output is D0 if select is 0, and D1 if select is 1.

[Half Adder] Design a circuit that adds two binary variables: A and B.
The circuit has two outputs: sum and carry-out (Cout).

Specification

[Full Adder] Design a circuit that adds three binary variables: A, B, and a
carry-in (Cin). The circuit has two outputs: sum and carry-out (Cout).

Constructing Truth Tables
§ Identify inputs and outputs (interface)

§ The interface may be implicit or require some thought

§ Write all the possible combinations of input values
§ For each input combination, determine the output
§ All inputs to the left, outputs to the right

Truth Table: Happiness Detector

D B H
0 0 1
0 1 0
1 0 0
1 1 0

Specification: Alex is not happy if there is a work-related deadline or the
beach is closed due to bad weather. Design a circuit that outputs 1 only
if Alex is happy.

Interface
§ Deadline? (D)

§ 0: there is not a deadline
§ 1: there is a deadline

§ Beach is closed? (B)
§ 0: open
§ 1: closed

§ Happy (H): 1 à J, 0 à L

Truth Table

Truth Table: Beach
Specification: IF it is warm and sunny, OR it is my birthday, THEN I am
going to the beach. Write the truth table where the output is 1 when I
am going to the beach

Deriving a Boolean Equation
§ The truth table is the unique signature of a

Boolean function
§ But it is an expensive representation

§ Why is that?

Deriving a Boolean Equation
§ Boolean equation is an alternative way to represent the

function of a combinational logic block

§ Enables the systematic transformation of the function into
simpler functions (using Boolean algebra, we will see later)
§ Different hardware implementations
§ The simplification process can be automated via Computer-Aided

Design (CAD) and Electronic Design Automation (EDA)

§ Different Boolean expressions of the same Boolean function
lead to different logic gate-level implementations
§ Different hardware area, cost, latency, energy properties

Definitions

Section 2.2 of H&H

¢ Complement: variable with a bar or prime (’) over it
𝑨 , 𝑩 , 𝑪, A’, B’, C’

¢ Literal: variable or its complement
𝑨 , 𝑨 , 𝑩 , 𝑩 , 𝑪 , 𝑪

¢ Implicant: product (AND) of literals
(𝑨 % 𝑩 % 𝑪) , (𝑨 % 𝑪) , (𝑩 % 𝑪)

¢ Minterm: product (AND) that includes all input variables
(𝑨 % 𝑩 % 𝑪) , (𝑨 % 𝑩 % 𝑪) , (𝑨 % 𝑩 % 𝑪)

¢ Maxterm: sum (OR) that includes all input variables
(𝑨 + 𝑩+ 𝑪) , (𝑨 + 𝑩+ 𝑪) , (𝑨 + 𝑩+ 𝑪)

Minterms

§ Each minterm is obtained from an AND term of n variables
§ Use prime of the variable if the bit is 0 and unprimed if 1
§ The subscript j in the symbol for each minterm (mj) denotes the decimal

equivalent of the binary number of the minterm designated

Maxterms

§ Each maxterm is obtained from an OR term of n variables

Operation Precedence
§ NOT has the highest precedence

§ Next is AND

§ Last is OR

§ Example: Y = A + BC’
§ First, we find C’
§ Then, we find BC’ (product/AND)
§ Finally, we perform A + (the result of BC’)

Standardized Representations
§ Enable a single, universally agreed on way of

representing a Boolean function from its truth
table
§ Also called canonical representations

§ Sum of Products (SOP) form

§ Product of Sums (POS) form

Sum of Products (SOP)
§ Sum of Products Form (SOP)

§ Also known as disjunctive normal form or minterm expansion
§ SOP is canonical/standard form of a Boolean function

§ We have a truth table of a Boolean Function F and we need to
express the function in terms of inputs in a standard manner
§ Give it a unique algebraic signature

§ Truth table is an expensive representation
§ More compact and unique signature of a Boolean function

§ All Boolean equations can be written in SOP form

Key Idea of SOP
§ Express the truth table as a two-level Boolean expression

§ contains all input variable combinations that result in a 1
output

§ if ANY of the combinations of input variables that result in
a 1 is TRUE, then the output is 1

§ F = OR of all input variable combinations that result in a 1

§ Why does it work?
§ Output is 1 whenever the corresponding minterm is 1
§ Minterm is 1 when the corresponding input combinations

result in the minterm evaluating to 1

All Boolean equations can be written in SOP form

Sum of Products Form (SOP)
Also known as disjunctive normal form or minterm expansion

0 1 1 1 0 0 1 0 1 1 1 0 1 1 1
0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 1
1 0 1 1
1 1 0 1
1 1 1 1

All Boolean equations can be written in SOP form

• Each row in a truth table has a minterm
• A minterm is a product (AND) of literals
• Each minterm is TRUE for that row (and only that row)

𝑭 = #𝑨𝐁𝐂	 + 	 𝐀#𝑩#𝑪	 + 	 𝐀#𝑩𝐂	 + 	 𝐀𝐁#𝑪	 + 	 𝐀𝐁𝐂
𝐀 𝐁 𝐂 𝐅

Find all the input combinations (minterms) for which the output of the function is TRUE.

Two-Level Canonical Forms: SOP

0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 1
1 0 1 1
1 1 0 1
1 1 1 1
n Only the shaded product term — 𝐀#𝑩𝐂 = 𝟏 %)𝟎 % 𝟏	— will be 1

n No other product terms will “turn on” — they will all be 0

n So if inputs A B C correspond to a product term in expression,
q We get 0 + 0 + … + 1 + … + 0 + 0 = 1 for output

n If inputs A B C do not correspond to any product term in expression
q We get 0 + 0 + … + 0 = 0 for output

0 1 1 1 0 0 1 0 1 1 1 0 1 1 1
𝑭 = #𝑨𝐁𝐂	 + 	 𝐀#𝑩#𝑪	 + 	 𝐀#𝑩𝐂	 + 	 𝐀𝐁#𝑪	 + 	 𝐀𝐁𝐂

𝐀 𝐁 𝐂 𝐅
This input

Activates
this term

The function evaluates to TRUE (i.e., output is 1)
if any of the Products (minterms) causes the output to be 1

SOP Form – Why Does it Work?

