
Convener: Shoaib Akram
shoaib.akram@anu.edu.au

Our Status
§ We are done with digital logic fundamentals that we need

to understand and build a CPU

§ We are now (+ next week) at
§ Architecture layer

§ Then
§ Microarchitecture layer

1

ISA then microarchitecture

2

Admin
§ Quiz #1 has been marked

§ We will take the best two of four quizzes

§ Marking of the checkpoint is underway

§ Assignment 1 will be released this week

§ Some % of assignment 1 grade comes from work you
are doing in Labs 4 – 6

3

Von Neumann Model

4

Main Memory

§ Key resources: CPU, memory, and Input/Output (I/O) devices
§ CPU (microprocessor) does the actual processing (computation)
§ Memory stores temporary data and forms a hierarchy (registers, SRAM, DRAM, ...)
§ Some fast (small capacity) memory called register file is close to the CPU and rest is far
§ Storage disk is an I/O device (much slower than memory, stores persistent data)
§ Memory is volatile, while disk is non-volatile (data is retained after a shutdown)
§ Other peripherals such as keyboard and network card are accessories to processing

Storage

Recall: A Computer System

I/O Peripherals

Another View: What is a Computer?

Processing Main
Memory

1. Program
2. Data

Input/Output (I/O)
Control
(Sequencing)

Datapath

§ Basic computer model proposed in the 1940s

§ We will cover all three components
6

§ In past lectures, we learned how to design
§ Combinational logic structures
§ Sequential logic structures

§ With logic structures, we can build
§ Execution units
§ Decision units
§ Memory/storage units
§ Communication units

§ All are basic elements of a computer
§ We will raise our abstraction level today
§ Use logic structures to construct a basic computer model

Building up a Basic Computer Model

Microarchitecture
ISA (Architecture)

Program in C/Java
Algorithm
Problem

Logic
Devices

Runtime System
(Operating system)

Electrons

7

Building up a Basic Computer Model

Microarchitecture
ISA (Architecture)

Program in C/Java
Algorithm
Problem

Logic
Devices

Runtime System
(Operating system)

Electrons

§ ISA: Specification of the instructions computer
can perform
§ An interface between the programs and hardware

§ Programmer needs to know ISA to be able to convey his wishes
(instructions) to the hardware

§ Hardware builder (computer architect) needs to know the ISA to be
able to build and organize circuits to carry out the instructions

§ Microarchitecture: Circuit implementation of
the specification

§ An important aspect to ponder: Not every implementation
detail is relevant to the programmer!
§ Just enough to be able to program the computer (as we will see)

8

ISA vs. Microarchitecture
§ What is part of ISA vs. Uarch?

§ Gas pedal: interface for “acceleration”
§ Internals of the engine: implement “acceleration”

§ Aspects of ISA
§ The different instructions and their binary codes
§ Semantics (meaning) of each instruction
§ Word size, number of registers, memory addressability

§ Aspects of implementation
§ Ripple-carry vs. carry-lookahead adder
§ Mux or tristate buffers
§ Canonical SOP or minimal Boolean expression for implementation
§ NAND gates only vs. AND/OR/NOT combination

9

ISA vs. Microarchitecture
§ One ISA can have many microarchitectures

§ One microarchitecture per student, but the QuAC ISA is the same on
the course webpage

§ ISA is usually a one-time effort with incremental changes to
enable new applications
§ Only a few ISAs in the world but many microarchitectures

§ Microarchitecture changes faster than ISA

§ Key insight: ISA can enable simple vs. complex logic gate circuitry at the
microarchitecture level (more in coming weeks

10

ISA: Another View
§ Most people don’t write programs in the computer’s own

machine language (lowest level)

§ They prefer high-level languages such as C++, Java, or Python

§ A compiler translates C++ or Java code into the computer’s
machine language

§ ISA specifies everything in the computer that a compiler writer
who wishes to translate programs from C++/Java to machine
language need to know

11

ISAs are a Good Bedtime Reading!

12

ISAs You Will Encounter @ ANU
§ QuAC

§ An ISA for educational purposes developed at ANU
§ Mainly covered in tutorials and required for assignment 1

§ MIPS
§ Pioneering RISC ISA developed by John Hennessy at
 MIPS computer systems

§ Microprocessors without Interlocked Pipelined Stages
§ Briefly covered in today’s lecture for breadth

§ ARM
§ A popular RISC ISA developed by Arm Ltd.
§ Advanced RISC Machines
§ De facto choice for portable hand-held devices
§ Covered extensively in lectures and required for assignment 2

§ LC-3
§ Little Computer 3 is an educational ISA developed by Yale N. Patt at UT-Austin
§ Briefly covered in today’s lecture for breadth

§ x86-64
§ A CISC ISA developed by Intel Corporation
§ Most influential ISA in the world and de facto choice for high-performance computing
§ Covered extensively in COMP2310

Ex-President of Stanford University
Chairman of Alphabet
Founder of MIPS Technologies
Turing Award Winner

13

§ To get a task done by a (general-purpose) computer, we need
§ A computer program
§ That specifies what the computer must do

§ The computer itself
§ To carry out the specified task

§ Program: A set of instructions
§ Each instruction specifies a well-defined piece of work for the computer to

carry out
§ Instruction: the smallest piece of specified work in a program

§ Instruction set: All possible instructions that a computer is
designed to be able to carry out

What is a Computer?

14

§ In order to build a computer, we need an execution model for
processing computer programs

§ John von Neumann proposed a fundamental model in 1946

§ The von Neumann Model consists of 5 components
§ Memory (stores the program and data)
§ Processing unit
§ Input
§ Output
§ Control unit (controls the order in which instructions are carried out)

Burks, Goldstein, von Neumann,
“Preliminary discussion of the logical design
of an electronic computing instrument,” 1946.

All general-purpose computers today use the von Neumann model

The Von Neumann Model

15

CONTROL UNIT

PC or IP Inst Register

PROCESSING UNIT

ALU TEMP

MEMORY

Mem Addr Reg

Mem Data Reg

INPUT

Keyboard,
Mouse,
Disk…

OUTPUT

Monitor,
Printer,
Disk…

The Von Neumann Model

16

CONTROL UNIT

PC or IP Inst Register

PROCESSING UNIT

ALU TEMP

MEMORY

Mem Addr Reg

Mem Data Reg

INPUT

Keyboard,
Mouse,
Disk…

OUTPUT

Monitor,
Printer,
Disk…

The Von Neumann Model

17

18

Recall: A Memory Array (4 locations X
3 bits)

Di[2] Di[1] Di[0]

D[2] D[1] D[0]

Addr[1:0]

WE

Address Decoder
Multiplexer 19

Recall: Memory Array Organization
§ Decoder drives the wordline HIGH based on the address
§ Data on the selected row appears on the bitlines

wordline311

10

2:4
Decoder

Address

01

00

stored
bit = 0wordline2

wordline1

wordline0

stored
bit = 1

stored
bit = 0

stored
bit = 1

stored
bit = 0

stored
bit = 0

stored
bit = 1

stored
bit = 1

stored
bit = 0

stored
bit = 0

stored
bit = 1

stored
bit = 1

bitline2 bitline1 bitline0

Data2 Data1 Data0

2

20

Recall: Memory Ports
§ Each memory port gives read or write access

to one memory address
§ Multiported memories can access multiple

addresses simultaneously
§ Example of three-ported memory

§ Port 1 reads the data from address A1 onto the
read data output RD1

§ Port 2 reads the data from address A2 onto the
read data output RD2

§ Port 3 writes the data from the write data input
WD3 into address A3 on the rising clock edge if
WE3 is TRUE

21

§ Memory stores
§ Programs
§ Data

§ Memory contains bits
§ Bits are logically grouped into bytes (8 bits) and words (e.g., 8, 16, 32 bits)

§ Address space: Total number of uniquely identifiable locations
§ In MIPS, the address space is 232

§ 32-bit addresses
§ In ARM, the address space is 232

§ 32-bit addresses
§ In x86-64, the address space is (up to) 248

§ 48-bit addresses

§ Addressability: How many bits are stored in each location (address)
§ E.g., 8-bit addressable (or byte-addressable)
§ E.g., word-addressable
§ A given instruction can operate on a byte or a word

Memory

22

§ A representation of memory with 8 locations
§ Each location contains 8 bits (one byte)

§ Byte addressable memory with an address space of 8
§ Value 6 is stored in address 4 & value 4 is stored in address 6

Address Data Value

Question:
How can we make
same-size memory
bit addressable?

Answer:
64 locations
Each location stores 1 bit

A Simple Example

23

§ Each data word has a unique address
§ In MIPS, a unique address for each 32-bit data word (not word-addressable)
§ In QuAC, a unique address for each 16-bit data word (word addressable)

00000000

00000001

00000002

00000003

.
.

.Word Address

8 9 A B C D E F
F 2 F 1 F 0 F 7
1 3 C 8 1 7 5 5
D 1 6 1 7 A 1 C Word 3

Word 2

Word 1

Word 0
.

.
.

.
.

.

Data Word Number

Word-Addressable Memory

24

§ Each byte has a unique address
§ MIPS is actually byte-addressable
§ ARM is also byte-addressable

Word 3

Word 2

Word 1

Word 0
.

.
.

.
.

.

Data

8 9 A B C D E F

F 2 F 1 F 0 F 7

1 3 C 8 1 7 5 5

D 1 6 1 7 A 1 C

Word Number

00000000

00000004

00000008

0000000C

.
.

.Byte Address
of the Word

How are these four bytes
ordered?

Which of the four bytes is most vs. least significant?

Byte-Addressable Memory

25

§ Jonathan Swift’s Gulliver’s Travels
§ Big Endians broke their eggs on the big end of the egg
§ Little Endians broke their eggs on the little end of the egg

Big Endian vs. Little Endian

26

0

4

8

C

.
.

.

Word
Address

.
.

.

Byte
Address

3 2 1 0

7 6 5 4

B A 9 8

F E D C

.
.

.

Byte
Address

0 1 2 3

4 5 6 7

8 9 A B

C D E F

Big Endian Little Endian

MSB LSBMSB
(Most Significant Byte)

LSB
(Least Significant Byte)

LSB in higher byte address LSB in lower byte address

Big Endian vs. Little Endian

27

§ 0x01234567
§ Memory addresses start at 0x100

Big Endian vs. Little Endian

28

0

4

8

C

.
.

.

Word
Address

.
.

.

Byte
Address

3 2 1 0

7 6 5 4

B A 9 8

F E D C

.
.

.

Byte
Address

0 1 2 3

4 5 6 7

8 9 A B

C D E F

Big Endian Little Endian

MSB LSB

Does this really matter?

Answer: No, it is a convention

Qualified answer: No, except when one big-endian
system and one little-endian system have to share
or exchange data

MSB
(Most Significant Byte)

LSB
(Least Significant Byte)

LSB in higher byte address LSB in lower byte address

Big Endian vs. Little Endian

29

§ There are two ways of accessing memory
§ Reading or loading data from a memory location
§ Writing or storing data to a memory location

§ Two registers are usually used to access memory
§ Memory Address Register (MAR)
§ Memory Data Register (MDR)

§ To read
§ Step 1: Load the MAR with the address we wish to read from
§ Step 2: Data in the corresponding location gets placed in MDR

§ To write
§ Step 1: Load the MAR with the address and the MDR with the data

we wish to write
§ Step 2: Activate Write Enable signal à value in MDR is written to

address specified by MAR

Accessing Memory: MAR and MDR

30

Learn to Distinguish Address from Data

31

CONTROL UNIT

PC or IP Inst Register

PROCESSING UNIT

ALU TEMP

MEMORY

Mem Addr Reg

Mem Data Reg

INPUT

Keyboard,
Mouse,
Disk…

OUTPUT

Monitor,
Printer,
Disk…

The Von Neumann Model

32

§ Performs the actual computation(s)

§ The processing unit can consist of many functional units

§ We start with a simple Arithmetic and Logic Unit (ALU), which
executes computation and logic operations
§ ARM: ADD, AND, NOT, SUB
§ MIPS: add, sub, mult, and, nor, sll, slr, slt…

§ The ALU processes quantities that are referred to as words
§ Word length in ARMv4 is 32 bits (v8 is 64 bits)
§ Word length in MIPS is 32 bits
§ Word length in QuAC is 16 bits

Processing Unit

33

§ Combines a variety of arithmetic and logical operations into a single unit (that
performs only one function at a time)

§ Usually denoted with this symbol:

Recall: Arithmetic & Logic Unit (ALU)

34

Recall: Arithmetic & Logic Unit (ALU)

35

§ It is almost always the case that a computer provides a small
amount of storage very close to ALU
§ Purpose: to store temporary values and quickly access them later

§ E.g., to calculate ((A+B)*C)/D, the intermediate result of A+B
can be stored in temporary storage
§ Why? It is too slow to store each ALU result in memory & then retrieve it

again for future use
§ A memory access is much slower than an addition, multiplication or

division
§ Ditto for the intermediate result of ((A+B)*C)

§ This temporary storage is usually a set of registers
§ Called Register File

Processing Unit: Fast Temporary Storage

36

§ Memory is large but slow

§ Registers in the Processing Unit
§ Ensure fast access to values to be processed in the ALU
§ Typically one register contains one word (same as word length)

§ Register Set or Register File
§ Set of registers that can be manipulated by instructions
§ ARM has 16 general purpose registers (GPRs)

§ R0 to R15: 4-bit register number
§ Register size = Word length = 32 bits

§ MIPS has 32 general purpose registers
§ More elaborate naming scheme: 5-bit register number (or Register ID)
§ Register size = Word length = 32 bits

§ QuAC has 8 general purpose registers (one undefined)

Registers: Fast Temporary Storage

37

Recall: Register
§ How can we use flipflops to store more than one bit?

