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Our Status
§ We are done with digital logic fundamentals that we need 

to understand and build a CPU

§ We are now (+ next week) at
§ Architecture layer 

§ Then 
§ Microarchitecture layer
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ISA then microarchitecture 
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Admin
§ Quiz  #1 has been marked

§ We will take the best two of four quizzes

§ Marking of the checkpoint is underway

§ Assignment 1 will be released this week

§ Some % of assignment 1 grade comes from work you 
are doing in Labs 4 – 6 
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Von Neumann Model
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Main Memory

§ Key resources: CPU, memory, and Input/Output (I/O) devices
§ CPU (microprocessor) does the actual processing (computation)
§ Memory stores temporary data and forms a hierarchy (registers, SRAM, DRAM, ...)
§ Some fast (small capacity) memory called register file is close to the CPU and rest is far
§ Storage disk is an I/O device (much slower than memory, stores persistent data)
§ Memory is volatile, while disk is non-volatile (data is retained after a shutdown) 
§ Other peripherals such as keyboard and network card are accessories to processing

Storage

Recall: A Computer System

I/O Peripherals



Another View: What is a Computer?

Processing Main 
Memory

1. Program
2. Data

Input/Output (I/O)
Control
(Sequencing)

Datapath

§ Basic computer model proposed in the 1940s

§ We will cover all three components 
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§ In past lectures, we learned how to design
§ Combinational logic structures
§ Sequential logic structures

§ With logic structures, we can build
§ Execution units
§ Decision units
§ Memory/storage units
§ Communication units

§ All are basic elements of a computer
§ We will raise our abstraction level today
§ Use logic structures to construct a basic computer model

Building up a Basic Computer Model

Microarchitecture
ISA (Architecture)

Program in C/Java
Algorithm
Problem

Logic
Devices

Runtime System
(Operating system)

Electrons
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Building up a Basic Computer Model

Microarchitecture
ISA (Architecture)

Program in C/Java
Algorithm
Problem

Logic
Devices

Runtime System
(Operating system)

Electrons

§ ISA: Specification of the instructions computer 
can perform
§ An interface between the programs and hardware

§ Programmer needs to know ISA to be able to convey his wishes 
(instructions) to the hardware

§ Hardware builder (computer architect) needs to know the ISA to be 
able to build and organize circuits to carry out the instructions

§ Microarchitecture: Circuit implementation of 
the specification

§ An important aspect to ponder: Not every implementation 
detail is relevant to the programmer!
§ Just enough to be able to program the computer (as we will see)
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ISA vs. Microarchitecture
§ What is part of ISA vs. Uarch?

§ Gas pedal: interface for “acceleration”
§ Internals of the engine: implement “acceleration” 

§ Aspects of ISA
§ The different instructions and their binary codes
§ Semantics (meaning) of each instruction
§ Word size, number of registers, memory addressability

§ Aspects of implementation
§ Ripple-carry vs. carry-lookahead adder
§ Mux or tristate buffers
§ Canonical SOP or minimal Boolean expression for implementation
§ NAND gates only vs. AND/OR/NOT combination
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ISA vs. Microarchitecture
§ One ISA can have many microarchitectures

§ One microarchitecture per student, but the QuAC ISA is the same on 
the course webpage

§ ISA is usually a one-time effort with incremental changes to 
enable new applications
§ Only a few ISAs in the world but many microarchitectures

§ Microarchitecture changes faster than ISA

§ Key insight: ISA can enable simple vs. complex logic gate circuitry at the 
microarchitecture level (more in coming weeks ....
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ISA: Another View
§ Most people don’t write programs in the computer’s own 

machine language (lowest level)

§ They prefer high-level languages such as C++, Java, or Python

§ A compiler translates C++ or Java code into the computer’s 
machine language

§ ISA specifies everything in the computer that a compiler writer 
who wishes to translate programs from C++/Java to machine 
language need to know
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ISAs are a Good Bedtime Reading!
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ISAs You Will Encounter @ ANU
§ QuAC

§ An ISA for educational purposes developed at ANU
§ Mainly covered in tutorials and required for assignment 1

§ MIPS
§ Pioneering RISC ISA developed by John Hennessy at 
        MIPS computer systems

§ Microprocessors without Interlocked Pipelined Stages
§ Briefly covered in today’s lecture for breadth 

§ ARM 
§ A popular RISC ISA developed by Arm Ltd. 
§ Advanced RISC Machines
§ De facto choice for portable hand-held devices
§ Covered extensively in lectures and required for assignment 2

§ LC-3
§ Little Computer 3 is an educational ISA developed by Yale N. Patt at UT-Austin
§ Briefly covered in today’s lecture for breadth

§ x86-64
§ A CISC ISA developed by Intel Corporation
§ Most influential ISA in the world and de facto choice for high-performance computing
§ Covered extensively in COMP2310

Ex-President of Stanford University
Chairman of Alphabet
Founder of MIPS Technologies
Turing Award Winner
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§ To get a task done by a (general-purpose) computer, we need
§ A computer program
§ That specifies what the computer must do

§ The computer itself
§ To carry out the specified task

§ Program: A set of instructions
§ Each instruction specifies a well-defined piece of work for the computer to 

carry out
§ Instruction: the smallest piece of specified work in a program

§ Instruction set: All possible instructions that a computer is 
designed to be able to carry out

What is a Computer?
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§ In order to build a computer, we need an execution model for 
processing computer programs

§ John von Neumann proposed a fundamental model in 1946

§ The von Neumann Model consists of 5 components
§ Memory (stores the program and data)
§ Processing unit
§ Input
§ Output
§ Control unit (controls the order in which instructions are carried out)

Burks, Goldstein, von Neumann, 
“Preliminary discussion of the logical design 
of an electronic computing instrument,” 1946.

All general-purpose computers today use the von Neumann model

The Von Neumann Model
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CONTROL UNIT

PC or IP Inst Register

PROCESSING UNIT

ALU TEMP

MEMORY

Mem Addr Reg

Mem Data Reg

INPUT

Keyboard,
Mouse,
Disk…

OUTPUT

Monitor, 
Printer, 
Disk…

The Von Neumann Model
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CONTROL UNIT

PC or IP Inst Register

PROCESSING UNIT

ALU TEMP

MEMORY

Mem Addr Reg

Mem Data Reg

INPUT

Keyboard,
Mouse,
Disk…

OUTPUT

Monitor, 
Printer, 
Disk…

The Von Neumann Model
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Recall: A Memory Array (4 locations X 
3 bits)



Di[2] Di[1] Di[0]

D[2] D[1] D[0]

Addr[1:0]

WE

Address Decoder
Multiplexer 19



Recall: Memory Array Organization
§ Decoder drives the wordline HIGH based on the address
§ Data on the selected row appears on the bitlines 

wordline311

10

2:4
Decoder

Address

01

00

stored
bit = 0wordline2

wordline1

wordline0

stored
bit = 1

stored
bit = 0

stored
bit = 1

stored
bit = 0

stored
bit = 0

stored
bit = 1

stored
bit = 1

stored
bit = 0

stored
bit = 0

stored
bit = 1

stored
bit = 1

bitline2 bitline1 bitline0

Data2 Data1 Data0

2
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Recall: Memory Ports
§ Each memory port gives read or write access 

to one memory address
§ Multiported memories can access multiple 

addresses simultaneously 
§ Example of three-ported memory

§ Port 1 reads the data from address A1 onto the 
read data output RD1

§ Port 2 reads the data from address A2 onto the 
read data output RD2

§ Port 3 writes the data from the write data input 
WD3 into address A3 on the rising clock edge if 
WE3 is TRUE
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§ Memory stores 
§ Programs
§ Data

§ Memory contains bits
§ Bits are logically grouped into bytes (8 bits) and words (e.g., 8, 16, 32 bits)

§ Address space: Total number of uniquely identifiable locations
§ In MIPS, the address space is 232

§ 32-bit addresses
§ In ARM, the address space is 232

§ 32-bit addresses
§ In x86-64, the address space is (up to) 248

§ 48-bit addresses

§ Addressability: How many bits are stored in each location (address)
§ E.g., 8-bit addressable (or byte-addressable)
§ E.g., word-addressable
§ A given instruction can operate on a byte or a word

Memory
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§ A representation of memory with 8 locations
§ Each location contains 8 bits (one byte)

§ Byte addressable memory with an address space of 8
§ Value 6 is stored in address 4 & value 4 is stored in address 6

Address Data Value

Question:
How can we make 
same-size memory 
bit addressable?

Answer: 
64 locations
Each location stores 1 bit

A Simple Example
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§ Each data word has a unique address
§ In MIPS, a unique address for each 32-bit data word (not word-addressable)
§ In QuAC, a unique address for each 16-bit data word (word addressable)

00000000

00000001

00000002

00000003

.  
.  

.Word Address

8 9 A B C D E F 
F 2 F 1 F 0 F 7
1 3 C 8 1 7 5 5
D 1 6 1 7 A 1 C Word 3

Word 2

Word 1

Word 0
.  

.  
.

.  
.  

.

Data Word Number

Word-Addressable Memory
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§ Each byte has a unique address
§ MIPS is actually byte-addressable
§ ARM is also byte-addressable

Word 3

Word 2

Word 1

Word 0
.  

.  
.

.  
.  

.

Data

8 9 A B C D E F

F 2 F 1 F 0 F 7

1 3 C 8 1 7 5 5

D 1 6 1 7 A 1 C

Word Number

00000000

00000004

00000008

0000000C

.  
.  

.Byte Address 
of the Word

How are these four bytes 
ordered?

Which of the four bytes is most vs. least significant?

Byte-Addressable Memory
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§ Jonathan Swift’s Gulliver’s Travels
§ Big Endians broke their eggs on the big end of the egg
§ Little Endians broke their eggs on the little end of the egg

Big Endian vs. Little Endian
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0

4

8

C

.  
.  

.

Word 
Address

.  
.  

.

Byte 
Address

3 2 1 0

7 6 5 4

B A 9 8

F E D C

.  
.  

.

Byte 
Address

0 1 2 3

4 5 6 7

8 9 A B

C D E F

Big Endian Little Endian

MSB LSBMSB
(Most Significant Byte)

LSB
(Least Significant Byte)

LSB in higher byte address LSB in lower byte address

Big Endian vs. Little Endian
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§ 0x01234567
§ Memory addresses start at 0x100

Big Endian vs. Little Endian
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0

4

8

C

.  
.  

.

Word 
Address

.  
.  

.

Byte 
Address

3 2 1 0

7 6 5 4

B A 9 8

F E D C

.  
.  

.

Byte 
Address

0 1 2 3

4 5 6 7

8 9 A B

C D E F

Big Endian Little Endian

MSB LSB

Does this really matter?

Answer: No, it is a convention

Qualified answer: No, except when one big-endian 
system and one little-endian system have to share 
or exchange data

MSB
(Most Significant Byte)

LSB
(Least Significant Byte)

LSB in higher byte address LSB in lower byte address

Big Endian vs. Little Endian

29



§ There are two ways of accessing memory
§ Reading or loading data from a memory location
§ Writing or storing data to a memory location

§ Two registers are usually used to access memory
§ Memory Address Register (MAR)
§ Memory Data Register (MDR)

§ To read
§ Step 1: Load the MAR with the address we wish to read from
§ Step 2: Data in the corresponding location gets placed in MDR

§ To write
§ Step 1: Load the MAR with the address and the MDR with the data 

we wish to write
§ Step 2: Activate Write Enable signal à value in MDR is written to 

address specified by MAR

Accessing Memory: MAR and MDR
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Learn to Distinguish Address from Data
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CONTROL UNIT

PC or IP Inst Register

PROCESSING UNIT

ALU TEMP

MEMORY

Mem Addr Reg

Mem Data Reg

INPUT

Keyboard,
Mouse,
Disk…

OUTPUT

Monitor, 
Printer, 
Disk…

The Von Neumann Model
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§ Performs the actual computation(s) 

§ The processing unit can consist of many functional units

§ We start with a simple Arithmetic and Logic Unit (ALU), which 
executes computation and logic operations 
§ ARM: ADD, AND, NOT, SUB
§ MIPS: add, sub, mult, and, nor, sll, slr, slt…

§ The ALU processes quantities that are referred to as words
§ Word length in ARMv4 is 32 bits (v8 is 64 bits)
§ Word length in MIPS is 32 bits
§ Word length in QuAC is 16 bits

Processing Unit
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§ Combines a variety of arithmetic and logical operations into a single unit (that 
performs only one function at a time)

§ Usually denoted with this symbol:

Recall: Arithmetic & Logic Unit (ALU)
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Recall: Arithmetic & Logic Unit (ALU)

35



§ It is almost always the case that a computer provides a small 
amount of storage very close to ALU
§ Purpose: to store temporary values and quickly access them later

§ E.g., to calculate ((A+B)*C)/D, the intermediate result of A+B 
can be stored in temporary storage
§ Why? It is too slow to store each ALU result in memory & then retrieve it 

again for future use
§ A memory access is much slower than an addition, multiplication or 

division
§ Ditto for the intermediate result of ((A+B)*C)

§ This temporary storage is usually a set of registers 
§ Called Register File

Processing Unit: Fast Temporary Storage
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§ Memory is large but slow

§ Registers in the Processing Unit
§ Ensure fast access to values to be processed in the ALU
§ Typically one register contains one word (same as word length)

§ Register Set or Register File
§ Set of registers that can be manipulated by instructions
§ ARM has 16 general purpose registers (GPRs)

§ R0 to R15: 4-bit register number
§ Register size = Word length = 32 bits

§ MIPS has 32 general purpose registers
§ More elaborate naming scheme: 5-bit register number (or Register ID)
§ Register size = Word length = 32 bits

§ QuAC has 8 general purpose registers (one undefined)

Registers: Fast Temporary Storage
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Recall: Register
§ How can we use flipflops to store more than one bit? 

§ Principle of modularity:  Use more flipflops!
§ A single CLK to simultaneously write to all flipflops

§ Register: A structure that stores more than one bit of 
information and can be read from and written to

§ This register holds 4 bits, and its data is referenced as Q[3:0]
38



Recall: 4-bit Register

CLK
D Q

Q

CLK
D Q

Q
Q

Q

D N1

CLK

L1 L2

CLK
D Q

Q

CLK
D Q

Q
Q

Q

D N1

CLK

L1 L2

CLK
D Q

Q

CLK
D Q

Q
Q

Q

D N1

CLK

L1 L2

CLK
D Q

Q

CLK
D Q

Q
Q

Q

D N1

CLK

L1 L2

CLK

D3 D2 D1 D0

4-bit Register

Q0Q1Q2Q3

To build an N-bit register, use a bank of N flipflops with a shared CLK
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Recall: 4-bit Register
CLK

D Q

D Q

D Q

D Q

D0

D1

D2

D3

Q0

Q1

Q2

Q3

D3:0
4 4

CLK

Q3:0

This register stores 4 bits

This line represents 4 wires

Condensed

40

o Here we have a 
register, or a 
structure that 
stores more than 
one bit and can be 
read from and 
written to

o This register holds 4 
bits, and its data is 
referenced as 
Q[3:0]
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§ A single WE signal for all flip-flops for 
simultaneous writes

Register x (Rx)

D3:0

Q3:0

WE

4

4

More Realistic Register
Enabled Flip-Flop



How Registers are Addressed?
§ Each ISA gives a set of general-purpose registers with 

special names

§ So, an assembly programmer can use convenient names 

§ How they are translated into binary addresses is up to the 
implementation

§ Let’s see
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Name Register Number Usage
$0 0 the constant value 0
$at 1 assembler temporary
$v0-$v1 2-3 function return value
$a0-$a3 4-7 function arguments
$t0-$t7 8-15 temporary variables
$s0-$s7 16-23 saved variables
$t8-$t9 24-25 temporary variables
$k0-$k1 26-27 OS temporaries
$gp 28 global pointer
$sp 29 stack pointer
$fp 30 frame pointer
$ra 31 function return address

MIPS Register File
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ARM Register File
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LC-3 Register File (with Contents)
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QuAC Register File
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CONTROL UNIT

PC or IP Inst Register

PROCESSING UNIT

ALU TEMP

MEMORY

Mem Addr Reg

Mem Data Reg

INPUT

Keyboard,
Mouse,
Disk…

OUTPUT

Monitor, 
Printer, 
Disk…

The Von Neumann Model
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§ Enable information to get into and out of a computer

§ Many devices can be used for input and output

§ They are called peripherals
§ Input

§ Keyboard
§ Mouse
§ Scanner
§ Disks
§ Etc.

§ Output
§ Monitor
§ Printer
§ Disks
§ Etc.