111 = decimal 7 so this is minterm #7, or m7

100 = decimal 4 so this is minterm #4, or m4

n Standard “shorthand” notation
q If we agree on the order of the variables in the rows of truth

table…
n then we can enumerate each row with the decimal number that

corresponds to the binary number created by the input pattern

0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 1
1 0 1 1
1 1 0 1
1 1 1 1

f =

= ∑m(3,4,5,6,7)

m3 + m4 + m5 + m6 + m7 We can write this as a sum of products

Or, we can use a summation notation

𝐀 𝐁 𝐂 𝐅

Standard Notation for SOP Form

Shorthand Notation for
Minterms of 3 Variables

F in canonical form:
F(A,B,C) = ∑m(3,4,5,6,7)

= m3 + m4 + m5 + m6 + m7

canonical form ≠ minimal form

2-Level AND/OR
Realization

 minterms
0 0 0 = m0
0 0 1 = m1
0 1 0 = m2
0 1 1 = m3
1 0 0 = m4
1 0 1 = m5
1 1 0 = m6
1 1 1 = m7

𝑭 = #𝑨𝐁𝐂	 + 	 𝐀#𝑩#𝑪	
 +	 𝐀#𝑩𝐂	 + 	 𝐀𝐁#𝑪	 + 	 𝐀𝐁𝐂

𝑭 = 𝐀#𝑩 𝑪 + #𝑪 +	 #𝑨𝐁𝐂 + 	 𝐀𝐁(𝑪 + #𝑪)

= 𝐀#𝑩 +	 #𝑨𝐁𝐂 + 	 𝐀𝐁

= 𝐀(#𝑩 + 𝑩) +	 #𝑨𝐁𝐂

= 𝐀 +	 #𝑨𝐁𝐂

= 𝐀 + 	𝐁𝐂

%𝑨%𝑩%𝑪	
%𝑨%𝑩𝑪
%𝑨𝑩%𝑪	
%𝑨𝑩𝑪
𝑨%𝑩%𝑪	
𝑨%𝑩𝑪	
𝑨𝑩%𝑪	
𝑨𝑩𝑪

𝐀 𝐁 𝐂

Canonical SOP Form

More SOP Examples

25

SOP: Simple Example (1 minterm)

A B Y1 minterm name
0 0 0 A’B’ m0

0 1 1 A’B m1

1 0 0 AB’ m2

1 1 0 AB m3

To write the Boolean equation for a truth table, sum each of
the minterms for which the output is 1

Y1 = A’B

Y1 is 1 only when A = 0 and B = 1

Conversely, when A’ = 1 and B = 1

Boolean Eq

A B Y1 minterm name
0 0 0 A’B’ m0

0 1 1 A’B m1

1 0 0 AB’ m2

1 1 1 AB m3

To write the Boolean equation for a truth table, sum each of
the minterms for which the output is 1

Y1 = A’B + AB

Y1 is 1 either when A = 0 and B = 1

OR, when A = 1 and B = 1

Y1 = ∑ 1,3

Boolean Eq

SOP: Example (2 minterms)

SOP Summary
§ A Boolean function can be expressed algebraically from a

given truth table

§ by forming a minterm for each combination of the variables
that produces a 1 in the function

§ and then taking the OR of all those terms

§ The minterms whose sum defines the Boolean function are
those that give the 1’s of the function in a truth table

§ The sum of products canonical form can also be written in
sigma notation using the summation symbol, ∑ 𝒎𝟏,𝒎𝟐,…

Equation: Happiness Detector
Specification: Mr. X is not happy if there is an assignment deadline, or
their favorite bar is closed. Design a circuit that outputs 1 only if Mr. X
is happy.

D B H
0 0 1
0 1 0
1 0 0
1 1 0

Truth Table
H = D’B’
Boolean Eq

H = (D)’ AND (B)’

From Equation to Gates
Schematic: A diagram of a digital circuits with elements (gates) and the
wires that connect them together

Y = AB’ + B’C’
Example Boolean Eq

Schematic
1. Inputs are on the left (or top) side
2. Outputs are on the right
3. Gates flow from left to right
4. Use straight wires
5. Wires connect at a T junction
6. A dot where wires cross indicates a

connection

From Equation to Gates
§ Another example

𝒀 = 𝑨 , 𝑩 , 𝑪 + 𝑨 , 𝑩 , 𝑪 + 𝑨 , 𝑩 , 𝑪
BA C

Y

minterm: ABC

minterm: ABC

minterm: ABC

A B C

Key to remember: SOP form does NOT directly lead to minimal logic (next lecture)

Schematic: Happiness Detector
Specification: Mr. X is not happy if there is an assignment deadline, or
their favorite bar is closed. Design a circuit that outputs 1 only if Mr. X
is happy.

D B H
0 0 1
0 1 0
1 0 0
1 1 0

Truth Table
H = D’B’
Boolean Eq Logic Gate Implementation

H = (D)’ AND (B)’
D

B
H

Specification: Mr. X is not happy if there is an assignment deadline, or
their favorite bar is closed. Design a circuit that outputs 1 only if Mr. X
is happy.

D B H
0 0 1
0 1 0
1 0 0
1 1 0

Truth Table
H = D’B’
Boolean Eq Logic Gate Implementation

H = (D)’ AND (B)’
D

B
H

Which (monolithic) gate
is this?