§ Principle of modularity: Use more flipflops!
§ A single CLK to simultaneously write to all flipflops

§ Register: A structure that stores more than one bit of
information and can be read from and written to

§ This register holds 4 bits, and its data is referenced as Q[3:0]
38

Recall: 4-bit Register

CLK
D Q

Q

CLK
D Q

Q
Q

Q

D N1

CLK

L1 L2

CLK
D Q

Q

CLK
D Q

Q
Q

Q

D N1

CLK

L1 L2

CLK
D Q

Q

CLK
D Q

Q
Q

Q

D N1

CLK

L1 L2

CLK
D Q

Q

CLK
D Q

Q
Q

Q

D N1

CLK

L1 L2

CLK

D3 D2 D1 D0

4-bit Register

Q0Q1Q2Q3

To build an N-bit register, use a bank of N flipflops with a shared CLK
39

Recall: 4-bit Register
CLK

D Q

D Q

D Q

D Q

D0

D1

D2

D3

Q0

Q1

Q2

Q3

D3:0
4 4

CLK

Q3:0

This register stores 4 bits

This line represents 4 wires

Condensed

40

o Here we have a
register, or a
structure that
stores more than
one bit and can be
read from and
written to

o This register holds 4
bits, and its data is
referenced as
Q[3:0]

41

§ A single WE signal for all flip-flops for
simultaneous writes

Register x (Rx)

D3:0

Q3:0

WE

4

4

More Realistic Register
Enabled Flip-Flop

How Registers are Addressed?
§ Each ISA gives a set of general-purpose registers with

special names

§ So, an assembly programmer can use convenient names

§ How they are translated into binary addresses is up to the
implementation

§ Let’s see

42

Name Register Number Usage
$0 0 the constant value 0
$at 1 assembler temporary
$v0-$v1 2-3 function return value
$a0-$a3 4-7 function arguments
$t0-$t7 8-15 temporary variables
$s0-$s7 16-23 saved variables
$t8-$t9 24-25 temporary variables
$k0-$k1 26-27 OS temporaries
$gp 28 global pointer
$sp 29 stack pointer
$fp 30 frame pointer
$ra 31 function return address

MIPS Register File

43

ARM Register File

44

LC-3 Register File (with Contents)

45

QuAC Register File

46

CONTROL UNIT

PC or IP Inst Register

PROCESSING UNIT

ALU TEMP

MEMORY

Mem Addr Reg

Mem Data Reg

INPUT

Keyboard,
Mouse,
Disk…

OUTPUT

Monitor,
Printer,
Disk…

The Von Neumann Model

47

§ Enable information to get into and out of a computer

§ Many devices can be used for input and output

§ They are called peripherals
§ Input

§ Keyboard
§ Mouse
§ Scanner
§ Disks
§ Etc.

§ Output
§ Monitor
§ Printer
§ Disks
§ Etc.

Input and Output

48

Input and Output

49

Keyboard and Monitor
§ The simplest keyboard has two registers
§ Keyboard data register (KBDR) for holding the ASCII code

of keys struck
§ Keyboard status register (KBSR) for maintaining status

information about the keys struck

§ The simplest monitor has two registers
§ Display data register (DDR) for holding the ASCII code of

something to be displayed on the screen
§ Display status register (DSR) for maintaining associated

status information
50

ASCII Encoding
§ ASCII stands for

American Standard
Code for Information
Interchange

§ It ranges from 0 to 255
in Decimal or 00 to FF
in Hexadecimal

§ All characters on an
English keyboard can
be represented using
8-bit codes

51

CONTROL UNIT

PC or IP Inst Register

PROCESSING UNIT

ALU TEMP

MEMORY

Mem Addr Reg

Mem Data Reg

INPUT

Keyboard,
Mouse,
Disk…

OUTPUT

Monitor,
Printer,
Disk…

The Von Neumann Model

52

§ The control unit is like the conductor of an orchestra

§ It conducts the step-by-step process of executing (every instruction
in) a program

§ It keeps track of which instruction being
 processed, via

§ Instruction Register (IR), which contains the instruction

§ It also keeps track of which instruction to process next, via
§ Program Counter (PC) or Instruction Pointer (IP), another register that

contains the address of the (next) instruction to process

Control Unit

53

M[0]
M[1]
M[2]
M[3]
M[4]

M[N-1]
Memory
array of storage locations
indexed by an address

Program Counter
memory address
of the current (or next) instruction

Registers
- given special names in the ISA
 (as opposed to addresses)
- general vs. special purpose

Instructions (and programs) specify how to transform
 the values of programmer visible state

Programmer Visible (Architectural) State

54

CONTROL UNIT

PC or IP Inst Register

PROCESSING UNIT

ALU TEMP

MEMORY

Mem Addr Reg

Mem Data Reg

INPUT

Keyboard,
Mouse,
Disk…

OUTPUT

Monitor,
Printer,
Disk…

The Von Neumann Model

55

§ Von Neumann model is also called stored program computer
(instructions in memory). It has two key properties:

§ Stored program
§ Instructions stored in a linear memory array
§ Memory is unified between instructions and data
§ The interpretation of a stored value depends on the control signals

§ Sequential instruction processing
§ One instruction processed (fetched, executed, completed) at a time
§ Program counter (instruction pointer) identifies the current instruction
§ Program counter is advanced sequentially except for control transfer

instructions

Von Neumann Model: Two Key Properties

56

CONTROL UNIT

PC or IP Inst Register

PROCESSING UNIT

ALU TEMP

MEMORY

INPUT

Keyboard,
Mouse,
Disk…

OUTPUT

Monitor,
Printer,
Disk…

The Von Neumann Model
00100101
01001010
11111111
00000000

57

Examples of
 von Neumann Machines

58

Scanned by CamScanner

Control signals

Data

ALU: 2 inputs, 1 output

Memory Data
Register

Memory Address
Register

16-bit
addressable

Keyboard
KBDR (data), KBSR (status)

Monitor (Display)
DDR (data), DSR (status)

8 General Purpose
Registers (GPR)

Finite State Machine
(for Generating Control Signals)

Instruction
Register

Program
Counter

ALU operation

GateALU

Clock

LC-3: A von Neumann Machine

59

LC-3: A von Neumann Machine

60

Source: https://www.anandtech.com/show/16252/mac-mini-apple-m1-tested

Apple M1,
2021

Another Von Neumann Machine

61

https://www.anandtech.com/show/16252/mac-mini-apple-m1-tested

Source: https://twitter.com/Locuza_/status/1454152714930331652

Intel Alder Lake,
2021

Another Von Neumann Machine

62

https://twitter.com/Locuza_/status/1454152714930331652

https://wccftech.com/amd-ryzen-5000-zen-3-vermeer-undressed-high-res-die-shots-close-ups-pictured-detailed/

AMD Ryzen 5000, 2020

Core Count:
8 cores/16 threads

L1 Caches:
32 KB per core

L2 Caches:
512 KB per core

L3 Cache:
32 MB shared

Another Von Neumann Machine

63

https://www.it-techblog.de/ibm-power10-prozessor-mehr-speicher-mehr-tempo-mehr-sicherheit/09/2020/

IBM POWER10,
2020

Cores:
15-16 cores,
8 threads/core

L2 Caches:
2 MB per core

L3 Cache:
120 MB shared

Another Von Neumann Machine

64

ARMv4 (Single-Cycle) 32-bit

65

ARMv4 (Multi-Cycle) 32-bit

66

ARMv4 32-bit with Pipelining

67

SignImm

CLK

A RD
Instruction

Memory

+

4

A1

A3
WD3

RD2

RD1
WE3

A2

CLK

Sign Extend

Register
File

0
1

0
1

A RD
Data

Memory
WD

WE
0
1

PC0
1

PC' Instr 25:21

20:16

15:0

5:0

SrcB

20:16

15:11

<<2

+

ALUResult ReadData

WriteData

SrcA

PCPlus4

PCBranch

WriteReg4:0

Result

31:26

RegDst

Branch
MemWrite
MemtoReg

ALUSrc

RegWrite

Op
Funct

Control
Unit

Zero

PCSrc

CLK

ALUControl2:0

AL
U

MIPS (Single-Cycle) 32-bit

SignImmE

CLK

A RD
Instruction

Memory

+

4

A1

A3
WD3

RD2

RD1
WE3

A2

CLK

Sign
Extend

Register
File

0
1

0
1

A RD
Data

Memory
WD

WE

1
0

PCF0
1

PC' InstrD 25:21

20:16

15:0

5:0

SrcBE

25:21

15:11

RsE

RdE

<<2

+

ALUOutM

ALUOutW

ReadDataW

WriteDataE WriteDataM

SrcAE

PCPlus4D

PCBranchM

WriteRegM4:0

ResultW

PCPlus4F

31:26

RegDstD

BranchD

MemWriteD

MemtoRegD

ALUControlD2:0
ALUSrcD

RegWriteD

Op

Funct

Control
Unit

PCSrcM

CLK CLK CLK

CLK CLK

WriteRegW4:0

ALUControlE2:0

AL
U

RegWriteE RegWriteM RegWriteW

MemtoRegE MemtoRegM MemtoRegW

MemWriteE MemWriteM

RegDstE

ALUSrcE

WriteRegE4:0

00
01
10

00
01
10

SignImmD

St
al
lF

St
al
lD

Fo
rw
ar
dA
E

Fo
rw
ar
dB
E

20:16 RtE

RsD

RdD

RtD

R
eg
W
rit
eM

R
eg
W
rit
eW

M
em
to
R
eg
E

Hazard Unit

Fl
us
hE

PCPlus4E

BranchE BranchM

ZeroM

EN

EN

C
LR

MIPS 32-bit with Pipelining

69

§ The key principles and fundamentals are the same

§ Put your understanding of key principles to practice in labs

§ The exam/quiz is not structured to test your skills in
memorizing slides!

Key to Understanding Computers

70

The Concept of Sequential
Execution

71

§ Instructions and data are stored in memory
§ Typically the instruction length is the word length

§ The processor fetches instructions from memory sequentially
§ Fetches one instruction
§ Decodes and executes the instruction
§ Continues with the next instruction

§ The address of the current instruction is stored in the program
counter (PC)

§ If word-addressable memory, the processor increments the PC by 1 (in
QuAC)

§ If byte-addressable memory, the processor increments the PC by the
instruction length in bytes (4 in MIPS and ARM)
§ Assume the OS sets the PC to 0x00400000 (start of a program)

Stored Program and Sequential Execution

72

§ A sample ARM program
§ 4 instructions stored in consecutive words in memory
§ No need to understand the program now. We will get back to it

.
.

.

Instructions

2 5 8 1 3 0 2 4

E 1 5 1 0 0 0 2

E 3 A 0 2 0 4 5

E 3 A 0 1 0 6 4

.
.

.

00400000

00400004

00400008

0040000C

.
.

.

Word
Address

.
.

.

MOV R1, #100

MOV R2, #69

CMP R1, R2
STRHS R3, [R1, #0x24]

ARM assembly code

0xE3A01064

0xE3A02045

0xE1510002
0x25813024

Machine code (encoded instructions)

← PC

A sample ARM program stored in memory

73

.
.

.

Instructions

8 C 0 A 0 0 2 0

0 2 3 2 8 0 2 0

2 2 6 8 F F F 4

0 1 6 D 4 0 2 2

.
.

.

00400000

00400004

00400008

0040000C

.
.

.

Word
Address

.
.