Input and Output
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Input and Output

49



Keyboard and Monitor
§ The simplest keyboard has two registers
§ Keyboard data register (KBDR) for holding the ASCII code 

of keys struck
§ Keyboard status register (KBSR) for maintaining status 

information about the keys struck

§ The simplest monitor has two registers
§ Display data register (DDR) for holding the ASCII code of 

something to be displayed on the screen
§ Display status register (DSR) for maintaining associated 

status information
50



ASCII Encoding 
§ ASCII stands for 

American Standard 
Code for Information 
Interchange 

§ It ranges from 0 to 255 
in Decimal or 00 to FF 
in Hexadecimal

§ All characters on an 
English keyboard can 
be represented using 
8-bit codes
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CONTROL UNIT

PC or IP Inst Register

PROCESSING UNIT

ALU TEMP

MEMORY

Mem Addr Reg

Mem Data Reg

INPUT

Keyboard,
Mouse,
Disk…

OUTPUT

Monitor, 
Printer, 
Disk…

The Von Neumann Model
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§ The control unit is like the conductor of an orchestra

§ It conducts the step-by-step process of executing (every instruction 
in) a program

§ It keeps track of which instruction being 
    processed, via

§ Instruction Register (IR), which contains the instruction

§ It also keeps track of which instruction to process next, via
§ Program Counter (PC) or Instruction Pointer (IP), another register that 

contains the address of the (next) instruction to process

Control Unit
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M[0]
M[1]
M[2]
M[3]
M[4]

M[N-1]
Memory
array of storage locations
indexed by an address

Program Counter
memory address
of the current (or next) instruction

Registers
-  given special names in the ISA
     (as opposed to addresses)
-  general vs. special purpose

Instructions (and programs) specify how to transform
             the values of programmer visible state

Programmer Visible (Architectural) State
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PC or IP Inst Register

PROCESSING UNIT

ALU TEMP

MEMORY

Mem Addr Reg

Mem Data Reg

INPUT

Keyboard,
Mouse,
Disk…

OUTPUT

Monitor, 
Printer, 
Disk…

The Von Neumann Model
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§ Von Neumann model is also called stored program computer 
(instructions in memory). It has two key properties:

§ Stored program
§ Instructions stored in a linear memory array
§ Memory is unified between instructions and data
§ The interpretation of a stored value depends on the control signals

§ Sequential instruction processing
§ One instruction processed (fetched, executed, completed) at a time
§ Program counter (instruction pointer) identifies the current instruction
§ Program counter is advanced sequentially except for control transfer 

instructions

Von Neumann Model: Two Key Properties
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CONTROL UNIT

PC or IP Inst Register

PROCESSING UNIT

ALU TEMP

MEMORY

INPUT

Keyboard,
Mouse,
Disk…

OUTPUT

Monitor, 
Printer, 
Disk…

The Von Neumann Model
00100101 
01001010
11111111
00000000
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Examples of 
  von Neumann Machines
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Scanned by CamScanner

Control signals

Data

ALU: 2 inputs, 1 output

Memory Data 
Register

Memory Address
Register

16-bit 
addressable

Keyboard
KBDR (data), KBSR (status)

Monitor (Display)
DDR (data), DSR (status)

8 General Purpose 
Registers (GPR)

Finite State Machine 
(for Generating Control Signals)

Instruction 
Register

Program 
Counter

ALU operation

GateALU

Clock

LC-3: A von Neumann Machine
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LC-3: A von Neumann Machine
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Source: https://www.anandtech.com/show/16252/mac-mini-apple-m1-tested 

Apple M1,
2021

Another Von Neumann Machine
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Source: https://twitter.com/Locuza_/status/1454152714930331652 

Intel Alder Lake,
2021

Another Von Neumann Machine
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https://wccftech.com/amd-ryzen-5000-zen-3-vermeer-undressed-high-res-die-shots-close-ups-pictured-detailed/

AMD Ryzen 5000, 2020

Core Count:
8 cores/16 threads

L1 Caches: 
32 KB per core

L2 Caches:
512 KB per core

L3 Cache:
32 MB shared

Another Von Neumann Machine
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https://www.it-techblog.de/ibm-power10-prozessor-mehr-speicher-mehr-tempo-mehr-sicherheit/09/2020/

IBM POWER10,
2020

Cores:
15-16 cores,
8 threads/core

L2 Caches:
2 MB per core

L3 Cache:
120 MB shared

Another Von Neumann Machine
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ARMv4 (Single-Cycle) 32-bit
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ARMv4 (Multi-Cycle) 32-bit
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ARMv4 32-bit with Pipelining
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MIPS (Single-Cycle) 32-bit
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§ The key principles and fundamentals are the same

§ Put your understanding of key principles to practice in labs

§  The exam/quiz is not structured to test your skills in 
memorizing slides!

Key to Understanding Computers
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The Concept of Sequential 
Execution
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§ Instructions and data are stored in memory
§ Typically the instruction length is the word length

§ The processor fetches instructions from memory sequentially
§ Fetches one instruction
§ Decodes and executes the instruction
§ Continues with the next instruction

§ The address of the current instruction is stored in the program 
counter (PC)

§ If word-addressable memory, the processor increments the PC by 1 (in 
QuAC)

§ If byte-addressable memory, the processor increments the PC by the 
instruction length in bytes (4 in MIPS and ARM)
§ Assume the OS sets the PC to 0x00400000 (start of a program)

Stored Program and Sequential Execution
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§ A sample ARM program
§ 4 instructions stored in consecutive words in memory
§ No need to understand the program now. We will get back to it

.  
.  

.

Instructions

2 5 8 1 3 0 2 4

E 1 5 1 0 0 0 2

E 3 A 0 2 0 4 5

E 3 A 0 1 0 6 4

.  
.  

.

00400000

00400004

00400008

0040000C

.  
.  

.

Word 
Address

.  
.  

.

MOV   R1,  #100

MOV   R2,  #69

CMP   R1,  R2
STRHS R3,  [R1, #0x24]

ARM assembly code

0xE3A01064

0xE3A02045

0xE1510002
0x25813024

Machine code (encoded instructions)

← PC

A sample ARM program stored in memory
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.  
.  

.

Instructions

8 C 0 A 0 0 2 0

0 2 3 2 8 0 2 0

2 2 6 8 F F F 4

0 1 6 D 4 0 2 2 

.  
.  

.

00400000

00400004

00400008

0040000C

.  
.  

.

Word 
Address

.  
.  

.

lw $t2, 32($0)

add $s0, $s1, $s2

addi $t0, $s3, -12
sub $t0, $t3, $t5

MIPS assembly

0x8C0A0020

0x02328020

0x2268FFF4
0x016D4022

Machine code (encoded instructions)

← PC

A sample program: MIPS Example
§ A sample MIPS program

§ 4 instructions stored in consecutive words in memory
§ No need to understand the program now. We will get back to it
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§ An instruction is the most basic unit of computer processing
§ Instructions are words in the language of a computer
§ Instruction Set Architecture (ISA) is the vocabulary

§ The language of the computer can be written as

§ Machine language: Computer-readable representation (that is, 0s and 1s)

§ Assembly language: Human-readable representation

§ We will study ARM (in detail in lectures) and QuAC (in tutorials 
and assignment 1) and other ISAs for broader understanding
§ Principles are similar in all ISAs (x86, SPARC, RISC-V, …)

The Instruction
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§ An instruction is made up of two parts
§ Opcode and Operands

§ Opcode specifies what the instruction does
§ Operands specify who the instruction is to do it to

§ Both are specified in instruction format (or instruction 
encoding)
§ A MIPS and ARM instructions consists of 32 bits (bits [31:0])
§ QuAC instructions consist of 16 bits (bits [15:0])

The Instruction: Opcode & Operands
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§ MIPS example: Bits [31:26] specify the opcode à up to 64 distinct opcodes
§ Bits [25:11] are used to figure out where the operands are

§ QuAC example: Bits [15:12] specify the opcode à up to 16 distinct opcodes
§ Bits [10:0] are used to figure out where the operands are

§ ARM example: Bits [27:26] specify the opcode à up to 4 distinct opcodes
§ Bits [19:0] are used to figure out where the operands are

The Instruction: Examples

31:28 27:26 25 24:21 20 19:16 15:12 11:0

cond op I cmd S Rn Rd Src2



§ There are three main types of instructions

§ Operate (data processing) instructions
§ Execute operations in the ALU

§ Data movement (memory) instructions
§ Read from or write to memory

§ Control flow (branch/jump) instructions
§ Change the sequence of execution (decision making)

§ Let us start with some example instructions

Instruction Types
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§ Addition

§ add: mnemonic to indicate the operation to perform

§ b, c: source operands

§ a: destination operand

§ a ← b + c

a = b + c; add a, b, c
High-level code QuAC Assembly

An Example Operate Instruction
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§ We map variables to registers

add a, b, c b = R1

c = R2

a = R0

Assembly ARM registers

b = r1

c = r2

a = r0

QuAC registers

Registers

b = $s1

c = $s2

a = $s0

MIPS registers



QuAC assembly
§ Addition

§ Instruction Fields

§ Machine code (Instruction Encoding)

§ Machine code in short (hexadecimal)
§ 0x 8 0 1 2

From Assembly to QuAC Machine Code 

0 1 208

1   0     0    0       0        0   0   0  0   0  0  1   0   0 1 0   

add r0, r1, r2
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ADD  R0, R1, R2

ARM assembly

QuAC Opcodes

0 1 208

1   0     0    0       0        0   0   0  0   0  0  1   0   0 1 0   
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31:28 27:26 25 24:21 20 19:16 15:12 11:0

cond op I cmd S Rn Rd Src2

ADD  R0, R1, R2

ARM assembly
§ Addition

§ Instruction Fields

§ Machine Code (Instruction Encoding)

§ Machine Code in short (hexadecimal)
§ 0x E 0 9 1 0 0 0 1

From Assembly to ARM Machine Code 

31:28 27:26 25 24:21 20 19:16 15:12 11:0

1110 00 0 0100 1 0001 0000 000000000010
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Instruction Format
§ A form of representation of an instruction composed of 

fields of binary numbers (we have seen already)

§ It is the layout of the instruction

§ The instruction is divided into segments, and each 
segment is called a field

§ An ISA defines a few classes or types of formats, and 
each class or type has many different instructions for 
that type
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QuAC Instruction Formats
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MIPS Instruction Formats
§ Only three formats for simplicity of implementation
§ One can see the consistency across formats

§ MIPS ISA is outside of scope and only shown for breadth
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n MIPS R-type Instruction Format (R = Register)
q 3 register operands (register-based ALU operations)

q op = opcode = 0

q rs, rt = source registers

q rd = destination register

q shamt = shift amount (only shift operations)

q funct = operation in R-type instructions

0 rs rt rd shamt funct
6 bits 5 bits 5 bits 5 bits 5 bits 6 bits

Instruction Format: R Type in MIPS
Name Register 

Number
Usage

$0 0 the constant value 0

$at 1 assembler temporary

$v0-$v1 2-3 function return value

$a0-$a3 4-7 function arguments

$t0-$t7 8-15 temporary variables

$s0-$s7 16-23 saved variables

$t8-$t9 24-25 temporary variables

$k0-$k1 26-27 OS temporaries

$gp 28 global pointer

$sp 29 stack pointer

$fp 30 frame pointer

$ra 31 function return address
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§ Rn and Rm are source registers and Rd is the destination register
§ Below is the instruction format (encoding)
§ op = opcode (what does the instruction do?)

§ 00 means operate instruction and cmd = 0100 means ADD 
§ Some bits are pre-set (details later)

ADD Rd,  Rn  Rm

 ADD R0,  R1,  R3

31:28 27:26 25 24:21 20 19:16 15:12 11:4 3:0

1110 op 0 cmd S Rn Rd 0 0 0 0 0 0 0 0 Rm

Instruction Format: Data Processing (DP) in ARM
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LC-3 Instruction Formats

89

Such “weird” instructions will 
make more sense in COMP2310 
as they provide support for I/O 
and networking Reserved for future use

Instructions are 16-bit 
words

opcode is in the same 
place for each 
instruction



§ With operate instructions, such as addition, we tell the computer to 
execute arithmetic (or logic) computations in the ALU

§ We also need instructions to access the operands from memory
§ Load them from memory to registers
§ Store them from registers to memory

§ Next, we see how to read (or load) from memory

§ Writing (or storing) is performed in a similar way, but we will talk 
about that later

Read Operands from Memory
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§ ARM assembly (Load Register or LDR)

§ MIPS assembly (load word or lw)

a = A[2]; LDR R3, [R0, #8]

High-level code ARM assembly

R3 ← Memory[R0 + 8]

a = A[2]; lw $s3, 8($s0)

High-level code MIPS assembly

$s3 ← Memory[$s0 + 8]

These instructions use a particular addressing mode 
(i.e., the way the address is calculated), called base+offset

Reading Byte-Addressable Memory
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§ ARM assembly 

§ MIPS assembly

n Byte address is calculated as: word_address * bytes/word
§ 4 bytes/word in MIPS and ARM
§ If QuAC were byte-addressable (i.e., QuAC v3), 2 bytes/word

LDR R3, [R0, #8]

R3 ← Memory[R0 + 8]

lw $s3, 8($s0)

$s3 ← Memory[$s0 + 8]

Load Word in MIPS and ARM
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Load Word in Word-Addressable LC-3

93

§ LC-3 assembly (Load Register or LDR)

§ Each word in LC-3 is 16 bits
§ Therefore, We interrogate memory with word addresses 

(not byte addresses)
§ If LC-3 were byte-addressable, the offset would be 4

a = A[2]; LDR R3, [R0, #2]

High-level code LC-3 assembly

R3 ← Memory[R0 + 2]



Hypothetical 32-bit QuAC Memory 

94

§ If QuAC were 32-bit architecture, let’s look at its memory view 
§ Word-addressable QuAC 
§ We use word numbers to address memory

00000000

00000001

00000002

00000003

.  
.  

.Word Address

8 9 A B C D E F 
F 2 F 1 F 0 F 7
1 3 C 8 1 7 5 5
D 1 6 1 7 A 1 C Word 3

Word 2

Word 1

Word 0
.  

.  
.

.  
.  

.

Data Word Number
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§ If QuAC were 32-bit architecture, let’s look at its memory view 
§ Byte-addressable QuAC 
§ We use word numbers translated to byte addresses to read memory

00000000

00000004

00000008

0000000C

.  
.  

.Word Address

8 9 A B C D E F 
F 2 F 1 F 0 F 7
1 3 C 8 1 7 5 5
D 1 6 1 7 A 1 C Word 3

Word 2

Word 1

Word 0
.  

.  
.

.  
.  

.

Data Word Number

Hypothetical 32-bit QuAC Memory 



§ ARM

§ MIPS

LDR R3, [R0, #8]

ARM assembly

35 16 19 8

op rs rt imm

lw $s3, 8($s0)

MIPS assembly

Field Values

Another Instruction Encoding

31:28 27:26 25:20 19:16 15:12 11:0

0 1 1 1 1 0 0 1 0 3 8

96
This encoding has space for immediate values such as offsets. 

Rn Rd imm



§ It defines opcodes, operands, data types, and addressing modes

§ Addressing mode = Formulas for figuring out operands
§ Register, Immediate, Base + Offset 

§ The datatype is the representation of the operands in 0s and 
1s 

§ ADD and LDR in ARM assembly have been our first examples

The Instruction Set
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§ What is the instruction mnemonic and opcode? 
§ ADD (opcode = 0001 for LC-3)

§ What is the addressing mode?
§ register mode

§ What is the data type?
§ 2’s complement integer

§ What does the instruction do?
§ The instruction directs the computer to perform a 2’s complement 

integer addition and specifies the locations (GPRs) where the computer 
can find source operands and the location of a GPR where the computer 
is to write the result

ADD R0, R1, R2
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LDR R3, [R0, #8] 
§ What is the opcode? 
§ LDR (0110 for LC-3)

§ What is the addressing mode?
§ base + offset (we will study in detail later)

§ What is the data type?
§ bit vector

§ What does the instruction do?
§ The instruction directs the computer to load a destination register with 

the contents of a memory location, where the location can be calculated 
using a formula: add the contents of a GPR (R8) to a constant number (#8)
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§ The ISA is the interface between what the software commands and what 
the hardware carries out

§ The ISA specifies
§ The memory organization

§ Address space (ARM: 232, MIPS: 232)
§ Addressability (ARM: 8 bits, MIPS: 8 bits, QuAC: 16 bits)
§ Word- or Byte-addressable

§ The register set
§ R0 to R15 in ARM
§ 32 registers in MIPS

§ The instruction set
§ Opcodes
§ Operands
§ Addressing modes
§ Length and format of instructions

Microarchitecture

ISA

Program

Algorithm

Problem

Circuits

Electrons

The Instruction Set Architecture
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§ What state of the computer is visible (or exposed to) the programmer? 
§ What state can they manipulate by writing machine code? 
§ Answer: The Architectural State 

§ General-purpose registers, memory, program counter

§ What does the ISA specify?
§ The memory organization

§ The register set

§ The instruction set

§ Meta-point: Architectural state is part of the ISA specification

Two Questions

101



Instruction (Processing) Cycle
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§ By using instructions, we can speak the language of the 
computer

§ Thus, we now know how to tell the computer to

§ Execute computations in the ALU by using, for instance, an addition

§ Access operands from memory by using the load word instruction

§ But, how are these instructions executed on the computer?