Schematic: Happiness Detector

Specification: Mr. X is not happy if there is an assignment deadline, or
their favorite bar is closed. Design a circuit that outputs 1 only if Mr. X
is happy.

D B H
0 0 1
0 1 0
1 0 0
1 1 0

Truth Table
H = D’B’
Boolean Eq Logic Gate Implementation

H = (D)’ AND (B)’
D

B
H

D
B H

Which (monolithic) gate
is this? Answer: NOR gate

Schematic: Happiness Detector

Why does the happiness detector lack an OR gate in the two-
level representation as a gate-level schematic?

Schematic: Happiness Detector

Combinational Building Blocks
used in Modern Computers

36

Multiplexers

37

Multiplexer: T. Table + Eq
Specification: Circuit with three inputs: D0, D1,
select (S), and one output (Y). The output is D0 if
select is 0, and D1 if select is 1.

S D1 D0 Y
0 0 0 0
0 0 1 1
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 0
1 1 0 1
1 1 1 1

Truth Table

Y = S’D1’D0 + S’D1D0 + SD1D0’ + SD1D0
Y = S’D0 (D1’ + D1) + SD1 (D0’ + D0)

=1 =1
Y = S’D0 (1) + SD1 (1)
Y = S’D0 + SD1

Section 2.8.1 of H&H

Boolean algebra:
Distribution of
product over sums

The minimum you can do is write the
truth table systematically and express
the Boolean function using the SOP

canonical form

But, remember, ...
canonical form ≠ minimal form

Multiplexer: Gate-Level Schematic
S D1 D0 Y
0 0 0 0
0 0 1 1
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 0
1 1 0 1
1 1 1 1

Y = S’D0 + SD1 Gate-Level Schematic

Specification: Design a circuit with three inputs:
D0, D1, select (S); and one output (Y). The output
is D0 if select is 0, and D1 if select is 1.

2:1 Multiplexer (Mux)
§ A 2:1 multiplexer (mux)

§ Two data inputs (D0 and D1)
§ Another input called the select signal
§ Output is either D0 or D1 depending on the value of select

§ We will use the high-level schematic for 2:1
mux and ignore the gate-level implementation
details

High-level Schematic

Multiplexer Applications
§ Heavily used in control circuitry

§ Decision making
§ Which of the many competing outcomes to select?

§ Select one of the many signals and send it to
another unit

§ Think of if/else blocks in high-level programs

Wider (4:1) Multiplexer
§ A 4:1 mux has two select signals S0 and S1

§ A / and 2 implies a bus width of 2 to contrast with 1-bit wire
or input

§ One option is to construct the truth table and derive the
Boolean equations
§ How many rows will there be in the table? (tedious!)

§ Let’s use intuition to build a 4:1 mux from two 2:1
multiplexers

S0 S1 Y
0 0 D0

1 0 D1

0 1 D2

1 1 D3

Wider (4:1) Multiplexer

0 0

S0 S1 Y
0 0 D0

1 0 D1

0 1 D2

1 1 D3

Wider (4:1) Multiplexer

1 0

S0 S1 Y
0 0 D0

1 0 D1

0 1 D2

1 1 D3

Wider (4:1) Multiplexer

0 1

S0 S1 Y
0 0 D0

1 0 D1

0 1 D2

1 1 D3

Wider (4:1) Multiplexer

1 1

S0 S1 Y
0 0 D0

1 0 D1

0 1 D2

1 1 D3

Wider (4:1) Multiplexer

Logic using Multiplexers

49

Logic Using Multiplexers
§ Any truth table can be seen as a lookup table (LUT)

§ Lookup 00, and we see either 0 or 1
§ It is like looking up a dictionary

§ Muxes are used as LUTs to perform logic functions
§ Connect the data inputs to 0 or 1
§ Use inputs (A/B) as select lines

Logic Using Multiplexers

§ Multiplexers can implement logic gate
§ For example, we can build a 2-input AND gate from a 2:1 multiplexer

§ Can be (re)programmed to perform any N-input logic function

§ Key idea: Connect multiplexer inputs to 0 (zero/ground) or 1
(high) by inspecting the truth table

A 2N-input multiplexer can be programmed to perform any N-input
logic function by applying 0’s and 1’s to the appropriate data inputs

Logic Using Multiplexers

Multiplexer Logic: 3-Input Example

3-Input Lookup Table (LUT)
§ LUTs are building blocks of Field Programmable Gate

Array (FPGA)

§ Many LUTs in an FPGA chip to implement logic functions
with many variables

§ The data inputs are stored as configuration memory

3-Input Lookup Table (LUT)

input (3 bits)

output (1 bit)

3

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

Configuration Memory

3-bit input LUT (3-LUT)
Data Input

Multiplexer (Mux):
Chooses one of the 8
data inputs that
corresponds to the 3-bit
select input

3-Input Lookup Table (LUT)

0

1

1

1

0

0

1

1

input (3 bits)

output (1 bit)

3

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

Configuration Memory

3-bit input LUT (3-LUT)
Data Input

Multiplexer (Mux):
Chooses one of the 8
data inputs that
corresponds to the 3-bit
select input

Modern FPGA

Modern FPGA

Reconfigurable
interconnect

§ Each 3-LUT performs the subset of the logic function (N is large)
§ Signals are routed b/w CLBs using reconfigurable connections

Topics Covered So Far
§ Binary number system
§ Transistor (basic building block)
§ Logic gates
§ Combinational circuits

§ English specification
§ Transformation to truth

tables
§ Sum of Products (SOP)
§ Two-level implementation

§ Multiplexers & lookup tables

Continuing
§ More combinational circuits

§ Adders
§ ALU
§ Decoder
§ Comparator
§ PLA
§ Tri-state buffer

§ Timing issues in combinational
circuits

§ Logic minimization with Boolean
algebra

Adders & Timing in
Combinational Circuits

61

Half Adder

A B Cout S
0 0 0 0
0 1 0 1
1 0 0 1
1 1 1 0

Specification: Design a circuit that adds two binary variables: A and B.
The circuit has two outputs: sum and carry-out (Cout).