.

lw $t2, 32($0)

add $s0, $s1, $s2

addi $t0, $s3, -12
sub $t0, $t3, $t5

MIPS assembly

0x8C0A0020

0x02328020

0x2268FFF4
0x016D4022

Machine code (encoded instructions)

← PC

A sample program: MIPS Example
§ A sample MIPS program

§ 4 instructions stored in consecutive words in memory
§ No need to understand the program now. We will get back to it

74

§ An instruction is the most basic unit of computer processing
§ Instructions are words in the language of a computer
§ Instruction Set Architecture (ISA) is the vocabulary

§ The language of the computer can be written as

§ Machine language: Computer-readable representation (that is, 0s and 1s)

§ Assembly language: Human-readable representation

§ We will study ARM (in detail in lectures) and QuAC (in tutorials
and assignment 1) and other ISAs for broader understanding
§ Principles are similar in all ISAs (x86, SPARC, RISC-V, …)

The Instruction

75

§ An instruction is made up of two parts
§ Opcode and Operands

§ Opcode specifies what the instruction does
§ Operands specify who the instruction is to do it to

§ Both are specified in instruction format (or instruction
encoding)
§ A MIPS and ARM instructions consists of 32 bits (bits [31:0])
§ QuAC instructions consist of 16 bits (bits [15:0])

The Instruction: Opcode & Operands

76

§ MIPS example: Bits [31:26] specify the opcode à up to 64 distinct opcodes
§ Bits [25:11] are used to figure out where the operands are

§ QuAC example: Bits [15:12] specify the opcode à up to 16 distinct opcodes
§ Bits [10:0] are used to figure out where the operands are

§ ARM example: Bits [27:26] specify the opcode à up to 4 distinct opcodes
§ Bits [19:0] are used to figure out where the operands are

The Instruction: Examples

31:28 27:26 25 24:21 20 19:16 15:12 11:0

cond op I cmd S Rn Rd Src2

§ There are three main types of instructions

§ Operate (data processing) instructions
§ Execute operations in the ALU

§ Data movement (memory) instructions
§ Read from or write to memory

§ Control flow (branch/jump) instructions
§ Change the sequence of execution (decision making)

§ Let us start with some example instructions

Instruction Types

78

§ Addition

§ add: mnemonic to indicate the operation to perform

§ b, c: source operands

§ a: destination operand

§ a ← b + c

a = b + c; add a, b, c
High-level code QuAC Assembly

An Example Operate Instruction

79

§ We map variables to registers

add a, b, c b = R1

c = R2

a = R0

Assembly ARM registers

b = r1

c = r2

a = r0

QuAC registers

Registers

b = $s1

c = $s2

a = $s0

MIPS registers

QuAC assembly
§ Addition

§ Instruction Fields

§ Machine code (Instruction Encoding)

§ Machine code in short (hexadecimal)
§ 0x 8 0 1 2

From Assembly to QuAC Machine Code

0 1 208

1 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0

add r0, r1, r2

81

ADD R0, R1, R2

ARM assembly

QuAC Opcodes

0 1 208

1 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0

82

31:28 27:26 25 24:21 20 19:16 15:12 11:0

cond op I cmd S Rn Rd Src2

ADD R0, R1, R2

ARM assembly
§ Addition

§ Instruction Fields

§ Machine Code (Instruction Encoding)

§ Machine Code in short (hexadecimal)
§ 0x E 0 9 1 0 0 0 1

From Assembly to ARM Machine Code

31:28 27:26 25 24:21 20 19:16 15:12 11:0

1110 00 0 0100 1 0001 0000 000000000010

83

84

Instruction Format
§ A form of representation of an instruction composed of

fields of binary numbers (we have seen already)

§ It is the layout of the instruction

§ The instruction is divided into segments, and each
segment is called a field

§ An ISA defines a few classes or types of formats, and
each class or type has many different instructions for
that type

84

QuAC Instruction Formats

85

MIPS Instruction Formats
§ Only three formats for simplicity of implementation
§ One can see the consistency across formats

§ MIPS ISA is outside of scope and only shown for breadth
86

n MIPS R-type Instruction Format (R = Register)
q 3 register operands (register-based ALU operations)

q op = opcode = 0

q rs, rt = source registers

q rd = destination register

q shamt = shift amount (only shift operations)

q funct = operation in R-type instructions

0 rs rt rd shamt funct
6 bits 5 bits 5 bits 5 bits 5 bits 6 bits

Instruction Format: R Type in MIPS
Name Register

Number
Usage

$0 0 the constant value 0

$at 1 assembler temporary

$v0-$v1 2-3 function return value

$a0-$a3 4-7 function arguments

$t0-$t7 8-15 temporary variables

$s0-$s7 16-23 saved variables

$t8-$t9 24-25 temporary variables

$k0-$k1 26-27 OS temporaries

$gp 28 global pointer

$sp 29 stack pointer

$fp 30 frame pointer

$ra 31 function return address

87

§ Rn and Rm are source registers and Rd is the destination register
§ Below is the instruction format (encoding)
§ op = opcode (what does the instruction do?)

§ 00 means operate instruction and cmd = 0100 means ADD
§ Some bits are pre-set (details later)

ADD Rd, Rn Rm

 ADD R0, R1, R3

31:28 27:26 25 24:21 20 19:16 15:12 11:4 3:0

1110 op 0 cmd S Rn Rd 0 0 0 0 0 0 0 0 Rm

Instruction Format: Data Processing (DP) in ARM

88

LC-3 Instruction Formats

89

Such “weird” instructions will
make more sense in COMP2310
as they provide support for I/O
and networking Reserved for future use

Instructions are 16-bit
words

opcode is in the same
place for each
instruction

§ With operate instructions, such as addition, we tell the computer to
execute arithmetic (or logic) computations in the ALU

§ We also need instructions to access the operands from memory
§ Load them from memory to registers
§ Store them from registers to memory

§ Next, we see how to read (or load) from memory

§ Writing (or storing) is performed in a similar way, but we will talk
about that later

Read Operands from Memory

90

§ ARM assembly (Load Register or LDR)

§ MIPS assembly (load word or lw)

a = A[2]; LDR R3, [R0, #8]

High-level code ARM assembly

R3 ← Memory[R0 + 8]

a = A[2]; lw $s3, 8($s0)

High-level code MIPS assembly

$s3 ← Memory[$s0 + 8]

These instructions use a particular addressing mode
(i.e., the way the address is calculated), called base+offset

Reading Byte-Addressable Memory

91

§ ARM assembly

§ MIPS assembly

n Byte address is calculated as: word_address * bytes/word
§ 4 bytes/word in MIPS and ARM
§ If QuAC were byte-addressable (i.e., QuAC v3), 2 bytes/word

LDR R3, [R0, #8]

R3 ← Memory[R0 + 8]

lw $s3, 8($s0)

$s3 ← Memory[$s0 + 8]

Load Word in MIPS and ARM

92

Load Word in Word-Addressable LC-3

93

§ LC-3 assembly (Load Register or LDR)

§ Each word in LC-3 is 16 bits
§ Therefore, We interrogate memory with word addresses

(not byte addresses)
§ If LC-3 were byte-addressable, the offset would be 4

a = A[2]; LDR R3, [R0, #2]

High-level code LC-3 assembly

R3 ← Memory[R0 + 2]

Hypothetical 32-bit QuAC Memory

94

§ If QuAC were 32-bit architecture, let’s look at its memory view
§ Word-addressable QuAC
§ We use word numbers to address memory

00000000

00000001

00000002

00000003

.
.

.Word Address

8 9 A B C D E F
F 2 F 1 F 0 F 7
1 3 C 8 1 7 5 5
D 1 6 1 7 A 1 C Word 3

Word 2

Word 1

Word 0
.

.
.

.
.

.

Data Word Number

95

§ If QuAC were 32-bit architecture, let’s look at its memory view
§ Byte-addressable QuAC
§ We use word numbers translated to byte addresses to read memory

00000000

00000004

00000008

0000000C

.
.

.Word Address

8 9 A B C D E F
F 2 F 1 F 0 F 7
1 3 C 8 1 7 5 5
D 1 6 1 7 A 1 C Word 3

Word 2

Word 1

Word 0
.

.
.

.
.

.

Data Word Number

Hypothetical 32-bit QuAC Memory

§ ARM

§ MIPS

LDR R3, [R0, #8]

ARM assembly

35 16 19 8

op rs rt imm

lw $s3, 8($s0)

MIPS assembly

Field Values

Another Instruction Encoding

31:28 27:26 25:20 19:16 15:12 11:0

0 1 1 1 1 0 0 1 0 3 8

96
This encoding has space for immediate values such as offsets.

Rn Rd imm

§ It defines opcodes, operands, data types, and addressing modes

§ Addressing mode = Formulas for figuring out operands
§ Register, Immediate, Base + Offset

§ The datatype is the representation of the operands in 0s and
1s

§ ADD and LDR in ARM assembly have been our first examples

The Instruction Set

97

§ What is the instruction mnemonic and opcode?
§ ADD (opcode = 0001 for LC-3)

§ What is the addressing mode?
§ register mode

§ What is the data type?
§ 2’s complement integer

§ What does the instruction do?
§ The instruction directs the computer to perform a 2’s complement

integer addition and specifies the locations (GPRs) where the computer
can find source operands and the location of a GPR where the computer
is to write the result

ADD R0, R1, R2

98

LDR R3, [R0, #8]
§ What is the opcode?
§ LDR (0110 for LC-3)

§ What is the addressing mode?
§ base + offset (we will study in detail later)

§ What is the data type?
§ bit vector

§ What does the instruction do?
§ The instruction directs the computer to load a destination register with

the contents of a memory location, where the location can be calculated
using a formula: add the contents of a GPR (R8) to a constant number (#8)

99

§ The ISA is the interface between what the software commands and what
the hardware carries out

§ The ISA specifies
§ The memory organization

§ Address space (ARM: 232, MIPS: 232)
§ Addressability (ARM: 8 bits, MIPS: 8 bits, QuAC: 16 bits)
§ Word- or Byte-addressable

§ The register set
§ R0 to R15 in ARM
§ 32 registers in MIPS

§ The instruction set
§ Opcodes
§ Operands
§ Addressing modes
§ Length and format of instructions

Microarchitecture

ISA

Program

Algorithm

Problem

Circuits

Electrons

The Instruction Set Architecture

100

§ What state of the computer is visible (or exposed to) the programmer?
§ What state can they manipulate by writing machine code?
§ Answer: The Architectural State

§ General-purpose registers, memory, program counter

§ What does the ISA specify?
§ The memory organization

§ The register set

§ The instruction set

§ Meta-point: Architectural state is part of the ISA specification

Two Questions

101

Instruction (Processing) Cycle

102

§ By using instructions, we can speak the language of the
computer

§ Thus, we now know how to tell the computer to

§ Execute computations in the ALU by using, for instance, an addition

§ Access operands from memory by using the load word instruction

§ But, how are these instructions executed on the computer?

§ The process of executing an instruction is called is the instruction cycle
(or, instruction processing cycle)

How are these instructions executed?

103

§ The instruction cycle is a sequence of steps or phases, that an instruction
goes through to be executed
§ FETCH
§ DECODE
§ EVALUATE ADDRESS
§ FETCH OPERANDS
§ EXECUTE
§ STORE RESULT

§ Not all instructions require the six phases
§ LDR does not require EXECUTE

§ ADD does not require EVALUATE ADDRESS

§ Intel x86 instruction ADD [eax], edx is an example of instruction with six
phases

The Instruction Cycle

104

§ We will use LC-3 (Little Computer v.3) architecture as example

§ ADD Operate instruction

§ Instruction for accessing memory

LC-3 Assembly

ADD R0, R1, R2

105

a = A[2]; LDR R3, R0, #4

High-level code LC-3 assembly

R3 ← Memory[R0 + 4]

§ FETCH
§ DECODE
§ EVALUATE
ADDRESS

§ FETCH OPERANDS
§ EXECUTE
§ STORE RESULT

After STORE RESULT, a NEW FETCH

106

Instruction (Processing) Cycle

107

§ The FETCH phase obtains the instruction from memory and
loads it into the Instruction Register (IR)

§ This phase is common to every instruction type

§ Complete description
§ Step 1: Load the MAR with the contents of the PC, and simultaneously

increment the PC

§ Step 2: Interrogate memory. This results in the instruction being placed
in the MDR by memory

§ Step 3: Load the IR with the contents of the MDR

FETCH

108

§ Each of these steps is under the direction of the control unit

§ Each step takes one machine cycle
§ Each machine cycle takes one clock cycle (the two are the same)

§ Each instruction cycle consists of many machine cycles
§ If each instruction cycle takes one machine cycle, such a simple

machine is called a single-cycle computer or microarchitecture
§ Single-cycle machines are much simpler to build that what we

are discussing here (e.g., the control unit is not an FSM)

Machine Cycle

109

§ A clock cycle is a small fraction of a second

§ 1 GHz Intel CPU completes 1 billion clock cycles in one
second
§ One clock cycle takes one billionths of a second
§ Or 1 nanoseconds (ns)

§ In one second, the computer can perform 1 billion
machine cycles where each machine cycle executes an
instruction (or part of an instruction)

Machine Cycle

110

Scanned by CamScanner

Step 1: Load
MAR and

increment PC

Step 2: Access
memory

Step 3: Load IR
with the

content of MDR

FETCH in LC-3

111

§ The DECODE phase identifies the instruction
§ Also generates the set of control signals to process the identified

instruction in later phases of the instruction cycle

§ Recall the decoder

§ A 4-to-16 decoder identifies which of the 16 opcodes is going to be
processed

§ The input is the four bits IR[15:12]

§ The remaining 12 bits identify what else is needed to process the
instruction

DECODE

112

Scanned by CamScanner

DECODE
identifies the
instruction to
be processed

Also generates
the set of

control signals
to process the

instruction

DECODE in LC-3

113

§ The EVALUATE ADDRESS phase computes the address of the
memory location that is needed to process the instruction

§ This phase is necessary in LDR

§ It computes the address of the data word that is to be read from
memory

§ By adding an offset to the content of a register

§ But not necessary in ADD

EVALUATE ADDRESS

114

Scanned by CamScanner

LDR calculates
the address by

adding a
register and an

immediate

ADD

EVALUATE ADDRESS in LC-3

115

§ The FETCH OPERANDS phase obtains the source operands needed
to process the instruction

§ In LDR
§ Step 1: Load MAR with the address calculated in EVALUATE ADDRESS

§ Step 2: Read memory, placing source operand in MDR

§ In ADD
§ Obtain the source operands from the register file

§ In some microprocessors, operand fetch from register file can be done
at the same time the instruction is being decoded

FETCH OPERANDS

116

Scanned by CamScanner

LDR loads MAR
(step 1), and

places the
results in MDR

(step 2)