§ The process of executing an instruction is called is the instruction cycle 
(or, instruction processing cycle)

How are these instructions executed?
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§ The instruction cycle is a sequence of steps or phases, that an instruction 
goes through to be executed
§ FETCH
§ DECODE
§ EVALUATE ADDRESS
§ FETCH OPERANDS
§ EXECUTE
§ STORE RESULT

§ Not all instructions require the six phases
§ LDR does not require EXECUTE

§ ADD does not require EVALUATE ADDRESS

§ Intel x86 instruction ADD [eax], edx is an example of instruction with six 
phases

The Instruction Cycle
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§ We will use LC-3 (Little Computer v.3) architecture as  example

§ ADD Operate instruction

§ Instruction for accessing memory

LC-3 Assembly 

ADD  R0, R1, R2

105

a = A[2]; LDR R3, R0, #4

High-level code LC-3 assembly

R3 ← Memory[R0 + 4]



§ FETCH
§ DECODE
§ EVALUATE 
ADDRESS

§ FETCH OPERANDS
§ EXECUTE
§ STORE RESULT

After STORE RESULT, a NEW FETCH
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Instruction (Processing) Cycle
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§ The FETCH phase obtains the instruction from memory and 
loads it into the Instruction Register (IR) 

§ This phase is common to every instruction type

§ Complete description
§ Step 1: Load the MAR with the contents of the PC, and simultaneously 

increment the PC

§ Step 2: Interrogate memory. This results in the instruction being placed 
in the MDR by memory

§ Step 3: Load the IR with the contents of the MDR

FETCH
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§ Each of these steps is under the direction of the control unit

§ Each step takes one machine cycle 
§ Each machine cycle takes one clock cycle (the two are the same)

§ Each instruction cycle consists of many machine cycles
§ If each instruction cycle takes one machine cycle, such a simple 

machine is called a single-cycle computer or microarchitecture
§ Single-cycle machines are much simpler to build that what we 

are discussing here (e.g., the control unit is not an FSM)

Machine Cycle
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§ A clock cycle is a small fraction of a second

§ 1 GHz Intel CPU completes 1 billion clock cycles in one 
second
§ One clock cycle takes one billionths of a second
§ Or 1 nanoseconds (ns)

§ In one second, the computer can perform 1 billion 
machine cycles where each machine cycle executes an 
instruction (or part of an instruction)

Machine Cycle
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Scanned by CamScanner

Step 1: Load 
MAR and 

increment PC

Step 2: Access 
memory

Step 3: Load IR 
with the 

content of MDR

FETCH in LC-3
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§ The DECODE phase identifies the instruction
§ Also generates the set of control signals to process the identified 

instruction in later phases of the instruction cycle

§ Recall the decoder 

§ A 4-to-16 decoder identifies which of the 16 opcodes is going to be 
processed

§ The input is the four bits IR[15:12]

§ The remaining 12 bits identify what else is needed to process the 
instruction

DECODE
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Scanned by CamScanner

DECODE 
identifies the 
instruction to 
be processed

Also generates 
the set of 

control signals 
to process the 

instruction

DECODE in LC-3
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§ The EVALUATE ADDRESS phase computes the address of the 
memory location that is needed to process the instruction

§ This phase is necessary in LDR

§ It computes the address of the data word that is to be read from 
memory

§ By adding an offset to the content of a register

§ But not necessary in ADD

EVALUATE ADDRESS
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Scanned by CamScanner

LDR calculates 
the address by 

adding a 
register and an 

immediate

ADD

EVALUATE ADDRESS in LC-3
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§ The FETCH OPERANDS phase obtains the source operands needed 
to process the instruction

§ In LDR
§ Step 1: Load MAR with the address calculated in EVALUATE ADDRESS

§ Step 2: Read memory, placing source operand in MDR

§ In ADD
§ Obtain the source operands from the register file

§ In some microprocessors, operand fetch from register file can be done 
at the same time the instruction is being decoded

FETCH OPERANDS
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Scanned by CamScanner

LDR loads MAR 
(step 1), and 

places the 
results in MDR 

(step 2)

FETCH OPERANDS in LC-3
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§ The EXECUTE phase executes the instruction

§ In ADD, it performs addition in the ALU

§ In XOR, it performs bitwise XOR in the ALU

§ …

EXECUTE
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Scanned by CamScanner

ADD adds SR1 
and SR2

EXECUTE in LC-3
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§ The STORE RESULT phase writes the result to 
the designated destination

§ Once STORE RESULT is completed, a new 
instruction cycle starts (with the FETCH phase)

STORE RESULT
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Scanned by CamScanner

ADD loads ALU 
Result into DR

STORE RESULTS in LC-3
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Scanned by CamScanner

LDR loads 
MDR into DR

STORE RESULTS in LC-3
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§ FETCH
§ DECODE
§ EVALUATE 
ADDRESS

§ FETCH OPERANDS
§ EXECUTE
§ STORE RESULT

The Instruction Cycle
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§ A computer program executes in sequence (i.e., in program 
order)
§ First instruction, second instruction, third instruction and so on

§ Unless we change the sequence of execution

§ Control instructions allow a program to execute out of 
sequence
§ They can change the PC by loading it during the EXECUTE phase
§ That wipes out the incremented PC (loaded during the FETCH phase)

Changing the Sequence of Execution
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§ Unconditional branch or jump (ARM)

§ Conditional branch or jump (ARM)

§ These instructions are encoded using a special branch 
format in ARM ISA

§ LC-3 has a jump instruction that can load a register into PC
§ Let’s see

B  TARGET

Jump (Branch) 

BEQ TARGET

BNE TARGET
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Scanned by CamScanner

JMP loads 
SR1 into PC

PC UPDATE in LC-3
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n State 1
q The FSM asserts GatePC and LD.MAR
q It selects input (+1) in PCMUX and 

asserts LD.PC

n State 2
q MDR is loaded with the instruction

n State 3
q The FSM asserts GateMDR and LD.IR

n State 4
q The FSM goes to next state depending 

on opcode

n State 63
q JMP loads register into PC

n Full state diagram in Patt&Pattel, 
Appendix C

4.3 Instruction Processing 109

PC <– Register

State 1

State 2

State 3

State 4

MAR <– PC�
PC <– PC + 1

MDR <– M[MAR]

IR <– MDR

JMP
LDR

ADD

[opcode]

Last state�
to carry out�

ADD instruction

Last state�
to carry out�

LDR instruction

To state 1 To state 1 To state 1

State 63

FETCH

First state after�
DECODE for�

ADD instruction

First state after�
DECODE for�

LDR instruction

First state after�
DECODE for�

JMP instruction

DECODE

Figure 4.4 An abbreviated state diagram of the LC-3

the IR to be latched at the end of the clock cycle, concluding the FETCH phase
of the instruction.

The DECODE phase takes one cycle. In state 4, using the external input
IR, and in particular the opcode bits of the instruction, the finite state machine
can go to the appropriate next state for processing instructions depending on
the particular opcode in IR[15:12]. Processing continues cycle by cycle until the
instruction completes execution, and the next state logic returns the finite state
machine to state 1.

As we mentioned earlier in this section, it is sometimes necessary not to
execute the next sequential instruction but rather to jump to another location to
find the next instruction to execute. As we have said, instructions that change the
flow of instruction processing in this way are called control instructions. This can
be done very easily by loading the PC during the EXECUTE phase of the control
instruction, as in state 63 of Figure 4.4, for example.

This is an FSM Controlling the LC-3 Processor

Control (FSM) of the Instruction Cycle
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§ FETCH
§ DECODE
§ EVALUATE 
ADDRESS

§ FETCH OPERANDS
§ EXECUTE
§ STORE RESULT

The Instruction Cycle
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The Instruction Cycle: Things to Note
§ Not all instructions need all phases

§ The ordering of phases in not set in stone

§ Some phases can be grouped as one

§ Some structures may not be needed in a different 
microarchitecture

§ Microarchitecture “style” dictates many details (week 6) 
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The Instruction Cycle: Things to Note
§ What we have seen is a very general multi-cycle CPU

§ Each instruction takes multiple “machine cycles” to 
complete

§ In Labs 4 – 6  + first assignment you build a single-cycle CPU
§ The entire instruction (all phases) must finish in one cycle
§ Contrast with multi-cycle CPU as you build
§ One clock cycle = One machine cycle = One instruction cycle

§ We Will cover both single-cycle and multi-cycle ARM CPUs
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ARM and QuAC
 Instruction Set Architectures

131

(ISAs)
ARM (Chapter 6 of H&H + Assignment 2) and QuAC (Assignment 1)



§ Von Neumann model is also called stored program computer 
(instructions in memory). It has two key properties:

§ Stored program
§ Instructions stored in a linear memory array
§ Memory is unified between instructions and data
§ The interpretation of a stored value depends on the control signals

§ Sequential instruction processing
§ One instruction processed (fetched, executed, completed) at a time
§ Program counter (instruction pointer) identifies the current instruction
§ Program counter is advanced sequentially except for control transfer 

instructions

Von Neumann Model: Two Key Properties
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§ There are three main types of instructions

§ Operate (data processing) instructions
§ Execute operations in the ALU

§ Data movement (memory) instructions
§ Read from or write to memory

§ Control flow (branch/jump) instructions
§ Change the sequence of execution (decision making)

Recall: Instruction Types
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Data Processing Instructions
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ARM Data Processing (DP) Instructions
§ a = b + c – d

§ We can use two ARM instructions to do the computation

§ ADD and SUB are instruction mnemonics

§ Instructions operate on operands (a, b, c)

§ Computers operate on binary data not variable names
§ We need to specify the physical location of operands
§ We have registers, memory, constants in instructions

ADD t, b, c

SUB a, t, d
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Registers as Operands
§ Instructions need fast access to operands, but memory is slow

§ Keep a small set of registers close to the CPU in a register file

§ ARM architecture uses 16 registers

§ 32-bit architecture means 32-bit registers

§ a = b + c - d
§ R0 = a, R1 = b, R2 = c, R3 = d, R4 = t

ADD t, b, c

SUB a, t, d

ADD R4, R1, R2

SUB R0, R4, R3

Mapping is chosen by 
human, or a tool called 
compiler that translates 
high-level code to 
assembly
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Aside: Compiler vs. Assembler
§ Compiler translates

§ high-level language code into  
§ assembly code (human readable)

§ Assembler translates
§ assembly code into 

§ machine code (1s and 0s)

137



Source/Destination Operand
§ Instructions operate on one or more source operands and 

store the result after execution in a destination operand

§ R1 and R2 are the source operands for the ADD instruction

§ R4 is the destination operand for the ADD instruction

ADD R4, R1, R2

SUB R0, R4, R3
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Another Example

SUB R0, R1, R2

ADD R8, R4, R5

ADD R9, R6, R7

SUB R3, R8, R9

§ a = b – c
§ f = (g + h) – (i + j)

§ Variables a – c are held in registers R0 – R2 and f – j are held 
in registers R3 – R7 
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Design Principle # 1 

§ Regularity leads to simpler hardware

§ Instructions with a consistent number of operands (2 
sources, 1 destination) are easier to encode and 
handle in hardware
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Design Principle # 1 

§ Regularity leads to simpler hardware

§ Instructions with a consistent number of operands (2 
sources, 1 destination) are easier to encode and 
handle in hardware

§ QuAC also follows the same principle!
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The Register Set (File)
§ ARM defines 16 architectural registers

§ The register set is part of the ISA specification

§ R0 – R12 are used for storing variables

§ R13 – R15 have special uses  
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Design Principle # 2 

§ Smaller is Faster

§ Reading data from a small register file is faster 
than reading from a large file
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Constant & Immediate in Instruction
§ ARM instructions can use constant or immediate operands

§ The value is available immediately from the instruction
§ Advantage: No register or memory access 
§ Disadvantage: Immediate can be 8 – 12 bits because limited bits in the 

encoding (instruction format)

§ In the following example, assume R7 = a, R8 = b

ADD R7, R7, #4

SUB R8, R7, #0xC

High-Level code  
 a = a + 4
 b = a – 12 

ARM Assembly Code

Fact: 98% of all the constants in a program would fit in 13 bits
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Design Principle # 3 
§ Good design demands good 

compromises

§ To encode immediate instructions in QuAC, we need 
a new format

§ Same with ARM although encoding is more complex

145



Design Principle # 3 
§ Good design demands good 

compromises 
§ To encode immediate in instructions we need to 

move away from R format and use a new format.

146

§ We follow the 
same principle in 
QuAC



MOV Instruction
§ MOV is a useful instruction for initializing register values

§ MOV can also take a register source operand
§ MOV R1, R7 copies the contents of register R7 into R1

§ In the following example, assume R4 = i, R5 = x

MOV R4, #0
MOV R5, #0xFF0

High-Level code
 i = 0;
 x = 4080;

ARM Assembly Code

147



Instruction Format – 1: Data Processing

§ Operands

§ Rn [19:16]: first source operand 
register (0000, 0001, ..., 1111)

§ Src2 [11:0]: second source register 
or unsigned immediate

§ Rd [15:12]: destination register

31:28 27:26 25:20 19:16 15:12 11:0

cond op funct Rn Rd Src2

§ Control fields

§ cond [31:28]: specifies conditional 
execution (1110 for unconditional)

§ op [27:26]: the operation code or 
opcode (00 for data processing)

§ funct [25:20]: the specific 
function/operation to perform
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Breaking down funct Field
31:28 27:26 25:20 19:16 15:12 11:0

cond op funct Rn Rd Src2

31:28 27:26 25 24:21 20 19:16 15:12 11:0

cond 00 I cmd S Rn Rd Src2

§ cmd [24:21]: specifies the specific DP instruction (0100 for ADD; 0010 for SUB)

§ I-bit [25]: informs the control unit about Src2
§ I = 0: Src2 is a register
§ I = 1: Src2 is an immediate

§ S-bit [20]: 1 if the instruction sets the condition flags
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Two DP Formats (Src2 Variations)

31:28 27:26 25 24:21 20 19:16 15:12 11:8 7:0

cond 00 1 cmd S Rn Rd 0 0 0 0 imm8

31:28 27:26 25 24:21 20 19:16 15:12 11:4 3:0

cond 00 0 cmd S Rn Rd 0 0 0 0 0 0 0 0 Rm

Register (assume 11:4 are 0 for now)

Immediate (assume 11:8 are 0 for now)
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DP with Src2 as Immediate 
§ Bit 25 (I) informs the CPU how to interpret Src2

§ I = 1, CPU interprets Src2[7:0] as an unsigned 8-bit constant

31:28 27:26 25 24:21 20 19:16 15:12 11:8 7:0

cond 00 1 cmd S Rn Rd 0 0 0 0 imm8

§ Format (Src2 = immediate)
 ADD R0,  R1,  #16

 ADD Rd,  Rn,  #imm8
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DP with Src2 as Register 

§ Format (Src2 = Register)
 ADD R0,  R1,  R3

 ADD Rd,  Rn,  Rm

31:28 27:26 25 24:21 20 19:16 15:12 11:4 3:0

cond 00 0 cmd S Rn Rd 0 0 0 0 0 0 0 0 Rm

§ Bit 25 (I) informs the CPU how to interpret Src2
§ I = 0, CPU interprets Src2[3:0] as a register
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§ AND

§ ORR (OR)

§ EOR (XOR)

§ BIC (Bit Clear)

§ MVN (MoVe and Not)

More Data Processing Insts.
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§ Bit Clear (BIC)
§ Used for bit masking bits and forcing unwanted bits to 0

§ BIC R6, R1, R2
§ R2 is the mask 

§ The bits we want to CLEAR or ZERO in R1 are set to TRUE in R2

§ The instruction stores the result of  R1 AND (NOT R2) in R6

The Bit Clear Instruction
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Example of Data Processing
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Design Principle # 4 
§ Make the common case fast

§ ARM architecture includes only simple, commonly 
used instructions

§ The number of instructions is kept small, so the 
hardware required for decoding is simple, small, 
and fast

§ More elaborate operations are performed using 
sequences of multiple simple instructions
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§ Reduced Instruction Set Computer (RISC)
§ Provide a small set of simple instructions 
§ Minimizes hardware complexity (high clock rate, power-efficient)
§ Requires many instructions to solve a complex problem
§ Examples: ARM, MIPS, QuAC, RISC-V 

§ Complex Instruction Set Computer (CISC)
§ Provides many complex instructions
§ Complex hardware (longer critical paths, lower clock frequency)
§ Each instruction is more complex so fewer instructions to solve a problem
§ Example: Intel x86

RISC vs. CISC Architectures
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Another RISC ISA: QuAC
§ Fixed width instructions make decoding easy and simple
§ A small number of crucial instructions (fewer opcodes save instruction real-estate)

§ Few general-purpose registers
§ Space for constants in the ISA
§ Easy to convert to hexadecimal
§ The only way to access memory is via a dedicated set of instructions
§ Conditional execution + general-purpose PC = Conditional branch instructions

§ Two formats and regularity in the ISA 
(across formats)
§ rd in same place (Instr10:8)
§ opcode in the same place

§ seth: somewhat complex
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Data Movement Instructions
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Data Movement Instructions
§ Real programs need to operate on more data than can fit in the 

register file

§ Most data resides in (slow) memory

§ Fetched from memory into the register file when needed

§ Moved to memory from the register file to free up a register
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Motivation

Small and Fast Registers are 
inside the CPU close to the ALU

Large and Slow External Main 
Memory is outside the CPU, and
physically separated from the CPU

Data Movement Instructions 
move data to and from 
registers and memory



Data Movement Instructions
§ Two instructions to facilitate data movement

§ The LDR instruction: Bring data word from memory into the register file 
§ LoaD Register

§ The STR instruction: Store data word from the register file into memory
§ STore Register
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Memory View (32 bits = 4 bytes)

C D 1 9 A 6 5 B Word 4

4 0 F 3 0 7 8 8 Word 3

0 1 E E 2 8 4 2 Word 2

F 2 F 1 A C 0 7 Word 1

A B C D E F 7 8 Word 0

13 12 11 10

F E D C

B A 9 8

7 6 5 4

3 2 1 0

Word Number

..

.
..
.

Data

00000010

0000000C

00000008

00000004

00000000

Word Address

..

.
..
.

Byte Address

MSB LSB 4 Bytes

§ Byte-addressable memory (each box is a byte & each row is a word)
§ Byte addresses (left) and 8-bit byte data (right, 1 byte = 2 Hex digits)

Little-Endian View 163



Memory View (32 bits = 4 bytes)

C D 1 9 A 6 5 B Word 4

4 0 F 3 0 7 8 8 Word 3

0 1 E E 2 8 4 2 Word 2

F 2 F 1 A C 0 7 Word 1

A B C D E F 7 8 Word 0

10 11 12 13

C D E F

8 9 A B

4 5 6 7

0 1 2 3

Word Number

..

.
..
.

Data

00000010

0000000C

00000008

00000004

00000000

Word Address

..

.
..
.

Byte Address

MSB LSB 4 Bytes

§ Byte-addressable memory (each box is a byte & each row is a word)
§ Byte addresses (left) and 8-bit byte data (right, 1 byte = 2 Hex digits)

Big-Endian View 164



Revision (Start of Week 6/1)
§ Steps of Transformation

§ From high-level language code to assembly code (compiler or human)

§ From assembly code to machine code (assembler or human)

§ Instruction set architecture

§ Instruction set
§ Opcodes and operands
§ Data types
§ Addressing modes
§ Instruction formats

§ Architectural state
§ Memory 
§ Register set
§ Program counter
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Reading from Memory
§ Format of LoaD Register instruction
 LDR R0, [R1,  #12]

§ Address calculation (base + offset addressing)
§ Add base address (contents of R1) to the offset (#12)
§ Address = (R1 + 12)
§ Use any register for base address
§ R1 is a source (register) operand

§ Result
§ R0 holds the data at memory address [R1 + 12] after the 

instruction is executed
§ R0 is a destination (register) operand 166



LDR Example
§ Read a 32-bit word of data at memory (byte) address 8 into R3.  

Use R2 as the base register.  Show the contents of R3.
§ Let’s initialize R2 to 0, and add 8 as the offset

MOV R2, #0

LDR R3, [R2, #8]
C D 1 9 A 6 5 B Word 4

4 0 F 3 0 7 8 8 Word 3

0 1 E E 2 8 4 2 Word 2

F 2 F 1 A C 0 7 Word 1

A B C D E F 7 8 Word 0

Word Number

..

.
..
.

Data

00000010

0000000C

00000008

00000004

00000000

Word Address

..

.