Truth Table Boolean Eq Schematic

S = A’B + AB’
S = A ⊕ B

Cout = AB

Section 5.2.1 of H&H

§ Limitation of half adder: No carry input

§ Problem: Adding multiple bits requires the need to add
carry out from the previous column to the next column

§ Full adder solves the problem

§ Accepts three inputs, including a carry input

§ Signals flow from right to left reflecting the carry
propagation in arithmetic circuits

1001
0101+
1110

1

Full Adder

Full Adder: T. Table + Eq
Cin A B Cout S
0 0 0 0 0
0 0 1 0 1
0 1 0 0 1
0 1 1 1 0
1 0 0 0 1
1 0 1 1 0
1 1 0 1 0
1 1 1 1 1

Sum of products form != minimal form

unused minterm

Full Adder: T. Table + Eq
Cin A B Cout S
0 0 0 0 0
0 0 1 0 1
0 1 0 0 1
0 1 1 1 0
1 0 0 0 1
1 0 1 1 0
1 1 0 1 0
1 1 1 1 1

S = Cin’A’B + Cin’AB’ + CinA’B’ + CinAB
Cout = Cin’AB + CinA’B + CinAB’ + CinAB

Full Adder: T. Table + Eq
Cin A B Cout S
0 0 0 0 0
0 0 1 0 1
0 1 0 0 1
0 1 1 1 0
1 0 0 0 1
1 0 1 1 0
1 1 0 1 0
1 1 1 1 1

S = Cin’A’B + Cin’AB’ + CinA’B’ + CinAB
Cout = Cin’AB + CinA’B + CinAB’ + CinAB

S = A ⊕	B ⊕	Cin

Cout = Cin(A ⊕	B) + AB

Simplification via Boolean algebra

Full Adder: T. Table + Eq
Cin A B Cout S
0 0 0 0 0
0 0 1 0 1
0 1 0 0 1
0 1 1 1 0
1 0 0 0 1
1 0 1 1 0
1 1 0 1 0
1 1 1 1 1

Insight about Cout

§ 1 when both A and B are 1
§ Carry Generation (G)

§ 1 when there is a Cin and one of A and B is 1
§ Carry Propagation (P)

Cout = Cin’AB + CinA’B + CinAB’ + CinAB

Full Adder: Schematic
Cin A B Cout S
0 0 0 0 0
0 0 1 0 1
0 1 0 0 1
0 1 1 1 0
1 0 0 0 1
1 0 1 1 0
1 1 0 1 0
1 1 1 1 1

S = A ⊕	B ⊕	Cin

Cout = Cin(A ⊕	B) + AB

Half Adder Half Adder

§ What if we want to add two N-bit numbers?

Ripple Carry Adder

1001
0101+
1110

1

Ripple Carry Adder
§ What if we want to add two N-bit numbers?

§ Connect a chain of full adders from right to left

§ Ripple carry adder has a critical drawback!

Timing in Combinational Circuits
§ Every combinational circuit has a delay (seconds)

§ The time it takes for the output to reach a final stable value when the
input changes (typically nanoseconds or picoseconds)

propagation delay

Section 2.9 of H&H

Examples
§ Inputs of the AND gate change from (0,0) to (1,1)

§ Output of AND gate change from 0 to 1
§ How long does it take to for the output to change?

§ When A, B, and Cin are inputs to a full adder
§ How long does it take to observe the final (and stable) S

and Cout?

Examples of Timing/Delay

tXOR tINV tpath1 = tpath2

Each gate has
a delay

Chain of gates:
Sum the delay of
each gate in the
chain 2 X tINV

Multiple paths from
input to output
tpath1 = tINV1 + tAND
tpath2 = tINV2 + tAND

Critical and Shortest Path
§ Most useful combinational circuits have multiple paths

from input to output
§ Critical path: The slowest path (with longest delay)
§ Critical path limits the speed at which the circuit

operates
§ In contrast, the shortest path is the fastest

§ For simplification, we will ignore the delay of nodes (wires)
§ Although the delay is non-trivial, it is studied best at

the analog level of abstraction

Section 2.9 of H&H

Multiplexer and Adder Delay

tmux tadder

§ Assume component-level delay and don’t worry about delay
of individual gates (unless necessary)

Example (1)

§ The propagation delay of a combinational circuit is the sum of
the propagation delays through each element on the critical
path

Example (2)
Example Circuit

Critical Path

Shortest Path

§ If we abstract the delay of full adder as tFA, then what is the
delay of the ripple carry adder, tripple?

tFA

tripple = N X tFA

§ The critical path consists of N full adders (slow when N is large)
§ The critical path runs through the chain of full adders
§ Every full adder is on the critical path

Drawback: Ripple Carry Adder

Section 5.2.1 of H&H

§ Motivation: When the delay of a circuit grows with the number
of input bits, the design is not scalable
§ We try to find a way to optimize the circuit to reduce the

delay

§ Ideally, we want circuits that take constant time regardless of
the input size

§ Optimization: We try to optimize the circuit using intuition and
insight and keep the delay reasonable
§ There is aways a tradeoff (nothing is free

Carry-Lookahead Adder

Section 5.2.1 of H&H

§ Another one in the class of carry propagate adders that
accelerates carry generation

§ Insight of CLA: As soon as Cin is known, Cout for an k-bit ripple
carry adder can be calculated

§ When do we have a carry out from a column?
§ A = 1 AND B = 1, Cout is 1 à Carry Generation
§ Cin = 1, A = 1 OR B = 1, Cout is 1 à Carry Propagation
§ Recursively combine G and P signals to compute the carry out

Carry-Lookahead Adder (CLA)

Section 5.2.1 of H&H

CLA Equations

Section 5.2.1 of H&H

one column

4-bit block

CLA Design

Specialized logic for
fast carry generation

Optional study: Section 5.2.1 of H&H

Things to Consider

§ Each CLA block is busy generating a carry for the next block
simultaneously (in parallel)

§ Is there still a bottleneck in the design?
§ What is the propagation delay of an N-bit carry-lookahead

adder?