FETCH OPERANDS in LC-3

117

§ The EXECUTE phase executes the instruction

§ In ADD, it performs addition in the ALU

§ In XOR, it performs bitwise XOR in the ALU

§ …

EXECUTE

118

Scanned by CamScanner

ADD adds SR1
and SR2

EXECUTE in LC-3

119

§ The STORE RESULT phase writes the result to
the designated destination

§ Once STORE RESULT is completed, a new
instruction cycle starts (with the FETCH phase)

STORE RESULT

120

Scanned by CamScanner

ADD loads ALU
Result into DR

STORE RESULTS in LC-3

121

Scanned by CamScanner

LDR loads
MDR into DR

STORE RESULTS in LC-3

122

§ FETCH
§ DECODE
§ EVALUATE
ADDRESS

§ FETCH OPERANDS
§ EXECUTE
§ STORE RESULT

The Instruction Cycle

123

§ A computer program executes in sequence (i.e., in program
order)
§ First instruction, second instruction, third instruction and so on

§ Unless we change the sequence of execution

§ Control instructions allow a program to execute out of
sequence
§ They can change the PC by loading it during the EXECUTE phase
§ That wipes out the incremented PC (loaded during the FETCH phase)

Changing the Sequence of Execution

124

§ Unconditional branch or jump (ARM)

§ Conditional branch or jump (ARM)

§ These instructions are encoded using a special branch
format in ARM ISA

§ LC-3 has a jump instruction that can load a register into PC
§ Let’s see

B TARGET

Jump (Branch)

BEQ TARGET

BNE TARGET

125

Scanned by CamScanner

JMP loads
SR1 into PC

PC UPDATE in LC-3

126

n State 1
q The FSM asserts GatePC and LD.MAR
q It selects input (+1) in PCMUX and

asserts LD.PC

n State 2
q MDR is loaded with the instruction

n State 3
q The FSM asserts GateMDR and LD.IR

n State 4
q The FSM goes to next state depending

on opcode

n State 63
q JMP loads register into PC

n Full state diagram in Patt&Pattel,
Appendix C

4.3 Instruction Processing 109

PC <– Register

State 1

State 2

State 3

State 4

MAR <– PC�
PC <– PC + 1

MDR <– M[MAR]

IR <– MDR

JMP
LDR

ADD

[opcode]

Last state�
to carry out�

ADD instruction

Last state�
to carry out�

LDR instruction

To state 1 To state 1 To state 1

State 63

FETCH

First state after�
DECODE for�

ADD instruction

First state after�
DECODE for�

LDR instruction

First state after�
DECODE for�

JMP instruction

DECODE

Figure 4.4 An abbreviated state diagram of the LC-3

the IR to be latched at the end of the clock cycle, concluding the FETCH phase
of the instruction.

The DECODE phase takes one cycle. In state 4, using the external input
IR, and in particular the opcode bits of the instruction, the finite state machine
can go to the appropriate next state for processing instructions depending on
the particular opcode in IR[15:12]. Processing continues cycle by cycle until the
instruction completes execution, and the next state logic returns the finite state
machine to state 1.

As we mentioned earlier in this section, it is sometimes necessary not to
execute the next sequential instruction but rather to jump to another location to
find the next instruction to execute. As we have said, instructions that change the
flow of instruction processing in this way are called control instructions. This can
be done very easily by loading the PC during the EXECUTE phase of the control
instruction, as in state 63 of Figure 4.4, for example.

This is an FSM Controlling the LC-3 Processor

Control (FSM) of the Instruction Cycle

127

§ FETCH
§ DECODE
§ EVALUATE
ADDRESS

§ FETCH OPERANDS
§ EXECUTE
§ STORE RESULT

The Instruction Cycle

128

The Instruction Cycle: Things to Note
§ Not all instructions need all phases

§ The ordering of phases in not set in stone

§ Some phases can be grouped as one

§ Some structures may not be needed in a different
microarchitecture

§ Microarchitecture “style” dictates many details (week 6)

129

The Instruction Cycle: Things to Note
§ What we have seen is a very general multi-cycle CPU

§ Each instruction takes multiple “machine cycles” to
complete

§ In Labs 4 – 6 + first assignment you build a single-cycle CPU
§ The entire instruction (all phases) must finish in one cycle
§ Contrast with multi-cycle CPU as you build
§ One clock cycle = One machine cycle = One instruction cycle

§ We Will cover both single-cycle and multi-cycle ARM CPUs

130

ARM and QuAC
 Instruction Set Architectures

131

(ISAs)
ARM (Chapter 6 of H&H + Assignment 2) and QuAC (Assignment 1)

§ Von Neumann model is also called stored program computer
(instructions in memory). It has two key properties:

§ Stored program
§ Instructions stored in a linear memory array
§ Memory is unified between instructions and data
§ The interpretation of a stored value depends on the control signals

§ Sequential instruction processing
§ One instruction processed (fetched, executed, completed) at a time
§ Program counter (instruction pointer) identifies the current instruction
§ Program counter is advanced sequentially except for control transfer

instructions

Von Neumann Model: Two Key Properties

132

§ There are three main types of instructions

§ Operate (data processing) instructions
§ Execute operations in the ALU

§ Data movement (memory) instructions
§ Read from or write to memory

§ Control flow (branch/jump) instructions
§ Change the sequence of execution (decision making)

Recall: Instruction Types

133

Data Processing Instructions

134

ARM Data Processing (DP) Instructions
§ a = b + c – d

§ We can use two ARM instructions to do the computation

§ ADD and SUB are instruction mnemonics

§ Instructions operate on operands (a, b, c)

§ Computers operate on binary data not variable names
§ We need to specify the physical location of operands
§ We have registers, memory, constants in instructions

ADD t, b, c

SUB a, t, d

135

Registers as Operands
§ Instructions need fast access to operands, but memory is slow

§ Keep a small set of registers close to the CPU in a register file

§ ARM architecture uses 16 registers

§ 32-bit architecture means 32-bit registers

§ a = b + c - d
§ R0 = a, R1 = b, R2 = c, R3 = d, R4 = t

ADD t, b, c

SUB a, t, d

ADD R4, R1, R2

SUB R0, R4, R3

Mapping is chosen by
human, or a tool called
compiler that translates
high-level code to
assembly

136

Aside: Compiler vs. Assembler
§ Compiler translates

§ high-level language code into
§ assembly code (human readable)

§ Assembler translates
§ assembly code into

§ machine code (1s and 0s)

137

Source/Destination Operand
§ Instructions operate on one or more source operands and

store the result after execution in a destination operand

§ R1 and R2 are the source operands for the ADD instruction

§ R4 is the destination operand for the ADD instruction

ADD R4, R1, R2

SUB R0, R4, R3

138

Another Example

SUB R0, R1, R2

ADD R8, R4, R5

ADD R9, R6, R7

SUB R3, R8, R9

§ a = b – c
§ f = (g + h) – (i + j)

§ Variables a – c are held in registers R0 – R2 and f – j are held
in registers R3 – R7

139

Design Principle # 1

§ Regularity leads to simpler hardware

§ Instructions with a consistent number of operands (2
sources, 1 destination) are easier to encode and
handle in hardware

140

Design Principle # 1

§ Regularity leads to simpler hardware

§ Instructions with a consistent number of operands (2
sources, 1 destination) are easier to encode and
handle in hardware

§ QuAC also follows the same principle!
141

The Register Set (File)
§ ARM defines 16 architectural registers

§ The register set is part of the ISA specification

§ R0 – R12 are used for storing variables

§ R13 – R15 have special uses

142

Design Principle # 2

§ Smaller is Faster

§ Reading data from a small register file is faster
than reading from a large file

143

Constant & Immediate in Instruction
§ ARM instructions can use constant or immediate operands

§ The value is available immediately from the instruction
§ Advantage: No register or memory access
§ Disadvantage: Immediate can be 8 – 12 bits because limited bits in the

encoding (instruction format)

§ In the following example, assume R7 = a, R8 = b

ADD R7, R7, #4

SUB R8, R7, #0xC

High-Level code
 a = a + 4
 b = a – 12

ARM Assembly Code

Fact: 98% of all the constants in a program would fit in 13 bits

144

Design Principle # 3
§ Good design demands good

compromises

§ To encode immediate instructions in QuAC, we need
a new format

§ Same with ARM although encoding is more complex

145

Design Principle # 3
§ Good design demands good

compromises
§ To encode immediate in instructions we need to

move away from R format and use a new format.

146

§ We follow the
same principle in
QuAC

MOV Instruction
§ MOV is a useful instruction for initializing register values

§ MOV can also take a register source operand
§ MOV R1, R7 copies the contents of register R7 into R1

§ In the following example, assume R4 = i, R5 = x

MOV R4, #0
MOV R5, #0xFF0

High-Level code
 i = 0;
 x = 4080;

ARM Assembly Code

147

Instruction Format – 1: Data Processing

§ Operands

§ Rn [19:16]: first source operand
register (0000, 0001, ..., 1111)

§ Src2 [11:0]: second source register
or unsigned immediate

§ Rd [15:12]: destination register

31:28 27:26 25:20 19:16 15:12 11:0

cond op funct Rn Rd Src2

§ Control fields

§ cond [31:28]: specifies conditional
execution (1110 for unconditional)

§ op [27:26]: the operation code or
opcode (00 for data processing)

§ funct [25:20]: the specific
function/operation to perform

148

Breaking down funct Field
31:28 27:26 25:20 19:16 15:12 11:0

cond op funct Rn Rd Src2

31:28 27:26 25 24:21 20 19:16 15:12 11:0

cond 00 I cmd S Rn Rd Src2

§ cmd [24:21]: specifies the specific DP instruction (0100 for ADD; 0010 for SUB)

§ I-bit [25]: informs the control unit about Src2
§ I = 0: Src2 is a register
§ I = 1: Src2 is an immediate

§ S-bit [20]: 1 if the instruction sets the condition flags
149

Two DP Formats (Src2 Variations)

31:28 27:26 25 24:21 20 19:16 15:12 11:8 7:0

cond 00 1 cmd S Rn Rd 0 0 0 0 imm8

31:28 27:26 25 24:21 20 19:16 15:12 11:4 3:0

cond 00 0 cmd S Rn Rd 0 0 0 0 0 0 0 0 Rm

Register (assume 11:4 are 0 for now)

Immediate (assume 11:8 are 0 for now)

150

DP with Src2 as Immediate
§ Bit 25 (I) informs the CPU how to interpret Src2

§ I = 1, CPU interprets Src2[7:0] as an unsigned 8-bit constant

31:28 27:26 25 24:21 20 19:16 15:12 11:8 7:0

cond 00 1 cmd S Rn Rd 0 0 0 0 imm8

§ Format (Src2 = immediate)
 ADD R0, R1, #16

 ADD Rd, Rn, #imm8

151

DP with Src2 as Register

§ Format (Src2 = Register)
 ADD R0, R1, R3

 ADD Rd, Rn, Rm

31:28 27:26 25 24:21 20 19:16 15:12 11:4 3:0

cond 00 0 cmd S Rn Rd 0 0 0 0 0 0 0 0 Rm

§ Bit 25 (I) informs the CPU how to interpret Src2
§ I = 0, CPU interprets Src2[3:0] as a register

152

§ AND

§ ORR (OR)

§ EOR (XOR)

§ BIC (Bit Clear)

§ MVN (MoVe and Not)

More Data Processing Insts.

153

§ Bit Clear (BIC)
§ Used for bit masking bits and forcing unwanted bits to 0

§ BIC R6, R1, R2
§ R2 is the mask

§ The bits we want to CLEAR or ZERO in R1 are set to TRUE in R2

§ The instruction stores the result of R1 AND (NOT R2) in R6

The Bit Clear Instruction

154

Example of Data Processing

155

Design Principle # 4
§ Make the common case fast

§ ARM architecture includes only simple, commonly
used instructions

§ The number of instructions is kept small, so the
hardware required for decoding is simple, small,
and fast

§ More elaborate operations are performed using
sequences of multiple simple instructions

156

§ Reduced Instruction Set Computer (RISC)
§ Provide a small set of simple instructions
§ Minimizes hardware complexity (high clock rate, power-efficient)
§ Requires many instructions to solve a complex problem
§ Examples: ARM, MIPS, QuAC, RISC-V

§ Complex Instruction Set Computer (CISC)
§ Provides many complex instructions
§ Complex hardware (longer critical paths, lower clock frequency)
§ Each instruction is more complex so fewer instructions to solve a problem
§ Example: Intel x86

RISC vs. CISC Architectures

157

Another RISC ISA: QuAC
§ Fixed width instructions make decoding easy and simple
§ A small number of crucial instructions (fewer opcodes save instruction real-estate)

§ Few general-purpose registers
§ Space for constants in the ISA
§ Easy to convert to hexadecimal
§ The only way to access memory is via a dedicated set of instructions
§ Conditional execution + general-purpose PC = Conditional branch instructions

§ Two formats and regularity in the ISA
(across formats)
§ rd in same place (Instr10:8)
§ opcode in the same place

§ seth: somewhat complex

158

Data Movement Instructions

159

Data Movement Instructions
§ Real programs need to operate on more data than can fit in the

register file

§ Most data resides in (slow) memory

§ Fetched from memory into the register file when needed

§ Moved to memory from the register file to free up a register

160

161

Motivation

Small and Fast Registers are
inside the CPU close to the ALU

Large and Slow External Main
Memory is outside the CPU, and
physically separated from the CPU

Data Movement Instructions
move data to and from
registers and memory

Data Movement Instructions
§ Two instructions to facilitate data movement

§ The LDR instruction: Bring data word from memory into the register file
§ LoaD Register

§ The STR instruction: Store data word from the register file into memory
§ STore Register

162

Memory View (32 bits = 4 bytes)

C D 1 9 A 6 5 B Word 4

4 0 F 3 0 7 8 8 Word 3

0 1 E E 2 8 4 2 Word 2

F 2 F 1 A C 0 7 Word 1

A B C D E F 7 8 Word 0

13 12 11 10

F E D C

B A 9 8

7 6 5 4

3 2 1 0

Word Number

..