R3 0x 01 EE 28 42
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Address vs. Value

LDR R3, [R2, #8]
§ Square brackets signify address (also called pointer in C)

§ If you [add the contents of register R2 to constant #8, you will get the 
address with which to access memory]

§ When presented with an address, memory obliges by returning 
the value stored at address given (8 in this example)

§ In a 32-bit computer
§ Width of address bus = 32 bits (address space = 232 locations)
§ Although memory is byte-addressable, it returns a 32-bit word to fill the 

entire register  168

^ Base + Offset Addressing Mode 



Writing to Memory
§ Format of STore Register instruction
 STR R0, [R1,  #12]

§ Address calculation
§ Add base address (R1) to the offset (12)
§ Address = (R1 + 12)
§ R0 and R1 are both source (register) operands

§ Result
§ Memory address (R1 + 12) will now have the value in R0 after the 

instruction is executed
§ Destination operand is memory address computed from source 

operands 169



STR Example

MOV R5, #0

STR R7, [R5,  #0x54]

§ Store the value held in R7 into memory word 21
§ Let’s initialize R5 to 0, and add 84 (21 X 4) as the 

offset

§ The offset can be written in decimal or hexadecimal: 84 
(decimal) is 0x54 (Hex)
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Instruction Format – 2: Memory

§ op = 01

§ Rn = base register (base address)

§ Rd = destination (load), source (store) 

§ Src2 = offset (register, shifted register, immediate)

§ funct [25:20] = 6 control bits
§ I (Bit 25): Encoding of Src2
§ L (Bit 20): Load or Store

31:28 27:26 25:20 19:16 15:12 11:0

cond op I P U B W L Rn Rd Src2
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LDR with Src2 as Immediate
§ I (Bit 25) = 1: Src2 = imm12 where imm2 is a 12-bit unsigned 

offset added to the value in the base register (Rn)

31:28 27:26 25:20 19:16 15:12 11:0

cond 01 1 1 1 0 0 1 Rn Rd imm12

§ Format of LoaD Register instruction
 LDR R0, [R1,  #12]

 LDR Rd, [Rn,  #imm12]

§ L (Bit 20) = 1: CPU performs an LDR
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LDR Datapath
31:28 27:26 25:20 19:16 15:12 11:0

cond 01 1 1 1 0 0 1 Rn Rd imm12 = 16

Zero 
Extend

ALU
1. Address 
calculation

2. Memory 
read

5.3 Data Movement Instructions 127

5.3.3 Base+offset Mode

LDR (opcode = 0110) and STR (opcode = 0111) specify the Base+offset
addressing mode. The Base+offset mode is so named because the address of the
operand is obtained by adding a sign-extended 6-bit offset to a base register. The
6-bit offset is literally taken from the instruction, bits [5:0]. The base register is
specified by bits [8:6] of the instruction.

The Base+offset addressing uses the 6-bit value as a 2’s complement integer
between −32 and +31. Thus it must first be sign-extended to 16 bits before it is
added to the base register.

If R2 contains the 16-bit quantity x2345, the instruction
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 1 0 0 0 1 0 1 0 0 1 1 1 0 1

LDR R1 R2 x1D
loads R1 with the contents of x2362.

Figure 5.8 shows the relevant parts of the data path required to execute this
instruction. First the contents of R2 (x2345) are added to the sign-extended value
contained in IR[5:0] (x001D), and the result (x2362) is loaded into the MAR.
Second, memory is read, and the contents of x2362 are loaded into the MDR.
Suppose the value stored in memory location x2362 is x0F0F. Third, and finally,
the contents of the MDR (in this case, x0F0F) are loaded into R1.

1616

1

16

2

R0

R1

R2

R3

R4

R5

R6

R7

MAR MDRMEMORY

ADD

0000111100001111

0010001101000101

15 0

IR 1010 011 011

x1D

011101 

SEXT

x001D

IR[5:0]

3

LDR R1 R2

Figure 5.8 Data path relevant to the execution of LDR R1, R2, x1D

Base R

3. Data Reg is 
loaded

Data R

R0
R1
R2
R3
R4
R5
R6
R7
R8
R9
R10
R11
R12
R13
R14
R15

LDR R11, [R5,  #16]
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STR with Src2 as Immediate
§ I (Bit 25) = 1: Src2 = imm12 where imm2 is a 12-bit unsigned 

offset added to the value in the base register (Rn)

31:28 27:26 25:20 19:16 15:12 11:0

cond 01 1 1 1 0 0 0 Rn Rd imm12

§ Format of STore Register instruction
 STR R0, [R1,  #12]

 STR Rd, [Rn,  #imm12]

§ L (Bit 20) = 0: CPU performs an STR
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REGISTER can hold memory address
[R1] : R1 is a pointer (à) to Data

Memory Load returns Data or Value
Data is Stored in memory.  Address is INPUT
Same Memory Stores Instructions and Data

[PC] à Instruction

175



Conditional Execution

176



Conditional Execution
§ ALU operations set the condition (status) flags

§ They are contained in a register called the Current Program 
Status Register (CPSR)

§ We can execute instructions conditionally based on a specific 
condition flag being TRUE or FALSE
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Conditional Execution
§ ARM allows conditional execution in two steps

§ Step 1:  Instruction sets the condition flags  (Negative, Zero, 
Carry, Overflow)

§ Step 2:  Subsequent instructions execute based on the state 
of the condition flags 
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Setting the Condition Flags
§ Method 1: Use the COMPARE instruction

§ The instruction subtracts the second source operand from the first 
operand (R5 – R6)

§ The instruction does not save any result

§ Flags are set as follows
§ Is 0,           Z = 1
§ Is negative,     N = 1
§ Causes a carry out,   C = 1
§ Causes a signed overflow,  V = 1

CMP R5, R6
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Setting the Condition Flags
§ Method 2: Append the instruction mnemonic with S

§ The instruction adds source operands R2 and R3

§ It sets the flags (S)

§ It saves the result in R1

ADDS R1, R2, R3
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Condition Mnemonics
§ We can execute instructions conditionally based on the 

status of the flags register

§ Condition for execution is encoded as a condition mnemonic 
appended to the instruction mnemonic

§ NE and EQ are condition mnemonics
§ SUB executes only if R1 is not equal to R2 (meaning Z = 0)

CMP R1, R2

SUBNE R3, R5, R8

ADDEQ R1, R2, R3
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Condition Mnemonics

182



Instructions that affect condition flags

183



Example
§ R5 = 17 and R9 = 23

§ Will the SUBEQ and ORRMI instructions execute?

§ N Z C V = ?

CMP R5, R9

SUBEQ R1, R2, R3

ORRMI R4, R0, R9

184



Another Example (page 307-308 of book) 
§ R2 = 0x80000000 and R3 = 0x00000001

§ Which instructions will execute?

§ N Z C V = ?
CMP R2, R3

ADDEQ R4, R5, #78

ANDHS R7, R8, R9

ORRMI R10, R11, R12

EORLT R12, R7, R10
185



Conditional Execution in QuAC
§ Bit 11 is associated with a condition code

§ ALU instructions set the flags (a.k.a. condition codes).  See Flags in QuAC ISA
§ The CPU uses that information to determine whether to execute the current 

instruction or not (e.g., store result into register file or memory)

§ If cond field (Instr11) is TRUE, then 
§ Execute the instruction only if he last ALU instruction set the Z flag to TRUE
§ Otherwise, do not execute the instruction (depart from the usual control flow)

§ The default encoding of the cond field is 0 (execute the instruction)
§ add   r1, r2, r3 (cond = FALSE) 
§ addeq r1, r2, r3   (cond = TRUE) 186



Recall: Conditional Execution in QuAC

§ addeq r1, r2, r3   (cond = TRUE)

§ What is the relationship between eq and Z flag?
§ A comparison of two registers shows they are equal (i.e., their difference is 0)

187
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Branch Instructions

188



Program Counter (PC) points to 
(contains the address of) next 

instruction to execute

189

.  
.  

.

Instructions

2 5 8 1 3 0 2 4

E 1 5 1 0 0 0 2

E 3 A 0 2 0 4 5

E 3 A 0 1 0 6 4

.  
.  

.

00400000

00400004

00400008

0040000C

.  
.  

.

Byte 
Address

.  
.  

.

← PC



§ 32-Bit ISA with Byte-Addressable Memory
§ PC = PC + 4 

§ 64-Bit ISA with Byte-Addressable Memory
§ PC = PC + 8 

§ 32-Bit ISA with Word-Addressable Memory
§ PC = PC + 1 

190

Normal (Sequential) Execution
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Normal (Sequential) Execution
Increment PC during instruction 
FETCH to prepare to execute the 

NEXT Instruction

However: It is often useful to break 
this sequence



(1) Altering the PC differently can 
break the sequential flow of 

program execution

(2) Branch instructions alter the 
program counter to break the 
sequential flow of exeuction
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Program Counter (PC)

.  
.  

.

Instructions

2 5 8 1 3 0 2 4

E 1 5 1 0 0 0 2

E 3 A 0 2 0 4 5

E 3 A 0 1 0 6 4

.  
.  

.

00400000

00400004

00400008

0040000C

.  
.  

.

Byte 
Address

.  
.  

.

← PC

§ Program Counter (PC): Contains the address of (or points to) the next 
instruction to be executed

§ Incremented by 4 (= 4 bytes or 32 bits) in the FETCH phase

§ PC = PC + 4 to execute the next 
      sequential instruction in memory
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Program Counter (PC)

.  
.  

.

Instructions

2 5 8 1 3 0 2 4

E 1 5 1 0 0 0 2

E 3 A 0 2 0 4 5

E 3 A 0 1 0 6 4

.  
.  

.

00400000

00400004

00400008

0040000C

.  
.  

.

Byte 
Address

.  
.  

.

§ PC = PC + 4 to execute the next 
    sequential instruction in memory
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Program Counter (PC)

.  
.  

.

Instructions

2 5 8 1 3 0 2 4

E 1 5 1 0 0 0 2

E 3 A 0 2 0 4 5

E 3 A 0 1 0 6 4

.  
.  

.

00400000

00400004

00400008

0040000C

.  
.  

.

Byte 
Address

.  
.  

.

← PC

§ PC = PC + 4 to execute the next 
    sequential instruction in memory
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Program Counter (PC)

.  
.  

.

Instructions

2 5 8 1 3 0 2 4

E 1 5 1 0 0 0 2

E 3 A 0 2 0 4 5

E 3 A 0 1 0 6 4

.  
.  

.

00400000

00400004

00400008

0040000C

.  
.  

.

Byte 
Address

.  
.  

.

← PC
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§ PC = PC + 4 to execute the next 
    sequential instruction in memory



Program Counter (PC)

.  
.  

.

Instructions

2 5 8 1 3 0 2 4

E 1 5 1 0 0 0 2

E 3 A 0 2 0 4 5

E 3 A 0 1 0 6 4

.  
.  

.

00400000

00400004

00400008

0040000C

.  
.  

.

Byte 
Address

.  
.  

.

← PC
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§ PC = PC + 4 to execute the next 
    sequential instruction in memory



Program Counter (PC)

.  
.  

.

Instructions

2 5 8 1 3 0 2 4

E 1 5 1 0 0 0 2

E 3 A 0 2 0 4 5

E 3 A 0 1 0 6 4

.  
.  

.

00400000

00400004

00400008

0040000C

.  
.  

.

Byte 
Address

.  
.  

.

← PC
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§ PC = PC + 4 to execute the next 
    sequential instruction in memory



Branch Instructions and PC

.  
.  

.

Instructions

2 5 8 1 3 0 2 4

E 1 5 1 0 0 0 2

E 3 A 0 2 0 4 5

E 3 A 0 1 0 6 4

.  
.  

.

00400000

00400004

00400008

0040000C

.  
.  

.

Byte 
Address

.  
.  

.

§ Branch instructions change the PC to point to a different instruction than 
the next sequential instruction in memory

§ Updated by a different address in the EXECUTE phase
§ New address PC points to is determined by formula (addressing mode)  

199
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Branch Instructions and PC

.  
.  

.

Instructions

2 5 8 1 3 0 2 4

E 1 5 1 0 0 0 2

E 3 A 0 2 0 4 5

E 3 A 0 1 0 6 4

.  
.  

.

00400000

00400004

00400008

0040000C

.  
.  

.

Byte 
Address

.  
.  

.
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§ Update PC to re-execute the four instruction sequence 
again (for loop)

← PC



Branch Instructions and PC

.  
.  

.

Instructions

2 5 8 1 3 0 2 4

E 1 5 1 0 0 0 2

E 3 A 0 2 0 4 5

E 3 A 0 1 0 6 4

.  
.  

.

00400000

00400004

00400008

0040000C

.  
.  

.

Byte 
Address

.  
.  

.

← PC
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§ Update PC to re-execute the four instruction sequence 
again (for loop)



Branch Instructions
§ Typically, a computer program is executed in sequence

§ First instruction is executed, then the second, then the third, and so on 

§ Decision making is an important advantage of computers

§ if and if-else statements

§ for and while loops

§ switch-case statements

§ ARM provides branch instructions to skip and repeat code
202



Type of Branches
§ Branch (B)

§ Branches to another TARGET instruction

§ Unconditional branch: always executes the target instruction

§ Conditional branch: either executes the TARGET instruction or the next 
sequential instruction in memory based on a condition
§ BEQ (Branch if the Zero flag is set)
§ BNE (Branch if the Zero flag is not set)

§ Branch and Link (BL)   
§ A special branch to provide support for functions in C++ or Java

§ Architectural support for high-level language needs
203



Unconditional Branch
Assembly code:  
   ADD  R1,  R2,  #17
   B    TARGET
   ORR  R1,  R1,  R3
   AND  R3,  R1,  #0xFF
TARGET
   SUB  R1,  R1,  #78

§ The Branch in this example is unconditional and always TAKEN (T)

§ After encountering B, the CPU executes SUB instead of ORR

§ The label TARGET is a memory address in human readable form
§ TARGET is transformed into a memory address by a tool called 

assembler 
§ Assemblers transform assembly code into machine code (0s and 1s)
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Assembly language let us give meaningful 
(human-readable and easy to differentiate) 

symbolic names (labels) to memory locations, 
such as TARGET, rather than use binary addresses

We call these names Symbolic Addresses

205



Conditional Branch
§ Conditional branch uses condition mnemonics

§ Recall conditional execution and condition 
mnemonics

206



Recall: ARM Condition Mnemonics
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Conditional Branch
§ Conditional branch uses condition mnemonics

§ CMP subtracts R1 from R0 and sets all flags
§ Z flag is FALSE because R0 – R1 is not 0 

§ The branch BEQ evaluates to FALSE 
§ Branch is NOT TAKEN (NT)
§ The next instruction executed is the ORR instruction

Assembly code:  
   MOV  R0,  #4
   ADD  R1,  R0,  R0
   CMP  R0,  R1
   BEQ  THERE
   ORR  R1,  R1,  R1
THERE
   ADD  R1,  R1,  #78
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Instruction Format – 3: Branch

§ op = 10

§ imm24 = 24-bit signed immediate

§ The two bits [25:24] form the funct field
 

§ Bit 25 is always 1

§ L bit: L = 0 for B (Branch)

§ L bit: L = 1 for BL (Branch and Link)

31:28 27:26 25:24 23:0

cond op 1L imm24

§ Format
 B  TARGET

 B  imm24
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Branch with L = 0 

31:28 27:26 25:24 23:0

cond 10 10 imm24

§ Branch with L bit (Bit 24) as 0 is a regular branch

§ Branch Target Address (BTA): The address of the next instruction to execute if the  
branch is taken 

§ How is BTA calculated?
1. Shift left imm24 by 2 (to convert words to bytes)

2. Sign-extend (copy Instruction[23] into Instruction[24:31] )

3. Add PC + 8
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BTA Calculation Example

PC
PC + 4
PC + 8
3 instructions
= 12 Bytes

address

31:28 27:26 25:24 23:0

cond 10 10 imm24 = 3 (000000000000000000000011)

suppose PC points here à BLT  THERE
   ADD  R0,  R1,  R2
   SUB  R0,  R0,  R9
   ADD  R3,  R0,  R1
   ORR  R3,  R2,  R1
THERE
   ADD  R1,  R1,  #78
   ADD  R3,  R3,  #0x5

0x80A0
0x80A4
0x80A8
0x80AC
0x80B0

0x80B4
0x80B8

§ Instruction encodes the distance from PC + 8 as 3 32-bit words

211



BTA Calculation DataPath

PC

ALU

31:28 27:26 25:24 23:0

cond 10 10 imm24 = 3 (000000000000000000000011)

Shifter

ALU

8

SEXT

212



BTA Calculation Summary 
The processor calculates the BTA in three steps

1. Shift left imm24 by 2 (to convert words to bytes)

2. Sign-extend (copy Instr23 into Instr31:24)

3. Add PC + 8

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0

= 3

= 12
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Branch-Related Terminology
§ Two main types of branches

§ Conditional branch: Executes the next sequential instruction or TARGET instruction based on a condition
§ Unconditional branch: Always (unconditionally) executes the TARGET instruction

§ Branch Target
§ Memory address of the TARGET instruction

§ Branch Condition 
§ Condition which if TRUE branch jumps to the TARGET instruction

§ Branch Resolution/Evaluation
§ The act of evaluating the branch condition
§ Two outcomes of branch resolution are:

§ Taken Branch (T): branch condition evaluates to TRUE
§ Untaken (Not Taken or NT) Branch: branch evaluates to FALSE

§ Branch behavior
§ Strongly (most of times) Taken/Untaken OR Weakly (some of the times) Taken/Untaken
§ Always Taken OR Always Untaken

§ Branch Prediction
§ In high-performance CPUs, branches prevent the CPU from doing useful work
§ Modern CPUs use a branch predictor to predict the branch direction (T/NT) and branch TARGET 214



if and if-else

215

§ We will study high-level language (C) to assembly 
transformation in this course



The Three Program Constructs
§ We will see three basic constructs used in structured programs 

(construct comes from constructing a program)