Lessons from CLA
§ Speed-Area Tradeoff: In digital systems, there is a tradeoff

b/w performance (speed) and hardware cost (area/power)
§ CLA speeds up addition but requires extra logic gates

that take up additional area and dissipate more power

§ Logic Specialization: Logic specialization for frequently used
but slow tasks is often necessary
§ CLA uses specialized logic for fast carry generation

Decoders

85

Decoders
§ N inputs and 2N outputs
§ For each input combination, only one of the outputs is 1 (one-hot)

§ It detects an input pattern and outputs a 1 corresponding to it

Section 2.8.2 of H&H

Decoders

A1 A0 Y3 Y2 Y1 Y0

0 0 0 0 0 1
0 1 0 0 1 0
1 0 0 1 0 0
1 1 1 0 0 0

2:4 Decoder Truth Table

§ N inputs and 2N outputs
§ For each input combination, only one of the outputs is 1

§ The outputs are affectionately called one-hot

Outputs

Inputs

Decoders

A1 A0 Y3 Y2 Y1 Y0

0 0 0 0 0 1
0 1 0 0 1 0
1 0 0 1 0 0
1 1 1 0 0 0

2:4 Decoder Truth Table and Boolean Equations

Y0 = A1’A0’
Y1 = A1’A0

Y2 = A1A0’
Y3 = A1A0

§ N inputs and 2N outputs
§ For each input combination, only one of the outputs is 1

§ The outputs are affectionately called one-hot

Decoders

Y0 = A1’A0’
Y1 = A1’A0

Y2 = A1A0’
Y3 = A1A0

Y3

Y2

Y1

Y0

A0A1

§ N inputs and 2N outputs
§ For each input combination, only one of the outputs is 1

Uses of Decoders
§ For each input combination, only one of the outputs is 1

Red
Device

Violet
Device

Orange
Device

Blue
Device

EN

0

1
1

Uses of Decoders
§ For each input combination, only one of the outputs is 1

Red
Device

Violet
Device

Orange
Device

Blue
Device

1
1

EN

1

Uses of Decoders
§ For each input combination, only one of the outputs is 1

Red
Device

Violet
Device

Orange
Device

Blue
Device

1
0

EN

1

Uses of Decoders
§ For each input combination, only one of the outputs is 1

Red
Device

Violet
Device

Orange
Device

Blue
Device

0
1

EN

1

Uses of Decoders
§ For each input combination, only one of the outputs is 1

Red
Device

Violet
Device

Orange
Device

Blue
Device

0
0

EN

1

Uses of Decoders
§ Think of 00, 01, 10, and 11 codes as instructions to four

different devices
§ Each device reacts to a specific instruction in a

specific way

§ We have created a new 2-bit language
§ With an interpreter or decoder

§ We will need the decoder for building the control unit of
our QuAC computer that decodes instructions

Logic Using Decoders
§ Decoders can be combined with OR gates to build logic

functions

PLA

97

Programmable Logic Array (PLA)
§ SOP (sum-of-products) leads to

two-level logic

§ Example: Y = A’B’C’ + AB’C’ + AB’C

BA C

Y

minterm: ABC

minterm: ABC

minterm: ABC

A B C

§ We can use a PLA to implement any N-input P-output function
§ PLA is built once in the factory and programmed later in the

house to implement any logic function
Section 5.6.1 of H&H 98

Programmable Logic Array (PLA)
§ Common building block for implementing any collection of logic

functions

§ An array of AND gates followed by
 an array of OR gates

§ How many AND gates?
§ Recall SOP: the number of possible minterms

§ How many OR gates?
§ The number of output columns in the truth table

A

B

C

X

Y

Z

Connections

Section 5.6.1 of H&H 99

Programmable Logic Array (PLA)
§ How do we implement a logic

function?
§ Connect the output of an AND

gate to the input of an OR gate if
the corresponding minterm is
included in the SOP

§ Programming a PLA: we program the
connections from AND gate outputs
to OR gate inputs to implement a
desired logic function

A

B

C

X

Y

Z

Connections

Section 5.6.1 of H&H 100

Programmable Devices

101

§ Programmable devices we have talked about

§ CPU/processor (programmed using instructions
stored in memory, aka, executable file)

§ FPGA (programmed by storing bits inside LUTS,
aka, bit file)

§ PLA (programmed by burning fuses)

PLA Example (I)

§ M inputs, N implicants, and P outputs
§ Chips are manufactured in bulk with the same layout (low cost)
§ Programmed once to implement the required function by programming connections

102

PLA Example (II)

Section 5.6.1 of H&H

Dot Notation

103

Fuse to burn

PLA Example (III)

Implementation: Pick the literals & implicants by programming connections
104

Full Adder Implementation w/t PLA

ai

bi

ci
ci+1

si

X

A

B

C

X

Y

Z

Connections

ai bi Si
0 0 0
0 1 0

10 0
11 1

carryi carryi+1
0

0
0

0
1
1
1
1

0
1

1
1 1

0
0

0

0
1
1
1

0
1
1
0
1
0
0
1

Truth table of a full adder

This input should not be
connected to any outputs We do not need

this output

Implementation: Pick the implicants by programming connections 105

Lessons from PLA

§ Programmability: Programmable devices incur a cost

§ Some logic in PLA is redundant if a subset of minterms
are needed

§ On the other hand, PLAs can be programmed after bulk
manufacturing which is their key programmability
advantage