.
..
.

Data

00000010

0000000C

00000008

00000004

00000000

Word Address

..

.
..
.

Byte Address

MSB LSB 4 Bytes

§ Byte-addressable memory (each box is a byte & each row is a word)
§ Byte addresses (left) and 8-bit byte data (right, 1 byte = 2 Hex digits)

Little-Endian View 163

Memory View (32 bits = 4 bytes)

C D 1 9 A 6 5 B Word 4

4 0 F 3 0 7 8 8 Word 3

0 1 E E 2 8 4 2 Word 2

F 2 F 1 A C 0 7 Word 1

A B C D E F 7 8 Word 0

10 11 12 13

C D E F

8 9 A B

4 5 6 7

0 1 2 3

Word Number

..

.
..
.

Data

00000010

0000000C

00000008

00000004

00000000

Word Address

..

.
..
.

Byte Address

MSB LSB 4 Bytes

§ Byte-addressable memory (each box is a byte & each row is a word)
§ Byte addresses (left) and 8-bit byte data (right, 1 byte = 2 Hex digits)

Big-Endian View 164

Revision (Start of Week 6/1)
§ Steps of Transformation

§ From high-level language code to assembly code (compiler or human)

§ From assembly code to machine code (assembler or human)

§ Instruction set architecture

§ Instruction set
§ Opcodes and operands
§ Data types
§ Addressing modes
§ Instruction formats

§ Architectural state
§ Memory
§ Register set
§ Program counter

165

Reading from Memory
§ Format of LoaD Register instruction
 LDR R0, [R1, #12]

§ Address calculation (base + offset addressing)
§ Add base address (contents of R1) to the offset (#12)
§ Address = (R1 + 12)
§ Use any register for base address
§ R1 is a source (register) operand

§ Result
§ R0 holds the data at memory address [R1 + 12] after the

instruction is executed
§ R0 is a destination (register) operand 166

LDR Example
§ Read a 32-bit word of data at memory (byte) address 8 into R3.

Use R2 as the base register. Show the contents of R3.
§ Let’s initialize R2 to 0, and add 8 as the offset

MOV R2, #0

LDR R3, [R2, #8]
C D 1 9 A 6 5 B Word 4

4 0 F 3 0 7 8 8 Word 3

0 1 E E 2 8 4 2 Word 2

F 2 F 1 A C 0 7 Word 1

A B C D E F 7 8 Word 0

Word Number

..

.
..
.

Data

00000010

0000000C

00000008

00000004

00000000

Word Address

..

.

R3 0x 01 EE 28 42

167

Address vs. Value

LDR R3, [R2, #8]
§ Square brackets signify address (also called pointer in C)

§ If you [add the contents of register R2 to constant #8, you will get the
address with which to access memory]

§ When presented with an address, memory obliges by returning
the value stored at address given (8 in this example)

§ In a 32-bit computer
§ Width of address bus = 32 bits (address space = 232 locations)
§ Although memory is byte-addressable, it returns a 32-bit word to fill the

entire register 168

^ Base + Offset Addressing Mode

Writing to Memory
§ Format of STore Register instruction
 STR R0, [R1, #12]

§ Address calculation
§ Add base address (R1) to the offset (12)
§ Address = (R1 + 12)
§ R0 and R1 are both source (register) operands

§ Result
§ Memory address (R1 + 12) will now have the value in R0 after the

instruction is executed
§ Destination operand is memory address computed from source

operands 169

STR Example

MOV R5, #0

STR R7, [R5, #0x54]

§ Store the value held in R7 into memory word 21
§ Let’s initialize R5 to 0, and add 84 (21 X 4) as the

offset

§ The offset can be written in decimal or hexadecimal: 84
(decimal) is 0x54 (Hex)

170

Instruction Format – 2: Memory

§ op = 01

§ Rn = base register (base address)

§ Rd = destination (load), source (store)

§ Src2 = offset (register, shifted register, immediate)

§ funct [25:20] = 6 control bits
§ I (Bit 25): Encoding of Src2
§ L (Bit 20): Load or Store

31:28 27:26 25:20 19:16 15:12 11:0

cond op I P U B W L Rn Rd Src2

171

LDR with Src2 as Immediate
§ I (Bit 25) = 1: Src2 = imm12 where imm2 is a 12-bit unsigned

offset added to the value in the base register (Rn)

31:28 27:26 25:20 19:16 15:12 11:0

cond 01 1 1 1 0 0 1 Rn Rd imm12

§ Format of LoaD Register instruction
 LDR R0, [R1, #12]

 LDR Rd, [Rn, #imm12]

§ L (Bit 20) = 1: CPU performs an LDR

172

LDR Datapath
31:28 27:26 25:20 19:16 15:12 11:0

cond 01 1 1 1 0 0 1 Rn Rd imm12 = 16

Zero
Extend

ALU
1. Address
calculation

2. Memory
read

5.3 Data Movement Instructions 127

5.3.3 Base+offset Mode

LDR (opcode = 0110) and STR (opcode = 0111) specify the Base+offset
addressing mode. The Base+offset mode is so named because the address of the
operand is obtained by adding a sign-extended 6-bit offset to a base register. The
6-bit offset is literally taken from the instruction, bits [5:0]. The base register is
specified by bits [8:6] of the instruction.

The Base+offset addressing uses the 6-bit value as a 2’s complement integer
between −32 and +31. Thus it must first be sign-extended to 16 bits before it is
added to the base register.

If R2 contains the 16-bit quantity x2345, the instruction
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 1 0 0 0 1 0 1 0 0 1 1 1 0 1

LDR R1 R2 x1D
loads R1 with the contents of x2362.

Figure 5.8 shows the relevant parts of the data path required to execute this
instruction. First the contents of R2 (x2345) are added to the sign-extended value
contained in IR[5:0] (x001D), and the result (x2362) is loaded into the MAR.
Second, memory is read, and the contents of x2362 are loaded into the MDR.
Suppose the value stored in memory location x2362 is x0F0F. Third, and finally,
the contents of the MDR (in this case, x0F0F) are loaded into R1.

1616

1

16

2

R0

R1

R2

R3

R4

R5

R6

R7

MAR MDRMEMORY

ADD

0000111100001111

0010001101000101

15 0

IR 1010 011 011

x1D

011101

SEXT

x001D

IR[5:0]

3

LDR R1 R2

Figure 5.8 Data path relevant to the execution of LDR R1, R2, x1D

Base R

3. Data Reg is
loaded

Data R

R0
R1
R2
R3
R4
R5
R6
R7
R8
R9
R10
R11
R12
R13
R14
R15

LDR R11, [R5, #16]

173

STR with Src2 as Immediate
§ I (Bit 25) = 1: Src2 = imm12 where imm2 is a 12-bit unsigned

offset added to the value in the base register (Rn)

31:28 27:26 25:20 19:16 15:12 11:0

cond 01 1 1 1 0 0 0 Rn Rd imm12

§ Format of STore Register instruction
 STR R0, [R1, #12]

 STR Rd, [Rn, #imm12]

§ L (Bit 20) = 0: CPU performs an STR

174

REGISTER can hold memory address
[R1] : R1 is a pointer (à) to Data

Memory Load returns Data or Value
Data is Stored in memory. Address is INPUT
Same Memory Stores Instructions and Data

[PC] à Instruction

175

Conditional Execution

176

Conditional Execution
§ ALU operations set the condition (status) flags

§ They are contained in a register called the Current Program
Status Register (CPSR)

§ We can execute instructions conditionally based on a specific
condition flag being TRUE or FALSE

177

Conditional Execution
§ ARM allows conditional execution in two steps

§ Step 1: Instruction sets the condition flags (Negative, Zero,
Carry, Overflow)

§ Step 2: Subsequent instructions execute based on the state
of the condition flags

178

Setting the Condition Flags
§ Method 1: Use the COMPARE instruction

§ The instruction subtracts the second source operand from the first
operand (R5 – R6)

§ The instruction does not save any result

§ Flags are set as follows
§ Is 0, Z = 1
§ Is negative, N = 1
§ Causes a carry out, C = 1
§ Causes a signed overflow, V = 1

CMP R5, R6

179

Setting the Condition Flags
§ Method 2: Append the instruction mnemonic with S

§ The instruction adds source operands R2 and R3

§ It sets the flags (S)

§ It saves the result in R1

ADDS R1, R2, R3

180

Condition Mnemonics
§ We can execute instructions conditionally based on the

status of the flags register

§ Condition for execution is encoded as a condition mnemonic
appended to the instruction mnemonic

§ NE and EQ are condition mnemonics
§ SUB executes only if R1 is not equal to R2 (meaning Z = 0)

CMP R1, R2

SUBNE R3, R5, R8

ADDEQ R1, R2, R3

181

Condition Mnemonics

182

Instructions that affect condition flags

183

Example
§ R5 = 17 and R9 = 23

§ Will the SUBEQ and ORRMI instructions execute?

§ N Z C V = ?

CMP R5, R9

SUBEQ R1, R2, R3

ORRMI R4, R0, R9

184

Another Example (page 307-308 of book)
§ R2 = 0x80000000 and R3 = 0x00000001

§ Which instructions will execute?

§ N Z C V = ?
CMP R2, R3

ADDEQ R4, R5, #78

ANDHS R7, R8, R9

ORRMI R10, R11, R12

EORLT R12, R7, R10
185

Conditional Execution in QuAC
§ Bit 11 is associated with a condition code

§ ALU instructions set the flags (a.k.a. condition codes). See Flags in QuAC ISA
§ The CPU uses that information to determine whether to execute the current

instruction or not (e.g., store result into register file or memory)

§ If cond field (Instr11) is TRUE, then
§ Execute the instruction only if he last ALU instruction set the Z flag to TRUE
§ Otherwise, do not execute the instruction (depart from the usual control flow)

§ The default encoding of the cond field is 0 (execute the instruction)
§ add r1, r2, r3 (cond = FALSE)
§ addeq r1, r2, r3 (cond = TRUE) 186

Recall: Conditional Execution in QuAC

§ addeq r1, r2, r3 (cond = TRUE)

§ What is the relationship between eq and Z flag?
§ A comparison of two registers shows they are equal (i.e., their difference is 0)

187

1

Branch Instructions

188

Program Counter (PC) points to
(contains the address of) next

instruction to execute

189

.
.

.

Instructions

2 5 8 1 3 0 2 4

E 1 5 1 0 0 0 2

E 3 A 0 2 0 4 5

E 3 A 0 1 0 6 4

.
.

.

00400000

00400004

00400008

0040000C

.
.

.

Byte
Address

.
.

.

← PC

§ 32-Bit ISA with Byte-Addressable Memory
§ PC = PC + 4

§ 64-Bit ISA with Byte-Addressable Memory
§ PC = PC + 8

§ 32-Bit ISA with Word-Addressable Memory
§ PC = PC + 1

190

Normal (Sequential) Execution

191

Normal (Sequential) Execution
Increment PC during instruction
FETCH to prepare to execute the

NEXT Instruction

However: It is often useful to break
this sequence

(1) Altering the PC differently can
break the sequential flow of

program execution

(2) Branch instructions alter the
program counter to break the
sequential flow of exeuction

192

Program Counter (PC)

.
.

.

Instructions

2 5 8 1 3 0 2 4

E 1 5 1 0 0 0 2

E 3 A 0 2 0 4 5

E 3 A 0 1 0 6 4

.
.

.

00400000

00400004

00400008

0040000C

.
.

.

Byte
Address

.
.

.

← PC

§ Program Counter (PC): Contains the address of (or points to) the next
instruction to be executed

§ Incremented by 4 (= 4 bytes or 32 bits) in the FETCH phase

§ PC = PC + 4 to execute the next
 sequential instruction in memory

193

Program Counter (PC)

.
.

.

Instructions

2 5 8 1 3 0 2 4

E 1 5 1 0 0 0 2

E 3 A 0 2 0 4 5

E 3 A 0 1 0 6 4

.
.

.

00400000

00400004

00400008

0040000C

.
.

.

Byte
Address

.
.

.

§ PC = PC + 4 to execute the next
 sequential instruction in memory

194

← PC

Program Counter (PC)

.
.

.

Instructions

2 5 8 1 3 0 2 4

E 1 5 1 0 0 0 2

E 3 A 0 2 0 4 5

E 3 A 0 1 0 6 4

.
.

.

00400000

00400004

00400008

0040000C

.
.

.

Byte
Address

.
.

.

← PC

§ PC = PC + 4 to execute the next
 sequential instruction in memory

195

Program Counter (PC)

.
.

.

Instructions

2 5 8 1 3 0 2 4

E 1 5 1 0 0 0 2

E 3 A 0 2 0 4 5

E 3 A 0 1 0 6 4

.
.

.

00400000

00400004

00400008

0040000C

.
.

.

Byte
Address

.
.

.

← PC

196

§ PC = PC + 4 to execute the next
 sequential instruction in memory

Program Counter (PC)

.
.