§ Sequential  ✓
§ One subtask, followed by other, never going back to first

§ Conditional
§ One of the two subtasks but not both, depending on some 

condition

§ Iterative
§ Doing a subtask a number of times

216
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Conditional Statements
§  If the condition is TRUE, do one subtask. Otherwise, do a 

different subtask

§ A subtask or block of code may do nothing

§ We call it a conditional construct

§ All languages provide conditional constructs



if Statement
C code:  
   if (apples == oranges)
   f = i + 1;
   f = f – i;

Assembly code:  
; R0 = apples
; R1 = oranges
; R2 = f
; R3 = i
   CMP  R0,  R1
   BNE  L1
   ADD  R2,  R3,  #1
L1
   SUB  R2,  R2,  R3

§ apples == oranges?
§ if yes, branch to L1
§ if no, add 1 to i

§ Subtract i from f

§ The assembly code checks for the opposite condition in C code

§ Skips the if block when the condition is not satisfied

§ If the branch is NOT TAKEN, the if block is executed
218



§ It is very rarely the case that computer 
programs can be written only one way

§ Use the BEQ instruction instead of BNE

§ Using conditional execution (next)

if Statement

219



if Statement
C code:  
   if (apples == oranges)
   f = i + 1;
   f = f – i;

Assembly code:  
; R0 = apples
; R1 = oranges
; R2 = f
; R3 = i
   CMP  R0,  R1
   BEQ  L1
   B    L2
L1
   ADD  R2,  R3,  #1
L2
   SUB  R2,  R2,  R3

§ apples == oranges?
§ if yes, branch to L1
§ if no, add 1 to i

§ Subtract i from f

§ More faithfully translates the high-level code
§ If the branch is TAKEN, the if block is executed
§ There is an extra branch instruction hence worst performance

220



if with Conditional Execution
C code:  
   if (apples == oranges)
   f = i + 1;
   f = f – i;

Assembly code:  
; R0 = apples
; R1 = oranges
; R2 = f
; R3 = i
   CMP    R0,  R1
   ADDEQ  R2,  R3,  #1
   SUB  R2,  R2,  R3

§ apples == oranges?
§ if yes, add 1 to i
§ Subtract i from f

§ This solution is shorter and faster (one fewer instruction)

§ If the if block is long, it is tedious to write conditional mnemonics

§ Conditional execution requires NEEDLESS fetching of instructions from memory

§ In high-performance CPUs, branch instructions introduce extra delay if the branch 
predictor makes a mistake (branch misprediction) 221



if-else
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C code:  
   if (apples == oranges)
   f = i + 1;
   else
   f = f – i;

Assembly code:  
; R0 = apples
; R1 = oranges
; R2 = f
; R3 = i
   CMP  R0,  R1
   BNE  L1
   ADD  R2,  R3,  #1
   B    L2
L1
   SUB  R2,  R2,  R3
L2

§ apples == oranges?
§ if yes, branch to L1
§ if no, add 1 to i
§ Branch to L2
§ Subtract i from f

if-else Statement
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C code:  
   if (apples == oranges)
   f = i + 1;
   else
   f = f – i;
   ...

Assembly code:  
; R0 = apples
; R1 = oranges
; R2 = f
; R3 = i
   CMP  R0,  R1
   BNE  L1
   ADD  R2,  R3,  #1
   B    L2
L1
   SUB  R2,  R2,  R3
L2

§ apples == oranges?
§ if yes, branch to L1
§ if no, add 1 to i
§ Branch to L2
§ Subtract i from f

if-else Statement
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C code:  
   if (apples == oranges)
   f = i + 1;
   else
   f = f – i;
   ...

Assembly code:  
; R0 = apples
; R1 = oranges
; R2 = f
; R3 = i
   CMP  R0,  R1
   BNE  L1
   ADD  R2,  R3,  #1
   B    L2
L1
   SUB  R2,  R2,  R3
L2

§ apples == oranges?
§ if yes, branch to L1
§ if no, add 1 to i
§ Branch to L2
§ Subtract i from f

if-else Statement
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C code:  
   if (apples == oranges)
   f = i + 1;
   else
   f = f – i;
   ...

Assembly code:  
; R0 = apples
; R1 = oranges
; R2 = f
; R3 = i
   CMP  R0,  R1
   BNE  L1
   ADD  R2,  R3,  #1
   B    L2
L1
   SUB  R2,  R2,  R3
L2

§ apples == oranges?
§ if yes, branch to L1
§ if no, add 1 to i
§ Branch to L2
§ Subtract i from f

if-else Statement
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C code:  
   if (apples == oranges)
   f = i + 1;
   else
   f = f – i;
   ...

Assembly code:  
; R0 = apples
; R1 = oranges
; R2 = f
; R3 = i
   CMP  R0,  R1
   BNE  L1
   ADD  R2,  R3,  #1
   B    L2
L1
   SUB  R2,  R2,  R3
L2

§ apples == oranges?
§ if yes, branch to L1
§ if no, add 1 to i
§ Branch to L2
§ Subtract i from f

if-else Statement
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C code:  
   if (apples == oranges)
   f = i + 1;
   else
   f = f – i;
   ...

Assembly code:  
; R0 = apples
; R1 = oranges
; R2 = f
; R3 = i
   CMP  R0,  R1
   BNE  L1
   ADD  R2,  R3,  #1
   B    L2
L1
   SUB  R2,  R2,  R3
L2

§ apples == oranges?
§ if yes, branch to L1
§ if no, add 1 to i
§ Branch to L2
§ Subtract i from f

if-else Statement
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C code:  
   if (apples == oranges)
   f = i + 1;
   else
   f = f – i;
   ...

Assembly code:  
; R0 = apples
; R1 = oranges
; R2 = f
; R3 = i
   CMP  R0,  R1
   BNE  L1
   ADD  R2,  R3,  #1
   B    L2
L1
   SUB  R2,  R2,  R3
L2

§ apples == oranges?
§ if yes, branch to L1
§ if no, add 1 to i
§ Branch to L2
§ Subtract i from f

if-else Statement
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§ It is very rarely the case that computer 
programs can be written only one way

§ Do it yourself:  Find an alternative way to write the if-else 
statement

if-else Statement
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C code:  
   if (apples == oranges)
   f = i + 1;
   else
   f = f – i;

Assembly code:  
; R0 = apples
; R1 = oranges
; R2 = f
; R3 = i
   CMP    R0,  R1
   ADDEQ  R2,  R3,  #1
   SUBNE  R2,  R2,  R3

if-else with Conditional Execution

231

§ This solution is shorter and faster (one fewer instruction)

§ Suppose the if block is long, it is then tedious to write conditional mnemonics

§ Conditional execution requires NEEDLESS fetching of instructions from memory

§ On the other hand, in high-performance CPUs, branch instructions introduce extra delay 
if the branch predictor makes a mistake (branch misprediction)



Switch Statement
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switch-case Statement

§ Execute one of several blocks of code (cases) depending on the condition

§  Break out of the entire switch block {...} after executing a specific block

§ In the above example condition is the state of variable button

§ If no conditions are met, the default block is executed 

C code:  
   switch (button) {
   case 1:  atm = 20;  break;
      case 2:  atm = 50;  break;
      case 3:  atm = 100; break;
      default: atm = 0;   break;
   }
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switch-case Statement
C code:  
   switch (button) {
   case 1:  atm = 20;  break;
      case 2:  atm = 50;  break;
      case 3:  atm = 100; break;
      default: atm = 0;   break;
   }

Assembly code:  
; R0 = button
; R1 = atm
   CMP   R0,  #1
   MOVEQ R1,  #20
   BEQ   DONE
   CMP   R0,  #2
   MOVEQ R1,  #50
   BEQ   DONE
   CMP   R0,  #3
   MOVEQ R1,  #100
   BEQ   DONE
   MOV   R1,  #0
DONE

§ Comment begins with ;
§ Another comment
§ is button == 1?
§ atm = 20
§ break out
§ is button == 2?
§ atm = 50
§ break out
§ is button == 3?
§ atm = 100
§ break out
§ Execute default case 
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switch-case Statement
C code:  
   switch (button) {
   case 1:  atm = 20;  break;
      case 2:  atm = 50;  break;
      case 3:  atm = 100; break;
      default: atm = 0;   break;
   }

Assembly code:  
; R0 = button
; R1 = atm
   CMP   R0,  #1
   MOVEQ R1,  #20
   BEQ   DONE
   CMP   R0,  #2
   MOVEQ R1,  #50
   BEQ   DONE
   CMP   R0,  #3
   MOVEQ R1,  #100
   BEQ   DONE
   MOV   R1,  #0
DONE

§ Comment begins with ;
§ Another comment
§ is button == 1?
§ atm = 20
§ break out
§ is button == 2?
§ atm = 50
§ break out
§ is button == 3?
§ atm = 100
§ break out
§ Execute default case 
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switch-case Statement
C code:  
   switch (button) {
   case 1:  atm = 20;  break;
      case 2:  atm = 50;  break;
      case 3:  atm = 100; break;
      default: atm = 0;   break;
   }

Assembly code:  
; R0 = button
; R1 = atm
   CMP   R0,  #1
   MOVEQ R1,  #20
   BEQ   DONE
   CMP   R0,  #2
   MOVEQ R1,  #50
   BEQ   DONE
   CMP   R0,  #3
   MOVEQ R1,  #100
   BEQ   DONE
   MOV   R1,  #0
DONE

§ Comment begins with ;
§ Another comment
§ is button == 1?
§ atm = 20
§ break out
§ is button == 2?
§ atm = 50
§ break out
§ is button == 3?
§ atm = 100
§ break out
§ Execute default case 
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switch-case Statement
C code:  
   switch (button) {
   case 1:  atm = 20;  break;
      case 2:  atm = 50;  break;
      case 3:  atm = 100; break;
      default: atm = 0;   break;
   }

Assembly code:  
; R0 = button
; R1 = atm
   CMP   R0,  #1
   MOVEQ R1,  #20
   BEQ   DONE
   CMP   R0,  #2
   MOVEQ R1,  #50
   BEQ   DONE
   CMP   R0,  #3
   MOVEQ R1,  #100
   BEQ   DONE
   MOV   R1,  #0
DONE

§ Comment begins with ;
§ Another comment
§ is button == 1?
§ atm = 20
§ break out
§ is button == 2?
§ atm = 50
§ break out
§ is button == 3?
§ atm = 100
§ break out
§ Execute default case 
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switch-case Statement
C code:  
   switch (button) {
   case 1:  atm = 20;  break;
      case 2:  atm = 50;  break;
      case 3:  atm = 100; break;
      default: atm = 0;   break;
   }

Assembly code:  
; R0 = button
; R1 = atm
   CMP   R0,  #1
   MOVEQ R1,  #20
   BEQ   DONE
   CMP   R0,  #2
   MOVEQ R1,  #50
   BEQ   DONE
   CMP   R0,  #3
   MOVEQ R1,  #100
   BEQ   DONE
   MOV   R1,  #0
DONE

§ Comment begins with ;
§ Another comment
§ is button == 1?
§ atm = 20
§ break out
§ is button == 2?
§ atm = 50
§ break out
§ is button == 3?
§ atm = 100
§ break out
§ Execute default case 
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We will cover loops and arrays 
after the teaching break

Next: Microarchitecture

239



For Loop
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Loops
§ Life is full of repetition!

§ Standard routines repeat each day, week, month, ...
§ Terminating at some point

§ Repetition (iteration) is also the essence of computing!
§ Compute the sum of first one billion numbers
§ Go over each student record and change numerical grade to letter

§ Terminate if no more records are found

§ CPUs are very good at looping sometimes but not always 
depending on a condition!
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Loops
§ Loops are iterative constructs that repeat a subtask several times, but only 

as long as some condition is TRUE (subtask = sequence of instructions)

§ If the condition is TRUE, do the subtask (also called loop body)

§ After the subtask is finished, go back and check the condition again

§ As long as the result of the condition is TRUE, the program continues to 
carry out the same subtask again and again

§ The first time the test is NOT TRUE, the program proceeds onward
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Loops
§ Loops are iterative constructs that repeat a sub-task several times, but 

only as long as some condition is TRUE

§ If the condition is TRUE, do the subtask (also called loop body)

§ After the subtask is finished, go back and check the condition again

§ As long as the result of the condition is TRUE, the program continues to 
carry out the same subtask again and again

§ The first time the test is NOT TRUE, the program proceeds onward
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Loops
§ We will look at

§ For Loop

§ While Loop

§ Our focus
§ How are loops in high-level languages transformed 

(translated) into assembly by human or compiler?
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For Loop in C

§ The variable “i” is called the loop index or counter
§ The For statement has three components

§ i = 0 : index initialization
§ i < 10 : loop termination condition
§ i = i + 1 : loop advancement

§ The body of the loop can have one or more statements

C code:  
   int i;
   int sum = 0;

   for (i = 0; i < 10; i = i + 1)
   sum = sum + i;
   ...
   ...
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C code:  
   int i;
   int sum = 0;

   for (i = 0; i < 10; i = i + 1)
   sum = sum + i;
   ...
   ...

For Loop in ARM Assembly
Assembly code:  
; R0 = i
; R1 = sum
   MOV  R0,  #0
   MOV  R1,  #0
FOR
   CMP  R0,  #10
   BGE  DONE
   ADD  R1,  R1,  R0
   ADD  R0,  R0,  #1
   B    FOR
DONE

§ Comment begins with ;
§ Another comment
§ Initialize i
§ Initialize sum
§ Label/Address of CMP 
§ check condition:i<10 ?
§ if (i>=10) exit loop
§ sum = sum + i
§ Increment i
§ repeat loop

246

§ High-level code: Few lines (statements); Assembly code: Many lines (instructions)
§ High-level code: Variable names; Assembly code: Registers & memory addresses
§ High-level code: Hides machine details (e.g., MOVement); ASM: Expose details
§ In both C and assembly, the control flow (sequential and iterative constructs) are visible

§ Easier to identify in C, more difficult in assembly
§ Let’s do a line-by-line comparison of the above code ...



C code:  
   int i;
   int sum = 0;

   for (i = 0; i < 10; i = i + 1)
   sum = sum + i;
   ...
   ...

For Loop in ARM Assembly
Assembly code:  
; R0 = i
; R1 = sum
   MOV  R0,  #0
   MOV  R1,  #0
FOR
   CMP  R0,  #10
   BGE  DONE
   ADD  R1,  R1,  R0
   ADD  R0,  R0,  #1
   B    FOR
DONE

247

§ In high-level language programs, we initialize variables
§ In assembly initializing variables translates to initializing registers

§ Comment begins with ;
§ Another comment
§ Initialize i
§ Initialize sum
§ Label/Address of CMP 
§ check condition:i<10 ?
§ if (i>=10) exit loop
§ sum = sum + i
§ Increment i
§ repeat loop



C code:  
   int i;
   int sum = 0;

   for (i = 0; i < 10; i = i + 1)
   sum = sum + i;
   ...
   ...

For Loop in ARM Assembly
Assembly code:  
; R0 = i
; R1 = sum
   MOV  R0,  #0
   MOV  R1,  #0
FOR
   CMP  R0,  #10
   BGE  DONE
   ADD  R1,  R1,  R0
   ADD  R0,  R0,  #1
   B    FOR
DONE
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§ Comment begins with ;
§ Another comment
§ Initialize i
§ Initialize sum
§ Label/Address of CMP 
§ check condition:i<10 ?
§ if (i>=10) exit loop
§ sum = sum + i
§ Increment i
§ repeat loop



C code:  
   int i;
   int sum = 0;

   for (i = 0; i < 10; i = i + 1)
   sum = sum + i;
   ...
   ...

For Loop in ARM Assembly
Assembly code:  
; R0 = i
; R1 = sum
   MOV  R0,  #0
   MOV  R1,  #0
FOR
   CMP  R0,  #10
   BGE  DONE
   ADD  R1,  R1,  R0
   ADD  R0,  R0,  #1
   B    FOR
DONE
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§ Comment begins with ;
§ Another comment
§ Initialize i
§ Initialize sum
§ Label/Address of CMP 
§ check condition:i<10 ?
§ if (i>=10) exit loop
§ sum = sum + i
§ Increment i
§ repeat loop

§ Check termination condition to break out of the loop if condition 
is met



C code:  
   int i;
   int sum = 0;

   for (i = 0; i < 10; i = i + 1)
   sum = sum + i;
   ...
   ...

For Loop in ARM Assembly
Assembly code:  
; R0 = i
; R1 = sum
   MOV  R0,  #0
   MOV  R1,  #0
FOR
   CMP  R0,  #10
   BGE  DONE
   ADD  R1,  R1,  R0
   ADD  R0,  R0,  #1
   B    FOR
DONE
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§ Add the loop counter i to the variable sum

§ Comment begins with ;
§ Another comment
§ Initialize i
§ Initialize sum
§ Label/Address of CMP 
§ check condition:i<10 ?
§ if (i>=10) exit loop
§ sum = sum + i
§ Increment i
§ repeat loop



C code:  
   int i;
   int sum = 0;

   for (i = 0; i < 10; i = i + 1)
   sum = sum + i;
   ...
   ...

For Loop in ARM Assembly
Assembly code:  
; R0 = i
; R1 = sum
   MOV  R0,  #0
   MOV  R1,  #0
FOR
   CMP  R0,  #10
   BGE  DONE
   ADD  R1,  R1,  R0
   ADD  R0,  R0,  #1
   B    FOR
DONE
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§ Increment the loop counter

§ Comment begins with ;
§ Another comment
§ Initialize i
§ Initialize sum
§ Label/Address of CMP 
§ check condition:i<10 ?
§ if (i>=10) exit loop
§ sum = sum + i
§ Increment i
§ repeat loop



C code:  
   int i;
   int sum = 0;

   for (i = 0; i < 10; i = i + 1)
   sum = sum + i;
   ...
   ...

For Loop in ARM Assembly
Assembly code:  
; R0 = i
; R1 = sum
   MOV  R0,  #0
   MOV  R1,  #0
FOR
   CMP  R0,  #10
   BGE  DONE
   ADD  R1,  R1,  R0
   ADD  R0,  R0,  #1
   B    FOR
DONE
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§ Keep iterating by branching back to the CMP instruction

§ Comment begins with ;
§ Another comment
§ Initialize i
§ Initialize sum
§ Label/Address of CMP 
§ check condition:i<10 ?
§ if (i>=10) exit loop
§ sum = sum + i
§ Increment i
§ repeat loop



C code:  
   int i;
   int sum = 0;

   for (i = 0; i < 10; i = i + 1)
   sum = sum + i;
   ...
   ...