106

ALU

107

Arithmetic and Logic Unit (ALU)
§ The circuits we have looked so far can do one useful thing

§ XNOR gate performs equality testing
§ Adder performs addition
§ Multiplexer performs selection

§ ALU is our first general purpose circuit
§ Performs a variety of arithmetic/logical operations
§ ADD, SUB, AND, OR, XOR,

§ It has a 2-bit control input
§ The language ALU speaks or the instructions it understands

N-bit ALU

Section 5.2.4 of H&H

ALU Interface/Instructions
ALUControl1:0 Function
00 Add
01 Subtract
10 AND
11 OR

§ N-bit data inputs and outputs

§ 2-bit control input (ALUControl)
§ Specifies one of four functions
§ Setting ALUControl to 00, 01, 10, and 11

is giving ALU instructions

§ The assignment of binary codes to
ALU functions is not arbitrary
§ It is clever (01 for Subtract in particular)

as we will reveal

ALU Implementation
ALUControl1:0 Function
00 Add
01 Subtract
10 AND
11 OR

N-bit Add-subtract
circuitry

N-bit Logic circuitry
AND, OR

4:1 multiplexer

control signals

data inputs/signals

Add-Subtract Circuitry
§ A + B

§ Normal addition

§ A – B
§ A + (–B)
§ In 2’s complement, –B = B’ + 1
§ An inverter performs B’
§ We send ALUControl0 as the carry input of the adder
§ ALUControl0 is 1 when the ALU function is Subtract

The Nature of Hardware
§ Parallelism: Hardware is inherently parallel

§ All logic gates in the ALU work in parallel when the circuit is presented
with valid input

§ Redundancy: Generality leads to redundancy
§ ALU is a general-purpose circuit that can perform a variety of operations.

Some work/effort is wasted
§ The output of OR/AND is wasted when ALUControl is 01

§ Control: Control circuitry comes with a cost
§ ALU consumes more area than the individual functional units it combines

(4:1 multiplexer is for controlling output)

ALUFLAGS
§ We need meta-information about the ALU result

§ Is the result negative (N)?
§ Is the result zero (Z)?
§ Is there a carry out (C)?
§ Is there an overflow (V)?

§ Many scientific algorithms rely on flags for the next step
§ If overflow: discard result, and redo
§ Carry out is the carry in for another operation
§ If the result is negative: do {...}; else do {...}

N Z C V

Flags are only relevant for arithmetic operations
(ALUControl1 = 0)

ALUFLAGS
§ Negative

§ Check the MSB of result

§ Zero
§ NOR all bits of the result (same as invert then AND)

§ Carry
§ AND ALUControl1 with Cout from the adder

§ Overflow
§ Option # 1: Use A and B to compute overflow
§ Option # 2: Use A and the output of 2:1 multiplexer to compute

overflow

N Z C V

Option # 1 for Overflow

ALControl0 A31 B31 S31

Scenario # 1 0 (Add) 0 0 1

Scenario # 2 0 (Add) 1 1 0

Scenario # 3 1 (Subtract) 0 1 1

Scenario # 4 1 (Subtract) 1 0 0

Case # 1 in plain English: When doing A + B , if A and B are +ve, and the sum is –ve

Case # 2: A + B, if A and B are –ve, and the sum is +ve

Case # 3: A – B, if A is +ve and and B is –ve, and the sum is –ve

§ The following scenarios generate overflow: overflow flag is 1

Case # 4: A – B, if A is –ve and and B is +ve, and the sum is +ve

Option # 1 for Overflow

ALControl0 A31 B31 S31

Scenario # 1 0 (Add) 0 0 1

Scenario # 2 0 (Add) 1 1 0

Scenario # 3 1 (Subtract) 0 1 1

Scenario # 4 1 (Subtract) 1 0 0

§ Overflow is 1 whenever there is an even number of 1’s among ALUControl0, A31, and B31
§ XNOR ALUControl0, A31, and B31

§ Overflow is 1 whenever A31 and S31 are different
§ XOR A31 and S31

§ The following scenarios generate overflow: overflow flag is 1

Option # 1 for Overflow

Option # 2
§ Use A and the output of 2:1 mux

§ B if the instruction is an Add and –B if the instruction is a subtract

§ Easy to reason conceptually
§ If A – B is the same as A + (–B) then everything is an add
§ There is no need to consider subtract separately when reasoning about

overflow generation

§ The circuitry is also much simpler
§ Homework assignment: Figure out the circuitry for overflow generation

with option # 2

ALU Timing Analysis

Element Delay

Inverter tINV = 1 ps

2:1 Mux tmux2 = 5 ps

4:1 Mux tmux4 = 8 ps

Adder tadder = 14 ps

AND tAND = 2 ps

OR tOR = 2 ps

picoseconds (10–12 seconds) = ps

§ Find tResult in ps for the four ALU functions. (Ignore overflow generation)
§ Which function takes the longest time (and is the critical path)? Ignore wire delay

§ Express tResult in the form of an equation for Add and Subtract. What is the difference?

Homework

Comparator

120

Comparator (Equality Checker)
§ Checks if two N-input values are exactly the same

§ Example: 4-bit Comparator

§ What about magnitude comparison
(relative values of A and B)?