.

Instructions

2 5 8 1 3 0 2 4

E 1 5 1 0 0 0 2

E 3 A 0 2 0 4 5

E 3 A 0 1 0 6 4

.
.

.

00400000

00400004

00400008

0040000C

.
.

.

Byte
Address

.
.

.

← PC

197

§ PC = PC + 4 to execute the next
 sequential instruction in memory

Program Counter (PC)

.
.

.

Instructions

2 5 8 1 3 0 2 4

E 1 5 1 0 0 0 2

E 3 A 0 2 0 4 5

E 3 A 0 1 0 6 4

.
.

.

00400000

00400004

00400008

0040000C

.
.

.

Byte
Address

.
.

.

← PC

198

§ PC = PC + 4 to execute the next
 sequential instruction in memory

Branch Instructions and PC

.
.

.

Instructions

2 5 8 1 3 0 2 4

E 1 5 1 0 0 0 2

E 3 A 0 2 0 4 5

E 3 A 0 1 0 6 4

.
.

.

00400000

00400004

00400008

0040000C

.
.

.

Byte
Address

.
.

.

§ Branch instructions change the PC to point to a different instruction than
the next sequential instruction in memory

§ Updated by a different address in the EXECUTE phase
§ New address PC points to is determined by formula (addressing mode)

199

← PC

Branch Instructions and PC

.
.

.

Instructions

2 5 8 1 3 0 2 4

E 1 5 1 0 0 0 2

E 3 A 0 2 0 4 5

E 3 A 0 1 0 6 4

.
.

.

00400000

00400004

00400008

0040000C

.
.

.

Byte
Address

.
.

.

200

§ Update PC to re-execute the four instruction sequence
again (for loop)

← PC

Branch Instructions and PC

.
.

.

Instructions

2 5 8 1 3 0 2 4

E 1 5 1 0 0 0 2

E 3 A 0 2 0 4 5

E 3 A 0 1 0 6 4

.
.

.

00400000

00400004

00400008

0040000C

.
.

.

Byte
Address

.
.

.

← PC

201

§ Update PC to re-execute the four instruction sequence
again (for loop)

Branch Instructions
§ Typically, a computer program is executed in sequence

§ First instruction is executed, then the second, then the third, and so on

§ Decision making is an important advantage of computers

§ if and if-else statements

§ for and while loops

§ switch-case statements

§ ARM provides branch instructions to skip and repeat code
202

Type of Branches
§ Branch (B)

§ Branches to another TARGET instruction

§ Unconditional branch: always executes the target instruction

§ Conditional branch: either executes the TARGET instruction or the next
sequential instruction in memory based on a condition
§ BEQ (Branch if the Zero flag is set)
§ BNE (Branch if the Zero flag is not set)

§ Branch and Link (BL)
§ A special branch to provide support for functions in C++ or Java

§ Architectural support for high-level language needs
203

Unconditional Branch
Assembly code:
 ADD R1, R2, #17
 B TARGET
 ORR R1, R1, R3
 AND R3, R1, #0xFF
TARGET
 SUB R1, R1, #78

§ The Branch in this example is unconditional and always TAKEN (T)

§ After encountering B, the CPU executes SUB instead of ORR

§ The label TARGET is a memory address in human readable form
§ TARGET is transformed into a memory address by a tool called

assembler
§ Assemblers transform assembly code into machine code (0s and 1s)

204

Assembly language let us give meaningful
(human-readable and easy to differentiate)

symbolic names (labels) to memory locations,
such as TARGET, rather than use binary addresses

We call these names Symbolic Addresses

205

Conditional Branch
§ Conditional branch uses condition mnemonics

§ Recall conditional execution and condition
mnemonics

206

Recall: ARM Condition Mnemonics

207

Conditional Branch
§ Conditional branch uses condition mnemonics

§ CMP subtracts R1 from R0 and sets all flags
§ Z flag is FALSE because R0 – R1 is not 0

§ The branch BEQ evaluates to FALSE
§ Branch is NOT TAKEN (NT)
§ The next instruction executed is the ORR instruction

Assembly code:
 MOV R0, #4
 ADD R1, R0, R0
 CMP R0, R1
 BEQ THERE
 ORR R1, R1, R1
THERE
 ADD R1, R1, #78

208

Instruction Format – 3: Branch

§ op = 10

§ imm24 = 24-bit signed immediate

§ The two bits [25:24] form the funct field

§ Bit 25 is always 1

§ L bit: L = 0 for B (Branch)

§ L bit: L = 1 for BL (Branch and Link)

31:28 27:26 25:24 23:0

cond op 1L imm24

§ Format
 B TARGET

 B imm24

209

Branch with L = 0

31:28 27:26 25:24 23:0

cond 10 10 imm24

§ Branch with L bit (Bit 24) as 0 is a regular branch

§ Branch Target Address (BTA): The address of the next instruction to execute if the
branch is taken

§ How is BTA calculated?
1. Shift left imm24 by 2 (to convert words to bytes)

2. Sign-extend (copy Instruction[23] into Instruction[24:31])

3. Add PC + 8

210

BTA Calculation Example

PC
PC + 4
PC + 8
3 instructions
= 12 Bytes

address

31:28 27:26 25:24 23:0

cond 10 10 imm24 = 3 (000000000000000000000011)

suppose PC points here à BLT THERE
 ADD R0, R1, R2
 SUB R0, R0, R9
 ADD R3, R0, R1
 ORR R3, R2, R1
THERE
 ADD R1, R1, #78
 ADD R3, R3, #0x5

0x80A0
0x80A4
0x80A8
0x80AC
0x80B0

0x80B4
0x80B8

§ Instruction encodes the distance from PC + 8 as 3 32-bit words

211

BTA Calculation DataPath

PC

ALU

31:28 27:26 25:24 23:0

cond 10 10 imm24 = 3 (000000000000000000000011)

Shifter

ALU

8

SEXT

212

BTA Calculation Summary
The processor calculates the BTA in three steps

1. Shift left imm24 by 2 (to convert words to bytes)

2. Sign-extend (copy Instr23 into Instr31:24)

3. Add PC + 8

0 1 1

0 1 1 0 0

= 3

= 12

213

Branch-Related Terminology
§ Two main types of branches

§ Conditional branch: Executes the next sequential instruction or TARGET instruction based on a condition
§ Unconditional branch: Always (unconditionally) executes the TARGET instruction

§ Branch Target
§ Memory address of the TARGET instruction

§ Branch Condition
§ Condition which if TRUE branch jumps to the TARGET instruction

§ Branch Resolution/Evaluation
§ The act of evaluating the branch condition
§ Two outcomes of branch resolution are:

§ Taken Branch (T): branch condition evaluates to TRUE
§ Untaken (Not Taken or NT) Branch: branch evaluates to FALSE

§ Branch behavior
§ Strongly (most of times) Taken/Untaken OR Weakly (some of the times) Taken/Untaken
§ Always Taken OR Always Untaken

§ Branch Prediction
§ In high-performance CPUs, branches prevent the CPU from doing useful work
§ Modern CPUs use a branch predictor to predict the branch direction (T/NT) and branch TARGET 214

if and if-else

215

§ We will study high-level language (C) to assembly
transformation in this course

The Three Program Constructs
§ We will see three basic constructs used in structured programs

(construct comes from constructing a program)

§ Sequential ✓
§ One subtask, followed by other, never going back to first

§ Conditional
§ One of the two subtasks but not both, depending on some

condition

§ Iterative
§ Doing a subtask a number of times

216

217

Conditional Statements
§ If the condition is TRUE, do one subtask. Otherwise, do a

different subtask

§ A subtask or block of code may do nothing

§ We call it a conditional construct

§ All languages provide conditional constructs

if Statement
C code:
 if (apples == oranges)
 f = i + 1;
 f = f – i;

Assembly code:
; R0 = apples
; R1 = oranges
; R2 = f
; R3 = i
 CMP R0, R1
 BNE L1
 ADD R2, R3, #1
L1
 SUB R2, R2, R3

§ apples == oranges?
§ if yes, branch to L1
§ if no, add 1 to i

§ Subtract i from f

§ The assembly code checks for the opposite condition in C code

§ Skips the if block when the condition is not satisfied

§ If the branch is NOT TAKEN, the if block is executed
218

§ It is very rarely the case that computer
programs can be written only one way

§ Use the BEQ instruction instead of BNE

§ Using conditional execution (next)

if Statement

219

if Statement
C code:
 if (apples == oranges)
 f = i + 1;
 f = f – i;

Assembly code:
; R0 = apples
; R1 = oranges
; R2 = f
; R3 = i
 CMP R0, R1
 BEQ L1
 B L2
L1
 ADD R2, R3, #1
L2
 SUB R2, R2, R3

§ apples == oranges?
§ if yes, branch to L1
§ if no, add 1 to i

§ Subtract i from f

§ More faithfully translates the high-level code
§ If the branch is TAKEN, the if block is executed
§ There is an extra branch instruction hence worst performance

220

if with Conditional Execution
C code:
 if (apples == oranges)
 f = i + 1;
 f = f – i;

Assembly code:
; R0 = apples
; R1 = oranges
; R2 = f
; R3 = i
 CMP R0, R1
 ADDEQ R2, R3, #1
 SUB R2, R2, R3

§ apples == oranges?
§ if yes, add 1 to i
§ Subtract i from f

§ This solution is shorter and faster (one fewer instruction)

§ If the if block is long, it is tedious to write conditional mnemonics

§ Conditional execution requires NEEDLESS fetching of instructions from memory

§ In high-performance CPUs, branch instructions introduce extra delay if the branch
predictor makes a mistake (branch misprediction) 221

if-else

222

C code:
 if (apples == oranges)
 f = i + 1;
 else
 f = f – i;

Assembly code:
; R0 = apples
; R1 = oranges
; R2 = f
; R3 = i
 CMP R0, R1
 BNE L1
 ADD R2, R3, #1
 B L2
L1
 SUB R2, R2, R3
L2

§ apples == oranges?
§ if yes, branch to L1
§ if no, add 1 to i
§ Branch to L2
§ Subtract i from f

if-else Statement

223

C code:
 if (apples == oranges)
 f = i + 1;
 else
 f = f – i;
 ...

Assembly code:
; R0 = apples
; R1 = oranges
; R2 = f
; R3 = i
 CMP R0, R1
 BNE L1
 ADD R2, R3, #1
 B L2
L1
 SUB R2, R2, R3
L2

§ apples == oranges?
§ if yes, branch to L1
§ if no, add 1 to i
§ Branch to L2
§ Subtract i from f

if-else Statement

224

C code:
 if (apples == oranges)
 f = i + 1;
 else
 f = f – i;
 ...

Assembly code:
; R0 = apples
; R1 = oranges
; R2 = f
; R3 = i
 CMP R0, R1
 BNE L1
 ADD R2, R3, #1
 B L2
L1
 SUB R2, R2, R3
L2

§ apples == oranges?
§ if yes, branch to L1
§ if no, add 1 to i
§ Branch to L2
§ Subtract i from f

if-else Statement

225

C code:
 if (apples == oranges)
 f = i + 1;
 else
 f = f – i;
 ...

Assembly code:
; R0 = apples
; R1 = oranges
; R2 = f
; R3 = i
 CMP R0, R1
 BNE L1
 ADD R2, R3, #1
 B L2
L1
 SUB R2, R2, R3
L2

§ apples == oranges?
§ if yes, branch to L1
§ if no, add 1 to i
§ Branch to L2
§ Subtract i from f

if-else Statement

226

C code:
 if (apples == oranges)
 f = i + 1;
 else
 f = f – i;
 ...

Assembly code:
; R0 = apples
; R1 = oranges
; R2 = f
; R3 = i
 CMP R0, R1
 BNE L1
 ADD R2, R3, #1
 B L2
L1
 SUB R2, R2, R3
L2

§ apples == oranges?
§ if yes, branch to L1
§ if no, add 1 to i
§ Branch to L2
§ Subtract i from f

if-else Statement

227

C code:
 if (apples == oranges)
 f = i + 1;
 else
 f = f – i;
 ...

Assembly code:
; R0 = apples
; R1 = oranges
; R2 = f
; R3 = i
 CMP R0, R1
 BNE L1
 ADD R2, R3, #1
 B L2
L1
 SUB R2, R2, R3
L2

§ apples == oranges?
§ if yes, branch to L1
§ if no, add 1 to i
§ Branch to L2
§ Subtract i from f

if-else Statement

228

C code:
 if (apples == oranges)
 f = i + 1;
 else
 f = f – i;
 ...