For Loop in ARM Assembly
Assembly code:  
; R0 = i
; R1 = sum
   MOV  R0,  #0
   MOV  R1,  #0
FOR
   CMP  R0,  #10
   BGE  DONE
   ADD  R1,  R1,  R0
   ADD  R0,  R0,  #1
   B    FOR
DONE
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§ Keep iterating by branching back to the CMP instruction

§ Comment begins with ;
§ Another comment
§ Initialize i
§ Initialize sum
§ Label/Address of CMP 
§ check condition:i<10 ?
§ if (i>=10) exit loop
§ sum = sum + i
§ Increment i
§ repeat loop



Same For Loop in a Different Style

§ Let’s see the same for loop translated using a different 
style
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C code:  
   int i;
   int sum = 0;

   for (i = 0; i < 10; i = i + 1)
   sum = sum + i;

Same For Loop in a Different Style
Assembly code:  
; R0 = i
; R1 = sum
   MOV  R0,  #0
   MOV  R1,  #0
COND
   CMP  R0,  #10
   BLT  FOR
   B    DONE
FOR
   ADD  R1,  R1,  R0
   ADD  R0,  R0,  #1
   B    COND
DONE

§ More faithfully follows the for loop semantics in C
§ Use BLT instead of BGE
§ Different ways to translate a high-level statement into ASM 255

§ check condition
§ if i<10 repeat
§ if i>=10, leave for

§ add sum to i
§ Increment i
§ Iterate again



C code:  
   int i;
   int sum = 0;

   for (i = 0; i < 10; i = i + 1)
   sum = sum + i;

Aside: Syntax versus Semantics
§ Syntax: Arrangement of keywords in a statement

§ There is a ; after a statement
§ The loop statement uses parentheses 

§ Semantics: Meaning of keywords and their arrangement
§ Repeat the instructions in the loop body until condition is not met
§ Add sum to i
§ What the CPU does depends on statement and instruction semantics

§ Without rules of syntax, it would be tedious to understand programmer’s intention
§ Without clearly defined instruction semantics: difficult to write programs to solve 

specific problems & to build CPUs that do “right” thing  
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Different way to solve the same 
problem, more efficient translation

§ Let’s sum numbers from 0 – 9 in a different way

§ And see if it helps reducing the number of instructions 
required for translation 
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C code:  
   int i;
   int sum = 0;

   for (i = 9; i >= 0; i = i - 1)
   sum = sum + i;

Decremented Loop
Assembly code:  
; R0 = i
; R1 = sum
   MOV  R0,  #9
   MOV  R1,  #0
FOR
   ADD  R1,  R1,  R0
   SUBS R0,  R0,  #1
   BNE  FOR
DONE

§ Saves 2 instructions per iteration compared to optimized (increment) version
§ Decrement loop variable & compare: SUBS R0, R0, #1
§ Only 1 branch instead of 2

§ MANY ways to solve (transform) a high-level problem into assembly
§ Code Optimization: A sub-field of Compilers

§ Aims to minimize total instruction count, branch instruction count, and 
maximize register utilization (to avoid frequent trips to memory) 258

§ add sum to i
§ i-- and set flags
§ if i!=0 keep looping



For Loop
§ Repeat TEN times:  add 10 to R1

§ What is wrong with the code below (one way to think of a 
FOR loop)?

§ Poor practice
§ Code is not reusable

§ Next time it may be 20 not 10
§ Instructions cost Memory!!

§ Each instruction is stored in memory and has an address
§ Memory is expensive!
§ Fast Instruction Cache built out of  SRAM inside CPU is very premium

§ How many instructions for above with a For loop using branch instruction?

ADD  R1,  R1,  #10
ADD  R1,  R1,  #10
ADD  R1,  R1,  #10
ADD  R1,  R1,  #10
ADD  R1,  R1,  #10
ADD  R1,  R1,  #10
ADD  R1,  R1,  #10
ADD  R1,  R1,  #10
ADD  R1,  R1,  #10
ADD  R1,  R1,  #10
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While Loop

260



While Loop in C
§ While loops iterate a number of times until the “controlling 

condition” or sentinel is NOT met (FALSE)

§ Special cases of while loops: execute forever (left) and never 
(right)

C code:  
   while (CONDITION) {
      ...
      ...
   }

C code:  
   while (TRUE) {
      ...
      ...
   }
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C code:  
   while (FALSE) {
      ...
      ...
   }



Example While Loop
§ Determine X such that 2X = 128

C code:
   int POW = 1;
   int X = 0;
  
   while (POW != 128) {
      POW = POW * 2;
      X = X + 1;
   }

Assembly code:  
; R0 = POW
; R1 = X
   MOV  R0,  #1
   MOV  R1,  #0
WHILE
   CMP  R0,  #128
   BEQ  DONE
   LSL  R0,  R0,  #1  
   ADD  R1,  R1,  #1
   B    WHILE
DONE

§ loop initialization
§ POW = 1
§ X = 0

§ POW != 128?
§ if POW == 128, exit loop
§ POW = POW * 2
§ X = X + 1
§ repeat loop
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Arrays
Data Structure:   Collection of data values organized in a particular 
way in memory for ease of storage and access. Two aspects: 
organization and functions to read and update values

Examples:  Array, Linked List, Stack, Queue
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What is an Array?  
§ Array: A list of data objects of the same type arranged sequentially in memory

§ A data object is a memory location whose content represent “some” value
§ Post office box can store letters, Amazon gifts, pamphlets (all these are pkgs. types)
§ How do we know *interpret* the type of what is stored in the box?

§ Either we know what we placed there, or we know how to look up the type

§ The interpretation of the value in memory depends on its type
§ 8-Byte Unsigned Integers (unsigned int)
§ 4-Byte 2’s Complement Integers (int)
§ A 12-Byte student record with {uint student_Id, int grade}  

Array of 1-Byte Objects

Array of 4-Byte Objects
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Array in Memory  
§ The array below has six elements and each element in a single byte

§ The index of the first element (byte) is 0, then 1, then 2, ....
§ It’s base (starting) address in memory is 0

§ The address of the first element is 0, second element is 1, last element is 5

§ Another array with six elements

§ Same starting address as the first array and same indexing scheme (0, 1, 2, ...)
§ Addresses of array elements in memory are different

§ Second element is at an offset 4, last one at 20.  Offsets are in bytes

0 1 2 3 4 5

0 1 4 52 3

Base Address = Address of the first element

Base Address = Address of the first element
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Array Syntax in C
§ Arrays contain a collection of similarly typed elements 
§ Elements are stored contiguously in memory 

5 4 marks[4]

1 3 marks[3]

3 2 marks[2]

2 1 marks[1]

0 0 marks[0]

Index

..

.
..
.

Data

00000010

0000000C

00000008

00000004

00000000

Address

..

.

4 Bytes

Element

..

.int is 4 bytes on most architectures

C code:  
   int marks[5] = {0, 2, 3, 1, 5};
   int a = marks[0];
   marks[3] = 10;
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Array of Characters

‘e’ 4 alphas[4]

‘d’ 3 alphas[3]

‘c’ 2 alphas[2]

‘b’ 1 alphas[1]

‘a’ 0 alphas[0]

Index

..

.
..
.

Data

0000004

00000003

00000002

00000001

00000000

Address

..

.

1 Byte

Element

..

.

§ Array of characters (char is a data type in C)
§ char is used for representing characters 

C code:  

   char alphas[5] = {‘a’, ‘b’, ‘c’, ‘d’, ‘e’};

char is always 1 byte
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Example Array in C
C code:  
   int i;
   int scores[200];
   // initialization code not    
   //shown
   ...
   for (i = 0; i<200; i++)
      scores[i] = scores[i] + 10;

Add 10 to each element of the 200-element scores array
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Array Sum  
C code:  
   int i;
   int scores[200];
   // initialization code not    
   //shown
   ...
   for (i = 0; i<200; i++)
      scores[i] = scores[i] + 10;

Add 10 to each element of the 200-element scores array

0x14000000 100
40
80
76
90

0x14000004
0x14000008
0x1400000C
0x14000010

base à scores[0]
scores[1]
scores[2]
...
scores[4]

dataaddress

Showing the scores array in memory 
4 bytes

269



Array Sum  
Assembly code:  
; R0 = array base address
; R1 = i
   MOV  R0,  #0x14000000
   MOV  R1,  0
LOOP
   CMP  R1,  #200
   BGE  L3
   LSL  R2,  R1,  #2
   LDR  R3,  [R0, R2]
   ADD  R3,  R3,  #10
   STR  R3,  [R0, R2]
   ADD  R1,  R1,  #1
   B    LOOP
L3

C code:  
   int i;
   int scores[200];
   // initialization code not    
   //shown
   ...
   for (i = 0; i<200; i++)
      scores[i] = scores[i] + 10;

Add 10 to each element of the 200-element scores array

0x14000000

§ R0 = base addr
§ i = 0

§ i < 200?
§ no? exit loop
§ word to byte
§ R3 = scores[i]
§ R3 = R3 + 10
§ scores[i] += 10
§ i = i + 1
§ repeat

100
40
80
76
90

0x14000004
0x14000008
0x1400000C
0x14000010

base à scores[0]
scores[1]
scores[2]
...
scores[4]

dataaddress

Showing the scores array in memory 
4 bytes
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LDR with Offset in Register

dest base offset

§ It is common to load from memory with [base + offset] addressing mode, 
where offset increments by “some” value during each loop iteration

§ ISA provides support for such scenarios to bridge the semantic gap b/w high-
level code and assembly code
§ ISA evolution eases the software “burden”
§ On the other hand, ISA implementation (i.e., microarchitecture) becomes  more 

involved (recall the RISC vs. CISC debate)

§ New LDR variant
 LDR R3, [R0,  R2]

 LDR Rd, [Rn,  Rm]
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Array Sum  
Assembly code:  
; R0 = array base address
; R1 = i
   MOV  R0,  #0x14000000
   MOV  R1,  #0
LOOP
   CMP  R1,  #200
   BGE  L3
   LSL  R2,  R1,  #2
   LDR  R3,  [R0, R2]
   ADD  R3,  R3,  #10
   STR  R3,  [R0, R2]
   ADD  R1,  R1,  #1
   B    LOOP
L3

C code:  
   int i;
   int scores[200];
   // initialization code not    
   //shown
   ...
   for (i = 0; i<200; i++)
      scores[i] = scores[i] + 10;

Add 10 to each element of the 200-element scores array

0x14000000

§ R0 = base addr
§ i = 0

§ i < 200?
§ no? exit loop
§ word to byte
§ R3 = scores[i]
§ R3 = R3 + 10
§ scores[i] += 10
§ i = i + 1
§ repeat

100
40
80
76
90

0x14000004
0x14000008
0x1400000C
0x14000010

base à scores[0]
scores[1]
scores[2]
...
scores[4]

dataaddress

Showing the scores array in memory 
4 bytes
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Another LDR Variant

LDR R3, [R0, R1, LSL #2]

Left shift is the same 
as multiplying by 2

§ Memory address
§ Left shift R1 by 2 (scaling R1) 
§ Add R1 to R0
§ Address = R0 + (R1 * 4)

§ We have seen two LDR variants
§ LDR Rd, [Rn,  #imm]
§ LDR Rd, [Rn,  Rm]

§ LSL and LDR are often used together in array-related code 
(array traversals)

§ ISA provides support for eliminating the extra LSL	instruction
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Assembly code:  
; R0 = array base address
; R1 = i
   MOV  R0,  #0x14000000
   MOV  R1,  #0
LOOP
   CMP  R1,  #200
   BGE  L3
   LDR  R3,  [R0, R1, LSL, #2]
   ADD  R3,  R3,  #10
   STR  R3,  [R0, R2]
   ADD  R1,  R1,  #1
   B    LOOP
L3

C code:  
   int i;
   int scores[200];
   // initialization code not    
   //shown
   ...
   for (i = 0; i<200; i++)
      scores[i] = scores[i] + 10;

Add 10 to each element of the 200-element scores array

0x14000000 100
40
80
76
90

0x14000004
0x14000008
0x1400000C
0x14000010

base à scores[0]
scores[1]
scores[2]
...
scores[4]

dataaddress

Showing the scores array in memory 
4 bytes

Condensing Array Sum – 1 
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§ Offset Addressing
§ Address is the sum of base register and offset (#20, #–20, –R2)
§ Base register is unchanged
§ LDR R0, [R1, R2]

§ Pre-indexed Addressing
§ Address is the sum of base register and offset
§ Base register is updated with the new address before the memory access
§ LDR R0, [R1, R2]!

§ Post-index Addressing
§ Address is the base register
§ Base register is updated with the new address after the memory access
§ LDR R0, [R1], R2

ARM Indexing Modes
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Examples: ARM Indexing Modes
§ Offset Addressing

§ LDR R0, [R1, R2]
§ Address: R1 + R2 and R1 does not change

§ Pre-indexed Addressing
§ LDR R0, [R1, R2]!

§ Address: R1 + R2 and R1 = R1 + R2

§ Post-index Addressing
§ LDR R0, [R1], R2

§ Address: R1 and R1 = R1 + R2

§ Note:  In all cases, offset can be an immediate
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Assembly code:  
; R0 = array base address
; R1 = i
   MOV  R0,  #0x14000000
   ADD  R1,  R0,  #800
LOOP
   CMP  R0,  R1
   BGE  L3
   LDR  R2,  [R0]
   ADD  R2,  R2,  #10
   STR  R2,  [R0], #4

   B    LOOP
L3

C code:  
   int i;
   int scores[200];
   // initialization code not    
   //shown
   ...
   for (i = 0; i<200; i++)
      scores[i] = scores[i] + 10;

Add 10 to each element of the 200-element scores array

0x14000000

§ R0 = base addr
§ R1 = base + 800

§ end of array?
§ yes? exit loop
§ R2 = scores[i]
§ scores[i] + 10
§ store scores[i]
§ and R0 = R0 + 4
§ repeat loop

100
40
80
76
90

0x14000004
0x14000008
0x1400000C
0x14000010

base à scores[0]
scores[1]
scores[2]
...
scores[4]

dataaddress

Showing the scores array in memory 
4 bytes

Condensing Array Sum – 2 
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Assembly code:  
; R0 = array base address
; R1 = i
   MOV  R0,  #0x14000000
   MOV  R1,  R0,  #800
LOOP
   CMP  R0,  R1
   BGE  L3
   LDR  R2,  [R0]
   ADD  R2,  R2,  #10
   STR  R2,  [R0], #4 
   B    LOOP
L3

Add 10 to each element of the 200-element scores array
Condensing Array Sum – 2 

§ This version of Array Sum first computes the 
address of the last byte of the array 
(#0x14000800)

§ Each iteration of LOOP checks if R0 is greater 
than or equal to #0x14000800 

§ If so, we are done, so step out of LOOP
§ STR  R2,  [R0], #4

§ Stores R2 at [R0], and after that, adds 4 
to R0 
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Microarchitecture

Suggested Reading: Requirements, Bottlenecks, and Good Fortune: 
Agents for Microprocessor Evolution

Link: https://course.ece.cmu.edu/~ece740/f13/lib/exe/fetch.php?media=r0_patt.pdf
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§ There are three main types of instructions

§ Operate (data processing) instructions
§ Execute operations in the ALU

§ Data movement (memory) instructions
§ Read from or write to memory

§ Control flow (branch/jump) instructions
§ Change the sequence of execution (decision making)

Recall: Instruction Types
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ARM Instruction Formats

31:28 27:26 25:24 23:0

cond 10 10 imm24

DP-I

DP-R

Mem

BR

31:28 27:26 25 24:21 20 19:16 15:12 11:8 7:0

cond 00 1 cmd S Rn Rd 0 0 0 0 imm8

31:28 27:26 25 24:21 20 19:16 15:12 11:4 3:0

cond 00 0 cmd S Rn Rd 0 0 0 0 0 0 0 0 Rm

31:28 27:26 25:20 19:16 15:12 11:0

cond 01 1 1 1 0 0 L Rn Rd imm12

281



Today’s Lecture
§ Last few lectures

§ Instruction Set Architectures (ISAs):  ARM and QuAC
§ Assembly programming: ARM

§ Today: Microarchitecture
§ Implementation of the ISA (arrangement of registers, memories, ALU, other blocks)
§ Many different microarchitectures for one ISA are possible

§ Design Point: Set of considerations for a given problem space (ML, automotive)
§ Requires making tradeoffs: Performance, power, reliability, cost, complexity

§ Today: Design process and principles, single-cycle microarchitecture, and 
performance analysis

§ Other microarchitectures we will cover
§ Multi-cycle, pipelined, and out-of-order

Microarchitecture

ISA

Program

Algorithm

Problem

Circuits

Electrons
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Many ISAs, Many Microarchitectures 
§ There can be many implementations of the same ISA

§ MIPS R2000, R3000, R4000, R6000, R8000, R10000, …
§ x86: Intel 80486, Pentium, Pentium Pro, Pentium 4, Kaby Lake, 

Coffee Lake, Comet Lake, Ice Lake, Golden Cove, Sapphire 
Rapids, …, AMD K5, K7, K9, Bulldozer, BobCat, Ryzen X, …

§ POWER 4, 5, 6, 7, 8, 9, 10 (IBM), …, PowerPC 604, 605, 620, …
§ ARM Cortex-M*,  ARM Cortex-A*, NVIDIA Denver, Apple A*, 

M1, …
§ Alpha 21064, 21164, 21264, 21364, …
§ RISC-V …
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How do we implement an ISA?

“Form follows function.”
         Louis Sullivan

Before we begin construction, let’s pause and ask: what is the 
purpose of this computer?

In other words, how do we design a system that obeys the 
hardware/software interface? 
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– FETCH
– DECODE
– EVALUATE 

ADDRESS
– FETCH OPERANDS
– EXECUTE
– STORE RESULT

Purpose: To Process Instructions

285

One way to process an instruction
 

Six phases



– FETCH
– DECODE/RF READ
– EXECUTE
– MEMORY ACCESS
– WRITEBACK

Purpose: To Process Instructions

286

Another way to process an instructions
 

Five phases



How does a machine process insts?
§ What does processing an instruction mean in von Neumann model?