Tri-State Buffer

122

Tri-State Buffer
§ A tri-state buffer enables gating of different signals onto a

wire

A tri-state buffer acts
like a switch but can
pass both 0’s and 1’s if
E is asserted

Section 2.6.2 of H&H

Tri-State Buffer
§ A tri-state buffer enables gating of different signals onto a

wire

§ When E is HIGH, the output Y is whatever A is
§ Same behavior as a regular buffer

A tri-state buffer
acts like a switch

Tri-State Buffer
§ A tri-state buffer enables gating of different signals onto a

wire

§ When E is LOW, output is a floating signal (Z)
§ Floating: Signal not driven by any circuit (open circuit, floating wire)

A tri-state buffer
acts like a switch

Use of Tri-State Buffers
§ Imagine a wire shared by the CPU and memory or two I/O

peripherals

§ At any time, only one of them can place a value on the
wire, but not both

§ Use two tri-state buffers
§ One driven by CPU, and one driven by memory
§ Ensure at most one is enabled at any time

Example: Use of Tri-State Buffers

CPU

Memory

GateMem

GateCPU

Shared Bus

Another Example

Recall: A 4:1 Multiplexer

Multiplexer Using Tri-State Buffers

Combinational
 Composition Rules

131

Combinational Composition Rules
§ Every circuit element is itself combinational

§ Each node is either an input to the circuit or connects to
exactly one output terminal of a circuit element

§ The circuit contains no cyclic paths. Every path through the
circuit visits each circuit node at most once

Which circuits are combinational?

Assume n5 is 0
and the other
input of XOR is 1

We Study Boolean Algebra for
 Logic Minimization

Because we care about minimizing area, cost, logic complexity, energy, footprint, ...
134

Boolean Algebra (Logic Minimization)
§ The sum-of-products (SOP) canonical form does not lead

to the simplest logic gate implementation

§ We can eliminate some minterms à Less # logic gates

§ We can reduce the # literals in minterms à Smaller gates

§ We use Boolean algebra to simplify Boolean equations
§ Similar in spirit to simplification in ordinary algebra except we are

dealing with 0 and 1 (much easier)

Section 2.2 of H&H
135

Boolean Algebra
§ Boolean algebra consists of

§ Axioms (correct by definition)
§ Theorems of one variable
§ Theorems of several variables

§ Any theorem can be proved via the axioms
§ An axiom is the ground truth and cannot be proven wrong

§ The Principle of Duality
§ If the symbols 0 and 1 and the operators AND and OR are

interchanged, the statement will still be correct

136

Boolean Axioms

Dual: Replace: • with +
 0 with 1

Number Axiom Dual Name
A1 B = 0 if B ≠ 1 B = 1 if B ≠ 0 Binary Field
A2 0 = 1 1 = 0 NOT
A3 0 • 0 = 0 1 + 1 = 1 AND/OR
A4 1 • 1 = 1 0 + 0 = 0 AND/OR
A5 0 • 1 = 1 • 0 = 0 1 + 0 = 0 + 1 = 1 AND/OR

137

Boolean Theorems of One Variable
Number Theorem Dual Name
T1 B • 1 = B B + 0 = B Identity
T2 B • 0 = 0 B + 1 = 1 Null Element
T3 B • B = B B + B = B Idempotency
T4 B = B Involution
T5 B • B = 0 B + B = 1 Complements

Dual: Replace: • with +
 0 with 1

138

Theorems: Several Variable
Theorem Dual Name
T6 B•C = C•B B+C = C+B Commutativity

T7 (B•C) • D = B • (C•D) (B + C) + D = B + (C + D) Associativity

T8 B • (C + D) = (B•C) + (B•D) B + (C•D) = (B+C) (B+D) Distributivity

T9 B • (B+C) = B B + (B•C) = B Covering

T10 (B•C) + (B•C) = B (B+C) • (B+C) = B Combining

T11 (B•C) + (B•D) + (C•D) =
(B•C) + (B•D)

(B+C) • (B+D) • (C+D) =
(B+C) • (B+D)

Consensus

Warning: T8’ (dual of T8) differs from traditional algebra: OR (+)
distributes over AND (•)

139

Proving Theorems
§ Method 1: Perfect induction

§ Proof by exhaustion: Check all possible input combinations
§ Two expressions are equal if they produce the same value for every

possible input combination

§ Method 2: Use other theorems/axioms to simplify
equations
§ As in ordinary algebra, make one side of the equation look like the

other side of the equation

140

Example: Perfect Induction

0 0
0 0
0 0
1 1

Number Theorem Name
T6 B•C = C•B Commutativity

0 0
0 1
1 0
1 1

B C BC CB

141

Example: Perfect Induction
Number Theorem Name
T9 B• (B+C) = B Covering

0 0
1 0
1 1
1 1

0 0
0 1
1 0
1 1

B C (B+C) B(B+C)

142

Method 2: T9 (Covering)
Number Theorem Name
T9 B• (B+C) = B Covering

Method 2: Prove true using other axioms and theorems.
B•(B+C) = B•B + B•C T8: Distributivity
 = B + B•C T3: Idempotency
 = B•(1 + C) T8: Distributivity
 = B•(1) T2: Null element
 = B T1: Identity

143

Method 2: T10 (Combining)

Number Theorem Name
T10 (B•C) + (B•C) = B Combining

Prove true using other axioms and theorems:
 B•C + B•C = B•(C+C) T8: Distributivity
 = B•(1) T5’: Complements

 = B T1: Identity
144

Simplifying Boolean Equations
§ A basic principle for simplifying sum-of-product equations

§ PA + PA’ = P
§ P is any implicant
§ Y = A’B + AB = B(A’+A) = B(1) = B

§ An equation is minimized if
§ it uses the fewest number of implicants
§ if there are multiple equations with the same number of

implicants, then the one with the fewest literals

Section 2.2 of H&H
145

Simplification Example – 1
Y = AB + AB’
 Y = A T10: Combining

or
 = A(B + B’) T8: Distributivity
 = A(1) T5’: Complements
 = A T1: Identity

146

Simplification Example – 2
Y = A(AB + ABC)
 = A(AB(1 + C)) T8: Distributivity
 = A(AB(1)) T2’: Null Element
 = A(AB) T1: Identity
 = (AA)B T7: Associativity
 = AB T3: Idempotency

147

Simplification Example – 3A
Y = AB’C + ABC + A’BC
 = AC(B + B’) + A’BC T8: Distributivity
 = AC(1) + A’BC T5: Complements
 = AC + A’BC T1: Identity

§ The two implicants AC and BC share the minterm ABC

§ Are we stuck with simplifying only one of the minterm pairs?