Assembly code:
; R0 = apples
; R1 = oranges
; R2 = f
; R3 = i
 CMP R0, R1
 BNE L1
 ADD R2, R3, #1
 B L2
L1
 SUB R2, R2, R3
L2

§ apples == oranges?
§ if yes, branch to L1
§ if no, add 1 to i
§ Branch to L2
§ Subtract i from f

if-else Statement

229

§ It is very rarely the case that computer
programs can be written only one way

§ Do it yourself: Find an alternative way to write the if-else
statement

if-else Statement

230

C code:
 if (apples == oranges)
 f = i + 1;
 else
 f = f – i;

Assembly code:
; R0 = apples
; R1 = oranges
; R2 = f
; R3 = i
 CMP R0, R1
 ADDEQ R2, R3, #1
 SUBNE R2, R2, R3

if-else with Conditional Execution

231

§ This solution is shorter and faster (one fewer instruction)

§ Suppose the if block is long, it is then tedious to write conditional mnemonics

§ Conditional execution requires NEEDLESS fetching of instructions from memory

§ On the other hand, in high-performance CPUs, branch instructions introduce extra delay
if the branch predictor makes a mistake (branch misprediction)

Switch Statement

232

switch-case Statement

§ Execute one of several blocks of code (cases) depending on the condition

§ Break out of the entire switch block {...} after executing a specific block

§ In the above example condition is the state of variable button

§ If no conditions are met, the default block is executed

C code:
 switch (button) {
 case 1: atm = 20; break;
 case 2: atm = 50; break;
 case 3: atm = 100; break;
 default: atm = 0; break;
 }

233

switch-case Statement
C code:
 switch (button) {
 case 1: atm = 20; break;
 case 2: atm = 50; break;
 case 3: atm = 100; break;
 default: atm = 0; break;
 }

Assembly code:
; R0 = button
; R1 = atm
 CMP R0, #1
 MOVEQ R1, #20
 BEQ DONE
 CMP R0, #2
 MOVEQ R1, #50
 BEQ DONE
 CMP R0, #3
 MOVEQ R1, #100
 BEQ DONE
 MOV R1, #0
DONE

§ Comment begins with ;
§ Another comment
§ is button == 1?
§ atm = 20
§ break out
§ is button == 2?
§ atm = 50
§ break out
§ is button == 3?
§ atm = 100
§ break out
§ Execute default case

234

switch-case Statement
C code:
 switch (button) {
 case 1: atm = 20; break;
 case 2: atm = 50; break;
 case 3: atm = 100; break;
 default: atm = 0; break;
 }

Assembly code:
; R0 = button
; R1 = atm
 CMP R0, #1
 MOVEQ R1, #20
 BEQ DONE
 CMP R0, #2
 MOVEQ R1, #50
 BEQ DONE
 CMP R0, #3
 MOVEQ R1, #100
 BEQ DONE
 MOV R1, #0
DONE

§ Comment begins with ;
§ Another comment
§ is button == 1?
§ atm = 20
§ break out
§ is button == 2?
§ atm = 50
§ break out
§ is button == 3?
§ atm = 100
§ break out
§ Execute default case

235

switch-case Statement
C code:
 switch (button) {
 case 1: atm = 20; break;
 case 2: atm = 50; break;
 case 3: atm = 100; break;
 default: atm = 0; break;
 }

Assembly code:
; R0 = button
; R1 = atm
 CMP R0, #1
 MOVEQ R1, #20
 BEQ DONE
 CMP R0, #2
 MOVEQ R1, #50
 BEQ DONE
 CMP R0, #3
 MOVEQ R1, #100
 BEQ DONE
 MOV R1, #0
DONE

§ Comment begins with ;
§ Another comment
§ is button == 1?
§ atm = 20
§ break out
§ is button == 2?
§ atm = 50
§ break out
§ is button == 3?
§ atm = 100
§ break out
§ Execute default case

236

switch-case Statement
C code:
 switch (button) {
 case 1: atm = 20; break;
 case 2: atm = 50; break;
 case 3: atm = 100; break;
 default: atm = 0; break;
 }

Assembly code:
; R0 = button
; R1 = atm
 CMP R0, #1
 MOVEQ R1, #20
 BEQ DONE
 CMP R0, #2
 MOVEQ R1, #50
 BEQ DONE
 CMP R0, #3
 MOVEQ R1, #100
 BEQ DONE
 MOV R1, #0
DONE

§ Comment begins with ;
§ Another comment
§ is button == 1?
§ atm = 20
§ break out
§ is button == 2?
§ atm = 50
§ break out
§ is button == 3?
§ atm = 100
§ break out
§ Execute default case

237

switch-case Statement
C code:
 switch (button) {
 case 1: atm = 20; break;
 case 2: atm = 50; break;
 case 3: atm = 100; break;
 default: atm = 0; break;
 }

Assembly code:
; R0 = button
; R1 = atm
 CMP R0, #1
 MOVEQ R1, #20
 BEQ DONE
 CMP R0, #2
 MOVEQ R1, #50
 BEQ DONE
 CMP R0, #3
 MOVEQ R1, #100
 BEQ DONE
 MOV R1, #0
DONE

§ Comment begins with ;
§ Another comment
§ is button == 1?
§ atm = 20
§ break out
§ is button == 2?
§ atm = 50
§ break out
§ is button == 3?
§ atm = 100
§ break out
§ Execute default case

238

We will cover loops and arrays
after the teaching break

Next: Microarchitecture

239

For Loop

240

Loops
§ Life is full of repetition!

§ Standard routines repeat each day, week, month, ...
§ Terminating at some point

§ Repetition (iteration) is also the essence of computing!
§ Compute the sum of first one billion numbers
§ Go over each student record and change numerical grade to letter

§ Terminate if no more records are found

§ CPUs are very good at looping sometimes but not always
depending on a condition!

241

Loops
§ Loops are iterative constructs that repeat a subtask several times, but only

as long as some condition is TRUE (subtask = sequence of instructions)

§ If the condition is TRUE, do the subtask (also called loop body)

§ After the subtask is finished, go back and check the condition again

§ As long as the result of the condition is TRUE, the program continues to
carry out the same subtask again and again

§ The first time the test is NOT TRUE, the program proceeds onward

242

Loops
§ Loops are iterative constructs that repeat a sub-task several times, but

only as long as some condition is TRUE

§ If the condition is TRUE, do the subtask (also called loop body)

§ After the subtask is finished, go back and check the condition again

§ As long as the result of the condition is TRUE, the program continues to
carry out the same subtask again and again

§ The first time the test is NOT TRUE, the program proceeds onward

243

Loops
§ We will look at

§ For Loop

§ While Loop

§ Our focus
§ How are loops in high-level languages transformed

(translated) into assembly by human or compiler?

244

For Loop in C

§ The variable “i” is called the loop index or counter
§ The For statement has three components

§ i = 0 : index initialization
§ i < 10 : loop termination condition
§ i = i + 1 : loop advancement

§ The body of the loop can have one or more statements

C code:
 int i;
 int sum = 0;

 for (i = 0; i < 10; i = i + 1)
 sum = sum + i;
 ...
 ...

245

C code:
 int i;
 int sum = 0;

 for (i = 0; i < 10; i = i + 1)
 sum = sum + i;
 ...
 ...

For Loop in ARM Assembly
Assembly code:
; R0 = i
; R1 = sum
 MOV R0, #0
 MOV R1, #0
FOR
 CMP R0, #10
 BGE DONE
 ADD R1, R1, R0
 ADD R0, R0, #1
 B FOR
DONE

§ Comment begins with ;
§ Another comment
§ Initialize i
§ Initialize sum
§ Label/Address of CMP
§ check condition:i<10 ?
§ if (i>=10) exit loop
§ sum = sum + i
§ Increment i
§ repeat loop

246

§ High-level code: Few lines (statements); Assembly code: Many lines (instructions)
§ High-level code: Variable names; Assembly code: Registers & memory addresses
§ High-level code: Hides machine details (e.g., MOVement); ASM: Expose details
§ In both C and assembly, the control flow (sequential and iterative constructs) are visible

§ Easier to identify in C, more difficult in assembly
§ Let’s do a line-by-line comparison of the above code ...

C code:
 int i;
 int sum = 0;

 for (i = 0; i < 10; i = i + 1)
 sum = sum + i;
 ...
 ...

For Loop in ARM Assembly
Assembly code:
; R0 = i
; R1 = sum
 MOV R0, #0
 MOV R1, #0
FOR
 CMP R0, #10
 BGE DONE
 ADD R1, R1, R0
 ADD R0, R0, #1
 B FOR
DONE

247

§ In high-level language programs, we initialize variables
§ In assembly initializing variables translates to initializing registers

§ Comment begins with ;
§ Another comment
§ Initialize i
§ Initialize sum
§ Label/Address of CMP
§ check condition:i<10 ?
§ if (i>=10) exit loop
§ sum = sum + i
§ Increment i
§ repeat loop

C code:
 int i;
 int sum = 0;

 for (i = 0; i < 10; i = i + 1)
 sum = sum + i;
 ...
 ...

For Loop in ARM Assembly
Assembly code:
; R0 = i
; R1 = sum
 MOV R0, #0
 MOV R1, #0
FOR
 CMP R0, #10
 BGE DONE
 ADD R1, R1, R0
 ADD R0, R0, #1
 B FOR
DONE

248

§ Comment begins with ;
§ Another comment
§ Initialize i
§ Initialize sum
§ Label/Address of CMP
§ check condition:i<10 ?
§ if (i>=10) exit loop
§ sum = sum + i
§ Increment i
§ repeat loop

C code:
 int i;
 int sum = 0;

 for (i = 0; i < 10; i = i + 1)
 sum = sum + i;
 ...
 ...

For Loop in ARM Assembly
Assembly code:
; R0 = i
; R1 = sum
 MOV R0, #0
 MOV R1, #0
FOR
 CMP R0, #10
 BGE DONE
 ADD R1, R1, R0
 ADD R0, R0, #1
 B FOR
DONE

249

§ Comment begins with ;
§ Another comment
§ Initialize i
§ Initialize sum
§ Label/Address of CMP
§ check condition:i<10 ?
§ if (i>=10) exit loop
§ sum = sum + i
§ Increment i
§ repeat loop

§ Check termination condition to break out of the loop if condition
is met

C code:
 int i;
 int sum = 0;

 for (i = 0; i < 10; i = i + 1)
 sum = sum + i;
 ...
 ...

For Loop in ARM Assembly
Assembly code:
; R0 = i
; R1 = sum
 MOV R0, #0
 MOV R1, #0
FOR
 CMP R0, #10
 BGE DONE
 ADD R1, R1, R0
 ADD R0, R0, #1
 B FOR
DONE

250

§ Add the loop counter i to the variable sum

§ Comment begins with ;
§ Another comment
§ Initialize i
§ Initialize sum
§ Label/Address of CMP
§ check condition:i<10 ?
§ if (i>=10) exit loop
§ sum = sum + i
§ Increment i
§ repeat loop

C code:
 int i;
 int sum = 0;

 for (i = 0; i < 10; i = i + 1)
 sum = sum + i;
 ...
 ...

For Loop in ARM Assembly
Assembly code:
; R0 = i
; R1 = sum
 MOV R0, #0
 MOV R1, #0
FOR
 CMP R0, #10
 BGE DONE
 ADD R1, R1, R0
 ADD R0, R0, #1
 B FOR
DONE

251

§ Increment the loop counter

§ Comment begins with ;
§ Another comment
§ Initialize i
§ Initialize sum
§ Label/Address of CMP
§ check condition:i<10 ?
§ if (i>=10) exit loop
§ sum = sum + i
§ Increment i
§ repeat loop

C code:
 int i;
 int sum = 0;

 for (i = 0; i < 10; i = i + 1)
 sum = sum + i;
 ...
 ...

For Loop in ARM Assembly
Assembly code:
; R0 = i
; R1 = sum
 MOV R0, #0
 MOV R1, #0
FOR
 CMP R0, #10
 BGE DONE
 ADD R1, R1, R0
 ADD R0, R0, #1
 B FOR
DONE

252

§ Keep iterating by branching back to the CMP instruction

§ Comment begins with ;
§ Another comment
§ Initialize i
§ Initialize sum
§ Label/Address of CMP
§ check condition:i<10 ?
§ if (i>=10) exit loop
§ sum = sum + i
§ Increment i
§ repeat loop

C code:
 int i;
 int sum = 0;

 for (i = 0; i < 10; i = i + 1)
 sum = sum + i;
 ...
 ...

For Loop in ARM Assembly
Assembly code:
; R0 = i
; R1 = sum
 MOV R0, #0
 MOV R1, #0
FOR
 CMP R0, #10
 BGE DONE
 ADD R1, R1, R0
 ADD R0, R0, #1
 B FOR
DONE

253

§ Keep iterating by branching back to the CMP instruction

§ Comment begins with ;
§ Another comment
§ Initialize i
§ Initialize sum
§ Label/Address of CMP
§ check condition:i<10 ?
§ if (i>=10) exit loop
§ sum = sum + i
§ Increment i
§ repeat loop

Same For Loop in a Different Style

§ Let’s see the same for loop translated using a different
style

254

C code:
 int i;
 int sum = 0;

 for (i = 0; i < 10; i = i + 1)
 sum = sum + i;

Same For Loop in a Different Style
Assembly code:
; R0 = i
; R1 = sum
 MOV R0, #0
 MOV R1, #0
COND
 CMP R0, #10
 BLT FOR
 B DONE
FOR
 ADD R1, R1, R0
 ADD R0, R0, #1
 B COND
DONE

§ More faithfully follows the for loop semantics in C
§ Use BLT instead of BGE
§ Different ways to translate a high-level statement into ASM 255

§ check condition
§ if i<10 repeat
§ if i>=10, leave for

§ add sum to i
§ Increment i
§ Iterate again

C code:
 int i;
 int sum = 0;

 for (i = 0; i < 10; i = i + 1)
 sum = sum + i;

Aside: Syntax versus Semantics
§ Syntax: Arrangement of keywords in a statement

§ There is a ; after a statement
§ The loop statement uses parentheses

§ Semantics: Meaning of keywords and their arrangement
§ Repeat the instructions in the loop body until condition is not met
§ Add sum to i
§ What the CPU does depends on statement and instruction semantics

§ Without rules of syntax, it would be tedious to understand programmer’s intention
§ Without clearly defined instruction semantics: difficult to write programs to solve

specific problems & to build CPUs that do “right” thing

256

Different way to solve the same
problem, more efficient translation

§ Let’s sum numbers from 0 – 9 in a different way

§ And see if it helps reducing the number of instructions
required for translation

257

C code:
 int i;
 int sum = 0;

 for (i = 9; i >= 0; i = i - 1)
 sum = sum + i;

Decremented Loop
Assembly code:
; R0 = i
; R1 = sum
 MOV R0, #9
 MOV R1, #0
FOR
 ADD R1, R1, R0
 SUBS R0, R0, #1
 BNE FOR
DONE

§ Saves 2 instructions per iteration compared to optimized (increment) version
§ Decrement loop variable & compare: SUBS R0, R0, #1
§ Only 1 branch instead of 2

§ MANY ways to solve (transform) a high-level problem into assembly
§ Code Optimization: A sub-field of Compilers

§ Aims to minimize total instruction count, branch instruction count, and
maximize register utilization (to avoid frequent trips to memory) 258

§ add sum to i
§ i-- and set flags
§ if i!=0 keep looping

For Loop
§ Repeat TEN times: add 10 to R1

§ What is wrong with the code below (one way to think of a
FOR loop)?