§ Processing an instruction: Transforming AS to AS’ according to the ISA 
specification of the instruction

AS = Architectural (programmer visible) state before an instruction is processed

AS’ = Architectural (programmer visible) state after an instruction is processed

Process Instruction
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Stored program

Sequential instruction processing

The Von Neumann Model/Architecture
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CONTROL UNIT

PC or IP Inst Register

PROCESSING UNIT

ALU TEMP

MEMORY

Mem Addr Reg

Mem Data Reg

INPUT

Keyboard,
Mouse,
Disk…

OUTPUT

Monitor, 
Printer, 
Disk…

The Von Neumann Model/Architecture
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M[0]
M[1]
M[2]
M[3]
M[4]

M[N-1]
Memory
array of storage locations
indexed by an address

Program Counter
memory address
of the current (or next) instruction

Registers
-  given special names in the ISA
     (as opposed to addresses)
-  general vs. special purpose

Instructions (and programs) specify how to transform
             the values of programmer visible state

Recall: Programmer Visible  (Architectural) State
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ISA = Instruction Set Architecture 
§ Instruction Set Architecture = Instruction Set + Architectural State

§ Instruction Set
§ Opcodes 
§ Operands
§ Data types (e.g., 2’s complement)
§ Addressing modes (e.g., base + offset)
§ Instruction formats (Data processing, Immediate, Memory)

§ Architectural state
§ Memory 
§ Register set
§ Program counter
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§ ISA specifies abstractly what AS’ should be, given an 
instruction and AS
§ It defines an abstract finite state machine where

§ State = programmer-visible state 
§ Next-state logic = instruction execution specification

§ From ISA point of view, there are no “intermediate states” between AS and AS’ during 
instruction execution
§ One state transition per instruction

§ Microarchitecture implements how AS is transformed 
to AS’
§ There are many choices in implementation 
§ We can have programmer-invisible state to optimize the speed of instruction execution: 

multiple state transitions per instruction
§ Choice 1: AS à AS’ (transform AS to AS’ in a single clock cycle)
§ Choice 2: AS à AS+MS1 à AS+MS2 à AS+MS3 à AS’ (take multiple clock cycles to 

transform AS to AS’)

The “Process Instruction” Step
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§ Each instruction takes a single clock cycle to 
execute

§ Only combinational logic is used to implement 
instruction execution 
§ No intermediate, programmer-invisible 

state updates
§ Easy to explain and a simple control unit!

Very Basic Instruction Processing Engine
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§ Single-cycle machine

§ What is the clock cycle time determined by?
§ What is the critical path (i.e., longest delay path) of the 

combinational logic determined by?

AS’ ASSequential
Logic 
(State)

Combinational
Logic

AS: Architectural State

Basic Instruction Processing Engine
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§ Single-cycle machines
§ Each instruction takes a single clock cycle
§ All state updates made at the end of an instruction’s execution
§ Big disadvantage: The slowest instruction determines cycle time à long clock cycle 

time

§ Multi-cycle machines 
§ Instruction processing broken into multiple cycles/stages
§ State updates can be made during an instruction’s execution
§ Architectural state updates made at the end of an instruction’s execution
§ Advantage over single-cycle: The slowest “stage” determines cycle time

§ Both single-cycle and multi-cycle machines literally follow the von Neumann 
model at the microarchitecture level

Single-Cycle vs. Multi-Cycle Machines
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§ Single-cycle machine

AS’ ASSequential
Logic 
(State)

Combinational
Logic

AS: Architectural State

Basic Instruction Processing Engine
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ARM State (AS) Elements

§ PC: Logically part of the register file
§ Read and written every cycle, independently of the normal register file 

operation. Should it be “physically” part of the register file?
§ Instruction memory has a single read port.  One 32-bit address input.  One 32-bit 

instruction (RD) output. 
§ Register file: 15 registers (R0 to R14) + additional input to receive R15 from PC

§ Two read ports 4-bit A1 and A2 and 32-bit RD1 and RD2
§ One write port A3 (and WD3) and a write enable input
§ Read of R15 returns PC + 8
§ Write of R15 must be handled properly if PC is outside the register file
§ Reads are combinational and writes happen on the rising edge of the clock 297



ARM State (AS) Elements

§ Data Memory: Single read/write port
§ If write enable (WE) is TRUE then it writes data WD into address A on the rising 

edge of the clock 
§ If the write enable is FALSE, then it reads value at address A onto RD

§ All reads are combinational and constant time (not realistic but Ok for now)
§ All writes and state updates happen on the rising edge of the clock

§ Synchronous sequential circuit
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Microarchitecture Division
§ Two interacting parts

§ Datapath (32-bit in our case)
§ Control unit

§ Datapath operates on words of data 
§ Memories, registers, ALUs, and multiplexers

§ Control unit informs the datapath how to execute an instruction
§ Receives the current instruction from the datapath 
§ Produces multiplexer selects, ALU control, register enable, and memory 

write signals to control the operation of the datapath
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Role of Control Unit
Codes stored in memory control the hardware of the computer ... As a puppeteer 
controlling a troupe of marionettes in an exquisitively choreographed dance of arithmetic 
and logic. The CPU control signals are the strings.

          CODE, Charles Petzold
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Design Process/1
§ We will add the logic for one instruction at a time

§ LDR (LoaD Register)

§ STR (STore Register)

§ Data Processing (DP) instructions with 2nd source operand as an immediate

§ DP with 2nd source operand as a register

§ Branch instruction

§ Then build the “Control Unit”
301



§ We limit ourselves to a subset of instructions

§ Data-processing instructions: ADD, SUB, AND, ORR (with register and 
immediate offsets)

§ Memory instructions: LDR, STR (with positive immediate offset)

§ Branches: B

§ Once you understand these you can expand the 
hardware to handle others
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§ New connections are emphasized in black

§ Hardware already studied in gray

§ Control signals in blue
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LDR with Src2 as Immediate
§ I (Bit 25) = 1: Src2 = imm12 where imm12 is a 12-bit unsigned 

offset added to the value in the base register (Rn)

31:28 27:26 25:20 19:16 15:12 11:0

cond 01 1 1 1 0 0 1 Rn Rd imm12

§ Format of LoaD Register instruction
 LDR R0, [R1,  #12]

 LDR Rd, [Rn,  #imm12]

§ L (Bit 20) = 1: CPU performs an LDR
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31:28 27:26 25:20 19:16 15:12 11:0

cond 01 1 1 1 0 0 L Rn Rd imm12

The LDR Datapath
Step 1: Read (Fetch) instruction from memory 

§ Remember the distinction between PC (current state) and PC’ (next state)
§ From this point on, CPU actions depend on the instruction fetched



31:28 27:26 25:20 19:16 15:12 11:0

cond 01 1 1 1 0 0 L Rn Rd imm12

The LDR Datapath
Step 2: Read source operand (base register, Rn) from register file

§ Data is read onto RD1



31:28 27:26 25:20 19:16 15:12 11:0

cond 01 1 1 1 0 0 L Rn Rd imm12

The LDR Datapath
Step 3: Zero-extend the immediate field stored in Instr11:0



Zero Extension
§ Appending leading zeros to make a smaller quantity equal to a 

bigger quantity

§ ImmExt31:12 = 0 and ImmExt11:0 = Instr11:0
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31:28 27:26 25:20 19:16 15:12 11:0

cond 01 1 1 1 0 0 L Rn Rd imm12

The LDR Datapath
Step 4: Compute memory address (ALUControl = 00)
ALU can perform many operations (which one do we want: ADD)



31:28 27:26 25:20 19:16 15:12 11:0

cond 01 1 1 1 0 0 L Rn Rd imm12

The LDR Datapath
Step 5: Write back data from read by data memory to Rd in Reg File
When is the ReadData written to the register file?



31:28 27:26 25:20 19:16 15:12 11:0

cond 01 1 1 1 0 0 L Rn Rd imm12

The LDR Datapath
Step 6: Compute address of next instruction (PC’ = PC + 4)
Recall: Hardware in inherently parallel

PC will become PC’ the following cycle (recall photography example)



31:28 27:26 25:20 19:16 15:12 11:0

cond 01 1 1 1 0 0 L Rn Rd imm12

The LDR Datapath
Step 7/a: Reading register R15 returns PC + 8



31:28 27:26 25:20 19:16 15:12 11:0

cond 01 1 1 1 0 0 L Rn Rd imm12

The LDR Datapath
Step 7/b: Writing register R15 (PC may be an instruction’s result)



STR Instruction
§ STR instruction uses the same instruction format

§ LDR and STR behave differently at the machine level
§ Rd is a source operand (specifies the register to store to mem)

§ Format of STore Register instruction
 STR R0, [R1,  #12]

 STR Rd, [Rn,  #imm12]

31:28 27:26 25:20 19:16 15:12 11:0

cond 01 1 1 1 0 0 L Rn Rd imm12
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31:28 27:26 25:20 19:16 15:12 11:0

cond 01 1 1 1 0 0 L Rn Rd imm12

The STR Datapath
Step 8: Read a second register (Rd) and write its value to memory

ignored

§ ReadData is ignored because RegWrite is FALSE



DP Instructions: Immediate
§ Like the LDR instruction, but two important differences

§ imm8 instead of imm12
§ The destination register stores the result of the ALU 

operation instead of memory access 
§ Format
 ADD R0,  R1,  #16

 ADD Rd,  Rn,  #imm8

31:28 27:26 25 24:21 20 19:16 15:12 11:8 7:0

cond 00 1 cmd S Rn Rd 0 0 0 0 imm8
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Adding Support for DP Instructions

ALUControl Function

00 ADD

01 SUB

10 AND

11 ORR

§ The ALU functions and encoding

§ The ALU also produces four flags that are sent to the control unit
§ Register file either receives data from the data memory or the ALU

§ Add a multiplexer to choose between ReadData and ALUResult
§ This multiplexer is controlled by MemtoReg
§ MemtoReg = 1 for LDR and 0 for data processing instructions 317



DP-Immediate Datapath
Step 9: Change extend block, and add signal to write ALU result to RF

31:28 27:26 25 24:21 20 19:16 15:12 11:8 7:0

cond 00 1 cmd S Rn Rd 0 0 0 0 imm8

RF
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DP Instructions: Register
§ The second source operand is Rm instead of an immediate
§ Place Rm on the A2 port of the register file for DP instructions 

with register as the second operand 

§ Format
 ADD R0,  R1,  R3

 ADD Rd,  Rn,  Rm

31:28 27:26 25 24:21 20 19:16 15:12 11:4 3:0

cond 00 0 cmd S Rn Rd 0 0 0 0 0 0 0 0 Rm
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DP-Register Datapath
Step 10: Read 2nd register (Rm) from Reg File and send RD2 to ALU
We need multiplexers on the inputs of register file and ALU to select the second source register

31:28 27:26 25 24:21 20 19:16 15:12 11:4 3:0

cond 00 0 cmd S Rn Rd 0 0 0 0 0 0 0 0 Rm
320



Branch Instruction: Unconditional
§ The second source operand is Rm instead of an immediate
§ Place Rm on the A2 port of the register file for DP instructions 

with register as the second operand 

§ Format
 B  TARGET

 B  imm24

31:28 27:26 25:24 23:0

1110 10 10 imm24
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Branch Datapath
Step 11: Change extend block, and add a bit to RegSrc for branch

31:28 27:26 25:24 23:0

1110 10 10 imm24
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Operation of the Extend Block

ImmSrc1:0 ExtImm Description

00 {24’b0, Instr7:0} Zero-extended imm8

01 {20’b0, Instr11:0} Zero-extended imm12

10 {6{Instr23}, Instr23:0}00 Sign-extended imm24

§ Each of the three instruction formats interpret the  
immediate field differently
§ ImmSrc1:0 is the 2-bit control signal input to the 

extend block
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Datapath with Control
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Control Unit
§ Generate control signals based on instruction fields

§ Instr31:20 (cond)
§ Instr27:26 (opcode)
§ Instr25:20 (funct)
§ Flags (needed for conditional execution)
§ Destination register (to update PC properly)

§ Controller for single-cycle microarchitecture is purely combinational 

§ Conditional logic must enable updates to the architectural state when the 
instruction should be conditionally executed
§ Write enables must be TRUE only if conditional instruction is in fact 

executed
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One way to build the control unit
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One way to build the control unit
The write enable lines that update the architectural state could be “killed”
by the conditional logic
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Decoder Truth Table
§ Only selected signals are shown in the truth table 

O
p

Funct5

Funct0

Type

Branch

M
em

toReg

M
em

W

ALU
Src

Im
m

Src

RegW

RegSrc

ALU
O

p

00 0 X DP Reg 0 0 0 0 XX 1 00 1

00 1 X DP Imm 0 0 0 1 00 1 X0 1

01 X 0 STR 0 X 1 1 01 0 10 0

01 X 1 LDR 0 1 0 1 01 1 X0 0

11 X X B 1 0 0 1 10 0 X1 0



Example: Generating PCSrc Signal
§ PCSrc is 1 when 

§ Destination register (Rd) is R15
§ RegW is 1 (ADD/SUB or LDR)
§ Instruction is a branch 

§ PCSrc = ((Rd == 15) & RegW) | Branch
§ Assuming the control unit generates a signal called Branch 

when opcode is 10 (B or BL)

§ Important: Be careful to take conditional execution into 
account for the assignment!
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Processor Operation: ORR
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Processor Operation: ORR

PCSrc 0

MemtoReg 0

MemWrite 0

ALUControl 11

ALUSrc 0

ImmSrc0:1 XX

RegWrite 1

RegSrc0:1 00

ALUControl Function

00 ADD

01 SUB

10 AND

11 ORR
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Processor Operation: LDR
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Processor Operation: LDR

PCSrc 0

MemtoReg 1

MemWrite 0

ALUControl 00

ALUSrc 1

ImmSrc0:1 01

RegWrite 1

RegSrc0:1 00

ALUControl Function

00 ADD

01 SUB

10 AND

11 ORR

ImmSrc1:0 ExtImm Description

00 {24’b0, Instr7:0} Zero-extended imm8

01 {20’b0, Instr11:0} Zero-extended imm12

10 {6{Instr23}, Instr23:0}00 Sign-extended imm24
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Drawback of Single-Cycle CPU
§ Is this the best way to build a CPU?

§ What are the critical issues?

§ Next: performance analysis basics
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Performance Analysis
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Processor Performance
§ Performance is quantified by the execution time

§ The time it takes for a program to execute from start to finish

§ For example, for a given ISA and technology, how long does it 
take to run a program on the single-cycle CPU?
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§ How fast is my program?
§ Every program consists of a series of instructions
§ Each instruction needs to be executed

§ So how fast are my instructions?
§ Instructions are realized on the hardware
§ They can take one or more clock cycles to complete
§ Cycles per Instruction = CPI

§ How much time is one clock cycle?
§ The critical path determines how much time one cycle requires = clock period
§ 1/clock period = clock frequency = how many cycles can be done each second

Processor Performance

337



Execution Time
Execution	time	= (#instructions)( !"!#$%

&'%()*!(&+'
)	(%$!+',%

!"!#$
)

§ # instructions (N)
§ Depends on the ISA, skill of programmer, compiler, algorithm

§ cycles per instruction (CPI)
§ Depends on the microarchitecture

§ seconds per cycle (clock period, inverse is clock frequency, f)
§ critical path, circuit technology, type of adders, gate-level 

details
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§ N x CPI x (1/f)

§ Reduce the number of instructions (N)
§ Make instructions that ‘do’ more (CISC)
§ Use better compilers

§ Use fewer cycles to perform the instruction (CPI)
§ Simpler instructions (RISC)
§ Use multiple units/ALUs/cores in parallel

§ Increase the clock frequency (f)
§ Find a ‘newer’ technology to manufacture
§ Redesign time-critical components
§ Adopt pipelining

How Can I Make the Program Run 
Faster?
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Execution Time (Single-Cycle CPU)
Execution	time	= (#instructions)( !"!#$%

&'%()*!(&+'
)	(%$!+',%

!"!#$
)

§ # instructions (ARM is a RISC ISA)

§ cycles per instruction (= One, fixed, bad idea!)

§ seconds per cycle (critical path of the CPU circuit)
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Critical Path Analysis
§ Each instruction in single-cycle CPU takes one clock cycle

§ Determining the cycle time requires finding the critical path

§ Different instructions use different resources
§ LDR uses instruction and data memory
§ ADD does not use data memory
§ STR does not write anything back to the register file

§ Which instruction is the slowest?
§ Let us revisit the schematics and find out
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Elements of Critical Path

Parameter Description
tpcq_PC	 PC clock-to-Q delay
tmem Memory read
tdec Decoder propagation delay
tmux Multiplexer delay
tRFread Register file read
text Extension block delay
tALU ALU delay
tRFsetup Set up RF for write (next cycle)
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Critical Path: LDR

Tc	=	tpcq_PC	+	2tmem	+	tdec	+	tRFread	+	tALU	+	2tmux	+	tRFsetup	

Tc	=	tpcq_PC	+	tmem	+	tdec	+	max[tmux	+	tRFread,	text	+	tmux]	+	tALU	
+	tmem		+	tmux	+	tRFsetup	

§ Memories & register files slower than combinational logic
§ Therefore,	tmux	+	tRFread	>>	text	+	tmux

Final Equation
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Critical Path: DP-R

Tc	=	tpcq_PC	+	tmem	+	tdec	+	tRFread	+	tALU	+	2tmux	+	tRFsetup	
Final Equation

Tc	=	tpcq_PC	+	tmem	+	tdec	+	tmux	+	tRFread	+	tALU	+	tmux		
	 	+	tRFsetup	
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Critical Path Analysis
§ Different instructions have different critical paths

§ LDR is the slowest instruction
§ DP-R and B have shorter critical paths because they do 

not need to access data memory (Memory is slow!)

§ Single-cycle processor is a synchronous sequential circuit
§ Clock period must be constant and long enough to 

accommodate the slowest instruction

§ The numerical values of different variables in the critical path 
equation depend on the specific manufacturing technology
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Exercise 1: Performance Analysis
§ Find the time it takes to execute a program with 100 billion 

instructions on a single-cycle CPU in 16 nm CMOS manufacturing 
process.  See the table for delays of logic elements.