148

Simplification Example – 3B
Y = AB’C + ABC + A’BC
 = AB’C + ABC + ABC + A’BC T3’: Idempotency
 = (AB’C+ABC) + (ABC+A’BC) T7’: Associativity
 = AC + BC T10: Combining

§ The two implicants AC and BC are called prime implicants

§ They cannot be combined with any other implicants in the
equation to get a new implicant with fewer literals

149

Simplification Example – 4
Y = A’B’C’ + AB’C’ + AB’C

150

De Morgan’s Theorem
Theorem Dual Name
T12 B0•B1•B2… =

B0+B1+B2…
B0+B1+B2… =
B0•B1•B2…

DeMorgan’s
Theorem

§ The complement of the product is the sum of the
complements

§ Dual: The complement of the sum is the product of the
complements

Section 2.2 of H&H
151

De Morgan’s Theorem
A
B Y

A
B Y

A
B Y

A
B Y

§ Y = AB = A + B

§ Y = A + B = A B

152

Bubble Pushing Rules
§ Pushing bubbles backward/forward changes the body of

the gate from AND/OR to OR/AND

§ Pushing a bubble from output back to inputs put bubbles
on all gate inputs

§ Pushing bubbles on all gate inputs forward towards the
output puts a bubble on the output

Section 2.5.1 and 2.5.2 of H&H
153

Bubble Pushing Example
A
B

C Y
D

A
B

C

D
Y

bubble on
input and outputA

B

C

D
Y

A
B

C Y
D

Y = ABC + D

no output
bubble

no bubble on
input and output

154

Priority Circuit

155

Priority Circuit
§ Priority circuit

§ Inputs: “Requestors” with priority levels
§ Outputs: “Grant” signal for each requestor

§ Example: n-bit priority circuit
§ Room reservation system
§ Computer bus demanded by four CPUs

Example 2.7 of H&H

Requestors Grant Signals

156

Priority Circuit

Y3 = A3

Y2 = A3’A2

Y1 = A3’A2’A1

Y0 = A3’A2’A1’A0

X (Don’t Care) means We don’t care what the
value of this input is

157

Logical Completeness
§ Any logic function can be implemented with a PLA

§ PLA needs only AND, OR, and NOT gates

§ The set of gates {AND, OR, NOT} is logically complete
because we can build a circuit from a truth table without
needing any other gate

158

Logical Completeness of NAND
§ Can we implement a NOT gate using a NAND gate?
§ What about implementing AND gate using NAND gate ?
§ What about implementing OR gate using NAND gate?

§ If all of above is true, then we can build computers from
one gate only, the NAND gate

§ Prove yourself that NAND is logically complete

§ Most computer today are built using billion of NAND gates

159

Optional Self-Study
§ Product of Sums (POS)

§ Interesting but not entirely needed if you understand
SOP well

§ Follows from Demorgan

Section 2.2.3 of H&H

160

Alternative Canonical Form: POS
§ Product of Sums (POS)

§ DeMorgan of SOP of 2𝑭

§ Find all the input combinations (maxterms) for which the
output of the function is FALSE

§ The function evaluates to FALSE (i.e., the output is 0) if any
of the Sums (maxterms) causes the output to be 0

161

Alternative Canonical Form: POS

0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 1
1 0 1 1
1 1 0 1
1 1 1 1

For the given input, only the shaded sum term
will equal 0

Anything ANDed with 0 is 0; Output F will be 0

Product of Sums (POS)

0 0 0 0 0 1
sums

product

𝑭 = (𝑨 +𝑩+ 𝑪)(𝑨 + 𝑩+)𝑪)(𝑨 +)𝑩+ 𝑪)

𝑭 = 𝑨+𝑩+ 𝑪 	 𝑨 + 𝑩+)𝑪 	 (𝑨 +)𝑩+ 𝑪)𝐀 𝐁 𝐂 𝐅

Each sum term represents one of the
“zeros” of the function

This input

Activates this term

𝑨+)𝑩+ 𝑪 = 𝟎+)𝟏 + 𝟎

0 1 0

162

Consider A=0, B=1, C=0
𝐀 𝐁 𝐂 𝐅
0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 1
1 0 1 1
1 1 0 1
1 1 1 1 1 1 0

𝑭 = (𝑨 +𝑩+ 𝑪)(𝑨 + 𝑩+)𝑪)(𝑨 +)𝑩+ 𝑪)

𝑭 = 𝟎

𝟎)𝟏	 𝟎𝟎	 𝟏)𝟎𝟎	 𝟏	 𝟎

0 1 0
Input

Only one of the products will be 0, anything ANDed with 0 is 0

Therefore, the output is F = 0
163

Optional Self-Study
§ More combinational circuits

§ Shifters
§ Rotators
§ Multiplication
§ Division
§ FPGAs

Section 5.2.5, 5.2.6, 5.2.7, 5.6.2 of H&H

164

What We Have Done So Far
§ Building blocks of modern computers

§ Transistors
§ Logic gates

§ Combinational logic fundamentals

§ Boolean algebra

§ Using Boolean algebra to implement combinational circuits

§ Basic combinational logic blocks

§ Simplifying combinational logic circuits

165