Parameter Delay (ps)
tpcq_PC	 40
tmem 200
tdec 70
tmux 25
tRFread 100
tALU 120
tRFsetup 60

Tc	=	tpcq_PC	+	2*tmem	+	tdec	+	tRFread	+	tALU	+	
	 		2*tmux	+	tRFsetup	
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C code:  
   int i;
   int sum = 0;

   for (i = 0; i < 10; i = i + 1)
      sum = sum + i;

Exercise 2: Performance Analysis
Assembly code:  
; R0 = i
; R1 = sum
   MOV  R0,  #0
   MOV  R1,  #0
COND
   CMP  R0,  #10
   BLT  FOR
   B    DONE
FOR
   ADD  R1,  R1,  R0
   ADD  R0,  R0,  #1
   B    COND
DONE

§ Find the execution time for each of the two implementations of 
the for loop.  Use CPU parameters from next slide.
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Assembly code:  
; R0 = i
; R1 = sum
   MOV  R0,  #0
   MOV  R1,  #0
FOR
   CMP  R0,  #10
   BGE  DONE
   ADD  R1,  R1,  R0
   ADD  R0,  R0,  #1
   B    FOR
DONE



Drawbacks of Single-Cycle CPU
§ Requires two memories (no reuse)

§ Requires three adders (no reuse)

§ Clock period is dictated by the slowest instruction

§ No way to make the common case fast (e.g., DP instructions)
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Coming Attractions
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Multi-Cycle CPU
§ Divide each instruction into a number of steps

§ Perform one step in one clock cycle (instead of an entire 
instruction)

§ Need non-architectural (microarchitectural) registers to store 
intermediate state

§ Need an FSM-based controller to transition between  steps
§ Different control signals on different steps

§ After the teaching break:  Possible ext. for assignment 1 
Section 7.4 of H&H
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Multi-Cycle CPU Sneak Peek (Week 7)

Section 7.4 of H&H

§ Can you spot the non-architectural state (registers)?
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Multi-Cycle CPU Cycle by Cycle (Week 7)

CLK: 0
1

ADD LDR B NOP

§ Hypothetical multi-cycle CPU

§ ADD and SUB takes 3 cycles

§ LDR and STR take 4 cycles

§ Unconditional branch takes 1 cycle
352



Multi-Cycle Control Unit FSM (Week 7)
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ISA Tradeoffs
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ISA Impacts Software and Hardware
§ Complex instructions

§ (Upside) Dense and efficient code
§ (Downside) Complex circuits with longer critical paths
§ Example: x86 operate instructions can have both register and memory operands

§ Register-Memory architecture

§ Simple instructions
§ (Upside) Simple circuits (microarchitecture)
§ (Downside) Large instruction footprint (many instruction to solve the same problem)
§ (Downside) Big semantic gap between high-level code and assembly code
§ Example: ARM allows accessing memory only via LDR/STR

§ Load-Store architecture

§ Number of Registers (tradeoff)
§ Large register file demands more space in the ISA for encoding
§ But, more registers reduce trips to memory (memory references) 

355



ISA Impacts Software and Hardware
§ ISA impacts

§ Performance

§ Power and energy

§ Code size and instruction footprint

§ Circuit cost and complexity (chip area)

§ Future growth (ISA evolution)
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§ How close instructions & data types & 
addressing modes are to high-level language 
(HLL)

Semantic Gap

357



Harder mapping of HLL to ISA
More work for software designer
Less work for hardware designer
Optimization burden on SW

HLL

HW
Control 
Signals

HLL

HW
Control 
Signals

ISA with
Complex Inst
& Data Types
& Addressing Modes ISA with

Simple Inst
& Data Types
& Addressing Modes

Small Semantic Gap

Large Semantic Gap

Easier mapping of HLL to ISA
Less work for software designer
More work for hardware designer
Optimization burden on HW

Semantic Gap
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Addressing Mode Tradeoffs
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Addressing Modes
§ Addressing mode specifies how instruction operands are addressed

§ Source and destination registers 
§ Target address of a memory reference
§ Target address that a branch will jump to

§ ARM uses four main modes
§ Register
§ Immediate
§ Base
§ PC-relative

§ First three modes for reading/writing operands
§ Last mode is for writing the program counter
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ARM Addressing Modes
§ Some of the addressing modes allow the second source operand 

to be shifted
§ Check your references for details

361Section 6.4.4 of H&H



Addressing Mode Tradeoffs
§ Complex addressing modes simplify high-level code to assembly 

translation

§ But they result in more complex circuits (microarchitecture) 
§ ALU to add base and offset  
§ Shifter in front of ALU

§ Where to place the burden of optimization? Software or Hardware 
§ Many simple instructions + Simple microarchitecture
§ Few complex instructions + Complex microarchitecture
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Aside: Data Dependences
§ In Von Neumann model, instructions depend on each other for 

data

§ Data (True) Dependence:  One instruction produces a result that 
the subsequent instruction consumes
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Aside: Data Dependences
§ One can visualize a sequential program as an instruction 

flow or data flow 
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Aside: Data Dependences
§ Data dependence implies the two instructions must execute in 

program order

§ They cannot be executed simultaneously (in parallel at the 
same time)

§ There are also control dependences due to branches as 
instruction can only execute if a branch evaluates to TRUE

§ And false dependences (we will see the details later)
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Implication for microarchitecture
§ In the end we care about the correctness of the program

§ From the initial architectural state to the final architectural state

§ Preserving data flow (not instruction flow) is critical for program correctness

§ Single-cycle CPU is one way to satisfy the program correctness criteria
§ Very strict and highly constrained.  And hence, poor performance

§ High performance requires out of the box thinking
§ Key technique is parallelism: we must execute several (independent) 

instructions at the same time 

§ Understanding dependences is the key to unlocking parallelism
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Aside: What if a machine processes 
instructions out of program order? 
§ What does the programmer care about?

§ Does the programmer care if i3 executed before i4?

§ No:  Programmer only cares R1 was updated before R0
§ Can update AS in program order and process instructions out of order (OOO)

§ Why would a machine ever do that?
§ Fact:  Almost EVERY high-performance computer does that!
§ In-program-order instruction processing (execution) is an illusion in high-

end computers 

i1: CMP  R0,  #10
i2: BGE  DONE
i3: ADD  R1,  R1,  R0
i4: ADD  R0,  R0,  #1
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We will meet after two weeks

Revise the lecture content  and do the quiz

Finish assignment 1
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Shift Instructions
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Category: Data Processing



Shift Instructions
§ Shift the value in a register left or right, drop bits off the end

§ Logical Shift Left (LSL)
§ Logical Shift Right (LSR)
§ Arithmetic Shift Right (ASR)
§ Rotate Right (ROR)

§ Logical Shift: shifts the number to the left/right and fills empty slots with zero

§ Arithmetic Shift: On right shifts fill the most significant bits with the sign bit 

§ Rotate: rotates number in a circle such that empty spots are filled with bits 
shifted off the other end
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Logical Shift Left (LSL)

11000000

§ Binary Number in Decimal = 3
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Logical Shift Left (LSL)

11000000

§ Shift the number LEFT by ONE BIT
§ INSERT 0 in Least Significant Position
§ Get RID of the Most Significant BIT

11000000 0❌
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Logical Shift Left (LSL)

11000000

§ Binary Number after shift in Decimal = 6
§ SHIFT LEFT = MULTIPLY BY 2

1100000 0
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Logical Shift Right (LSR)

11000000

§ Binary Number after right shift in Decimal = 1
§ SHIFT RIGHT = DIVIDE BY 2

0000000 1
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Logical Shift Left (LSL)

1 1 1 1 1 1 1 1 0 0 0 1 1 1 0 0 0 0 0 1 0 0 0 0 1 1 1 0 0 1 1 1

1 1 1 1 1 1 1 1 0 0 0 1 1 1 0 0 0 0 0 1 0 0 0 0 1 1 1 0 0 1 1 1 0 0 0

1 1 1 1 1 0 0 0 1 1 1 0 0 0 0 0 1 0 0 0 0 1 1 1 0 0 1 1 1 0 0 0

31 0

LSL R0, R5, #3ARM Instruction

R5 

R0

❌❌❌

§ Shift all bits left 3 positions, fill 3 least significant bits with 0’s
§ Drop the 3 bits off the end
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Logical Shift Right (LSR)

1 1 1 1 1 1 1 1 0 0 0 1 1 1 0 0 0 0 0 1 0 0 0 0 1 1 1 0 0 1 1 1

0 0 0 1 1 1 1 1 1 1 1 0 0 0 1 1 1 0 0 0 0 0 1 0 0 0 0 1 1 1 0 0 1 1 1

0 0 0 1 1 1 1 1 1 1 1 0 0 0 1 1 1 0 0 0 0 0 1 0 0 0 0 1 1 1 0 0

31 0

§ Shift all bits right 3 positions, insert three 0’s from the right
§ Drop the 3 bits from the left

LSR R0, R5, #3ARM Instruction

R5 

R0

❌❌❌
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Arithmetic Shift Right (ASR)

1 1 1 1 1 1 1 1 0 0 0 1 1 1 0 0 0 0 0 1 0 0 0 0 1 1 1 0 0 1 1 1

1 1 1 1 1 1 1 1 1 1 1 0 0 0 1 1 1 0 0 0 0 0 1 0 0 0 0 1 1 1 0 0 1 1 1

1 1 1 1 1 1 1 1 1 1 1 0 0 0 1 1 1 0 0 0 0 0 1 0 0 0 0 1 1 1 0 0

31 0

§ Shift all bits right 3 positions, insert three 1’s from the right
§ Drop the 3 bits from the left

ASR R0, R5, #3ARM Instruction

R5 

R0

❌❌❌
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Rotate Right (ROR)

1 1 1 1 1 1 1 1 0 0 0 1 1 1 0 0 0 0 0 1 0 0 0 0 1 1 1 0 0 1 1 1
31 0

ROR R0, R5, #21ARM Instruction

R5 
20

§ Do a circular shift
§ Right shift by 21 and put back bits that fall off at left end

1 1 1 1 1 1 1 1 0 0 0 1 1 1 0 0 0 0 0 1 0 0 0 0 1 1 1 0 0 1 1 1
31 0

R5 
20

1 1 1 0 0 0 0 0 1 0 0 0 0 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 1 0 0 0 R0 
Result

378



Binary Encoding of Shift Instructions
§ Self Study

§ Section 6.4 of H&H
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Shifts: Machine Representation

DP-R

31:28 27:26 25 24:21 20 19:16 15:12 11:4 3:0

cond 00 0 cmd S Rn Rd 0 0 0 0 0 0 0 0 Rm

Shift Instructions
31:28 27:26 25 24:21 20 19:16 15:12 11:7 6:5 4 3:0

cond 00 0 1101 S 0000 Rd shamt5 sh 0 Rm

§ cmd = 1101
§ sh = 00 (LSL), 01 (LSR), 10 (ASR), 11 (ROR)
§ Rn = 0
§ shamt5 = 5-bit shift amount
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§ Format (Src2 = Register)
 LSL R0,  R5,  #3

 LSL Rd,  Rm,  shamt5

31:28 27:26 25 24:21 20 19:16 15:12 11:7 6:5 4 3:0

cond 00 0 cmd S Rn Rd shamt5 sh 0 Rm

Shifts: Machine Representation
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§ ARM also has instructions with shift amount held in a register 

LSL R4, R8, R6

ROR R5, R8, R6

31:28 27:26 25 24:21 20 19:16 15:12 11:8 7 6:5 4 3:0

cond 00 0 cmd S Rn Rd Rs 0 sh 1 Rm
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Use of Shift Instructions
§ Left shift by N = Multiplication by 2N

§ Arithmetic right shift by N = Division by 2N

§ Extract bits or assemble new bit patterns
§ Network programming

§ Cryptography

§ Compression of data
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Examples of Shift Instructions

384Page 305 of H&H

Shift amount can be 
in a register



Manipulating Characters & Bytes
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§ Reading and writing text is ubiquitous

§ Different devices (tablet, laptop, desktop, mobile)

§ Different applications (word, whatsapp, email)

§ Different manufactures (Apple, Intel, Samsung)

§ Need a standardized way to represent characters that make up text
§ From bits and bytes to character representations

§ Things still go wrong!

Characters & Encoding
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Thinking about Character Input/Output
§ Keyboard data is captured in a register

§ Some binary data is sent to a special memory associated with 
graphics chip to display the character
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Manipulating Characters
§ Manipulating characters is common 

§ We need architectural support for manipulating characters

§ Character is the same as a byte

§ So, architectural support for manipulating bytes

§ Regular LDR/STR deal with words (not bytes) 388



§ English characters can be encoded in a single byte (< 256)

§ 1963: ASCII was developed
§ American Standard Code for Information & Interchange
§ Assigns each text character a unique byte
§ Information exchange became feasible across manufactures and 

geographical boundaries

§ The C language uses the type char to represent byte or character

§ Optimize the common case: Need architectural support for 
manipulating bytes

ASCII Encoding
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§ Other programming languages such as Java, use different 
character encodings

§ Unicode is the most well-known

§ 16 bits to represent accents, Asian languages, and more

§ www.unicode.org

Other Encodings
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Lower case and upper case differ by 0x20 (32) 391



Instructions for Loading/Storing Bytes
§ LDRB

§ Load byte in register, and zero-extend to fill the 32 bits

§ LDRSB
§ Load byte in register, and sign-extend to fill the 32 bits

§ STRB
§ Store the LSB of the 32-bit integer into the specified byte in 

memory
§ More significant bits of the register are ignored
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Loading/Storing Bytes

...

F7

8C

42

03

4

3

2

1

0

Byte Address Data Registers

xx xx xx xx

xx xx xx xx

11 10 A1 9B

LDRB    R1,   [R4, #2]

LDRSB   R2,   [R4, #2]

STRB     R3,   [R4, #3]

§ What is in R1, R2, and memory after each of the instruction 
has executed? Assume R4 = 0

R1

R2

R3
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Loading/Storing Bytes

...

9B

8C

42

03

4

3

2

1

0

Byte Address Data Registers

00 00 00 8C

FF FF FF 8C

xx xx xx 9B

LDRB    R1,   [R4, #2]

LDRSB   R2,   [R4, #2]

STRB     R3,   [R4, #3]

§ What is in R1, R2, and memory after each of the instruction 
has executed? Assume R4 = 0

R1

R2

R3
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§ A series of characters is a string

§ Two ways to create strings in C

§ char welcome[6] = {’H’, ‘E’, ‘L’, ’L’, ‘O’, ‘\0’};

§ char welcome[]  = “HELLO”;

§ Different strings have different number of characters
§ We need to know the end of the string to write correct 

programs that manipulate strings
§ The null terminator ‘\0’ marks the end of the string

Strings in C
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Strings in C

§ Need a way to 
know the end of 
the string
§ C strings are 

null-terminated

§ Compiler inserts 
a null terminator 
‘\0’ automatically

§ Compiler figures 
out the length 

§ 5 + 1 for ‘\0’
§ Manually track 

length (unlike 
Python)

§ char welcome[6] = {’H’, ‘E’, ‘L’, ’L’, ‘O’, ‘\0’};
§ char welcome[]  = “HELLO”;
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Exercise: Manipulating Char Array

C code:  

   char array[11] = “anthonymay”;
   int i;
 
   for (i = 0; i < 10; i = i + 1)
      array[i] = array[i] – 32;
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C code:  

   char array[11] = “anthonymay”;
   int i;
 
   for (i = 0; i < 10; i = i + 1)
      array[i] = array[i] – 32;

Assembly code:  
; R0 = base addr, R1 = i
   MOV   R1,  #0
LOOP
   CMP   R1,  #10
   BGE   DONE
   LDRB  R2,  [R0, R1]
   SUB   R2,  R2,  #32
   STRB  R2,  [R0, R1]
   ADD   R1,  R1,  #1
   B     LOOP
DONE

§ Transform the 10-character ASCII string, namely 
array, from lower case to upper case

§ i = 0

§ i < 10?
§ if i >= 10, exit
§ R2 = array[i]
§ subtract 32
§ store array[i]
§ i = i + 1
§ repeat loop 

Exercise: Manipulating Char Array
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§ Show how “HELLO!” is stored in memory below 
at address 0x1522FFF0.

Byte 0Byte 3

DataAddress

0x1522FFF0
0x1522FFF4

H 0x48

E 0x65

L 0x6C

O 0x6F

! 0x21

Null 0x00

ASCII Encoding

Exercise: Strings in Memory
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Exercise: Strings in Memory

00 21 6F

6C 6C 65 48
Byte 0Byte 3

0x1522FFF0
0x1522FFF4

H 0x48

E 0x65

L 0x6C

O 0x6F

! 0x21

Null 0x00

§ Show how “HELLO!” is stored in memory below 
at address 0x1522FFF0.

DataAddressASCII Encoding
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Some Assembly Practice
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More Assembly Practice

ARM Assembly Code
; R0 = array base address

  MOV R0, #0x60000000     ; R0 = 0x60000000

  LDR R1, [R0]   ; R1 = array[0]

  LSL R1, R1, #3   ; R1 = R1 << 3 = R1*8

  STR R1, [R0]   ; array[0] = R1

  LDR R1, [R0, #4]  ; R1 = array[1]
  LSL R1, R1, #3   ; R1 = R1 << 3 = R1*8

  STR R1, [R0, #4]  ; array[1] = R1

C Code
 int array[5];

 array[0] = array[0] * 8;

 array[1] = array[1] * 8;
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ARM Assembly Code
; R0 = array base address, R1 = i

  MOV R0, 0x60000000

  MOV R1, #199

FOR
  LDR  R2, [R0, R1, LSL #2] ; R2 = array(i)
  LSL  R2, R2, #3    ; R2 = R2<<3 = R3*8
  STR  R2, [R0, R1, LSL #2] ; array(i) = R2
  SUBS R1, R1, #1    ; i = i – 1
       ; and set flags
  BPL  FOR     ; if (i>=0) repeat 
loop

C Code
int array[200];

int i;

for (i=199; i >= 0; i = i - 1)
   array[i] = array[i] * 8;

More Assembly Practice
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