§ Poor practice
§ Code is not reusable

§ Next time it may be 20 not 10
§ Instructions cost Memory!!

§ Each instruction is stored in memory and has an address
§ Memory is expensive!
§ Fast Instruction Cache built out of SRAM inside CPU is very premium

§ How many instructions for above with a For loop using branch instruction?

ADD R1, R1, #10
ADD R1, R1, #10
ADD R1, R1, #10
ADD R1, R1, #10
ADD R1, R1, #10
ADD R1, R1, #10
ADD R1, R1, #10
ADD R1, R1, #10
ADD R1, R1, #10
ADD R1, R1, #10

259

While Loop

260

While Loop in C
§ While loops iterate a number of times until the “controlling

condition” or sentinel is NOT met (FALSE)

§ Special cases of while loops: execute forever (left) and never
(right)

C code:
 while (CONDITION) {
 ...
 ...
 }

C code:
 while (TRUE) {
 ...
 ...
 }

261

C code:
 while (FALSE) {
 ...
 ...
 }

Example While Loop
§ Determine X such that 2X = 128

C code:
 int POW = 1;
 int X = 0;

 while (POW != 128) {
 POW = POW * 2;
 X = X + 1;
 }

Assembly code:
; R0 = POW
; R1 = X
 MOV R0, #1
 MOV R1, #0
WHILE
 CMP R0, #128
 BEQ DONE
 LSL R0, R0, #1
 ADD R1, R1, #1
 B WHILE
DONE

§ loop initialization
§ POW = 1
§ X = 0

§ POW != 128?
§ if POW == 128, exit loop
§ POW = POW * 2
§ X = X + 1
§ repeat loop

262

Arrays
Data Structure: Collection of data values organized in a particular
way in memory for ease of storage and access. Two aspects:
organization and functions to read and update values

Examples: Array, Linked List, Stack, Queue
263

What is an Array?
§ Array: A list of data objects of the same type arranged sequentially in memory

§ A data object is a memory location whose content represent “some” value
§ Post office box can store letters, Amazon gifts, pamphlets (all these are pkgs. types)
§ How do we know *interpret* the type of what is stored in the box?

§ Either we know what we placed there, or we know how to look up the type

§ The interpretation of the value in memory depends on its type
§ 8-Byte Unsigned Integers (unsigned int)
§ 4-Byte 2’s Complement Integers (int)
§ A 12-Byte student record with {uint student_Id, int grade}

Array of 1-Byte Objects

Array of 4-Byte Objects

264

Array in Memory
§ The array below has six elements and each element in a single byte

§ The index of the first element (byte) is 0, then 1, then 2,
§ It’s base (starting) address in memory is 0

§ The address of the first element is 0, second element is 1, last element is 5

§ Another array with six elements

§ Same starting address as the first array and same indexing scheme (0, 1, 2, ...)
§ Addresses of array elements in memory are different

§ Second element is at an offset 4, last one at 20. Offsets are in bytes

0 1 2 3 4 5

0 1 4 52 3

Base Address = Address of the first element

Base Address = Address of the first element

265

Array Syntax in C
§ Arrays contain a collection of similarly typed elements
§ Elements are stored contiguously in memory

5 4 marks[4]

1 3 marks[3]

3 2 marks[2]

2 1 marks[1]

0 0 marks[0]

Index

..

.
..
.

Data

00000010

0000000C

00000008

00000004

00000000

Address

..

.

4 Bytes

Element

..

.int is 4 bytes on most architectures

C code:
 int marks[5] = {0, 2, 3, 1, 5};
 int a = marks[0];
 marks[3] = 10;

266

Array of Characters

‘e’ 4 alphas[4]

‘d’ 3 alphas[3]

‘c’ 2 alphas[2]

‘b’ 1 alphas[1]

‘a’ 0 alphas[0]

Index

..

.
..
.

Data

0000004

00000003

00000002

00000001

00000000

Address

..

.

1 Byte

Element

..

.

§ Array of characters (char is a data type in C)
§ char is used for representing characters

C code:

 char alphas[5] = {‘a’, ‘b’, ‘c’, ‘d’, ‘e’};

char is always 1 byte

267

Example Array in C
C code:
 int i;
 int scores[200];
 // initialization code not
 //shown
 ...
 for (i = 0; i<200; i++)
 scores[i] = scores[i] + 10;

Add 10 to each element of the 200-element scores array

268

Array Sum
C code:
 int i;
 int scores[200];
 // initialization code not
 //shown
 ...
 for (i = 0; i<200; i++)
 scores[i] = scores[i] + 10;

Add 10 to each element of the 200-element scores array

0x14000000 100
40
80
76
90

0x14000004
0x14000008
0x1400000C
0x14000010

base à scores[0]
scores[1]
scores[2]
...
scores[4]

dataaddress

Showing the scores array in memory
4 bytes

269

Array Sum
Assembly code:
; R0 = array base address
; R1 = i
 MOV R0, #0x14000000
 MOV R1, 0
LOOP
 CMP R1, #200
 BGE L3
 LSL R2, R1, #2
 LDR R3, [R0, R2]
 ADD R3, R3, #10
 STR R3, [R0, R2]
 ADD R1, R1, #1
 B LOOP
L3

C code:
 int i;
 int scores[200];
 // initialization code not
 //shown
 ...
 for (i = 0; i<200; i++)
 scores[i] = scores[i] + 10;

Add 10 to each element of the 200-element scores array

0x14000000

§ R0 = base addr
§ i = 0

§ i < 200?
§ no? exit loop
§ word to byte
§ R3 = scores[i]
§ R3 = R3 + 10
§ scores[i] += 10
§ i = i + 1
§ repeat

100
40
80
76
90

0x14000004
0x14000008
0x1400000C
0x14000010

base à scores[0]
scores[1]
scores[2]
...
scores[4]

dataaddress

Showing the scores array in memory
4 bytes

270

LDR with Offset in Register

dest base offset

§ It is common to load from memory with [base + offset] addressing mode,
where offset increments by “some” value during each loop iteration

§ ISA provides support for such scenarios to bridge the semantic gap b/w high-
level code and assembly code
§ ISA evolution eases the software “burden”
§ On the other hand, ISA implementation (i.e., microarchitecture) becomes more

involved (recall the RISC vs. CISC debate)

§ New LDR variant
 LDR R3, [R0, R2]

 LDR Rd, [Rn, Rm]

271

Array Sum
Assembly code:
; R0 = array base address
; R1 = i
 MOV R0, #0x14000000
 MOV R1, #0
LOOP
 CMP R1, #200
 BGE L3
 LSL R2, R1, #2
 LDR R3, [R0, R2]
 ADD R3, R3, #10
 STR R3, [R0, R2]
 ADD R1, R1, #1
 B LOOP
L3

C code:
 int i;
 int scores[200];
 // initialization code not
 //shown
 ...
 for (i = 0; i<200; i++)
 scores[i] = scores[i] + 10;

Add 10 to each element of the 200-element scores array

0x14000000

§ R0 = base addr
§ i = 0

§ i < 200?
§ no? exit loop
§ word to byte
§ R3 = scores[i]
§ R3 = R3 + 10
§ scores[i] += 10
§ i = i + 1
§ repeat

100
40
80
76
90

0x14000004
0x14000008
0x1400000C
0x14000010

base à scores[0]
scores[1]
scores[2]
...
scores[4]

dataaddress

Showing the scores array in memory
4 bytes

272

Another LDR Variant

LDR R3, [R0, R1, LSL #2]

Left shift is the same
as multiplying by 2

§ Memory address
§ Left shift R1 by 2 (scaling R1)
§ Add R1 to R0
§ Address = R0 + (R1 * 4)

§ We have seen two LDR variants
§ LDR Rd, [Rn, #imm]
§ LDR Rd, [Rn, Rm]

§ LSL and LDR are often used together in array-related code
(array traversals)

§ ISA provides support for eliminating the extra LSL	instruction

273

Assembly code:
; R0 = array base address
; R1 = i
 MOV R0, #0x14000000
 MOV R1, #0
LOOP
 CMP R1, #200
 BGE L3
 LDR R3, [R0, R1, LSL, #2]
 ADD R3, R3, #10
 STR R3, [R0, R2]
 ADD R1, R1, #1
 B LOOP
L3

C code:
 int i;
 int scores[200];
 // initialization code not
 //shown
 ...
 for (i = 0; i<200; i++)
 scores[i] = scores[i] + 10;

Add 10 to each element of the 200-element scores array

0x14000000 100
40
80
76
90

0x14000004
0x14000008
0x1400000C
0x14000010

base à scores[0]
scores[1]
scores[2]
...
scores[4]

dataaddress

Showing the scores array in memory
4 bytes

Condensing Array Sum – 1

274

§ Offset Addressing
§ Address is the sum of base register and offset (#20, #–20, –R2)
§ Base register is unchanged
§ LDR R0, [R1, R2]

§ Pre-indexed Addressing
§ Address is the sum of base register and offset
§ Base register is updated with the new address before the memory access
§ LDR R0, [R1, R2]!

§ Post-index Addressing
§ Address is the base register
§ Base register is updated with the new address after the memory access
§ LDR R0, [R1], R2

ARM Indexing Modes

275

Examples: ARM Indexing Modes
§ Offset Addressing

§ LDR R0, [R1, R2]
§ Address: R1 + R2 and R1 does not change

§ Pre-indexed Addressing
§ LDR R0, [R1, R2]!

§ Address: R1 + R2 and R1 = R1 + R2

§ Post-index Addressing
§ LDR R0, [R1], R2

§ Address: R1 and R1 = R1 + R2

§ Note: In all cases, offset can be an immediate

276

Assembly code:
; R0 = array base address
; R1 = i
 MOV R0, #0x14000000
 ADD R1, R0, #800
LOOP
 CMP R0, R1
 BGE L3
 LDR R2, [R0]
 ADD R2, R2, #10
 STR R2, [R0], #4

 B LOOP
L3

C code:
 int i;
 int scores[200];
 // initialization code not
 //shown
 ...
 for (i = 0; i<200; i++)
 scores[i] = scores[i] + 10;

Add 10 to each element of the 200-element scores array

0x14000000

§ R0 = base addr
§ R1 = base + 800

§ end of array?
§ yes? exit loop
§ R2 = scores[i]
§ scores[i] + 10
§ store scores[i]
§ and R0 = R0 + 4
§ repeat loop

100
40
80
76
90

0x14000004
0x14000008
0x1400000C
0x14000010

base à scores[0]
scores[1]
scores[2]
...
scores[4]

dataaddress

Showing the scores array in memory
4 bytes

Condensing Array Sum – 2

277

Assembly code:
; R0 = array base address
; R1 = i
 MOV R0, #0x14000000
 MOV R1, R0, #800
LOOP
 CMP R0, R1
 BGE L3
 LDR R2, [R0]
 ADD R2, R2, #10
 STR R2, [R0], #4
 B LOOP
L3

Add 10 to each element of the 200-element scores array
Condensing Array Sum – 2

§ This version of Array Sum first computes the
address of the last byte of the array
(#0x14000800)

§ Each iteration of LOOP checks if R0 is greater
than or equal to #0x14000800

§ If so, we are done, so step out of LOOP
§ STR R2, [R0], #4

§ Stores R2 at [R0], and after that, adds 4
to R0

278

Microarchitecture

Suggested Reading: Requirements, Bottlenecks, and Good Fortune:
Agents for Microprocessor Evolution

Link: https://course.ece.cmu.edu/~ece740/f13/lib/exe/fetch.php?media=r0_patt.pdf

279

§ There are three main types of instructions

§ Operate (data processing) instructions
§ Execute operations in the ALU

§ Data movement (memory) instructions
§ Read from or write to memory

§ Control flow (branch/jump) instructions
§ Change the sequence of execution (decision making)

Recall: Instruction Types

280

ARM Instruction Formats

31:28 27:26 25:24 23:0

cond 10 10 imm24

DP-I

DP-R

Mem

BR

31:28 27:26 25 24:21 20 19:16 15:12 11:8 7:0

cond 00 1 cmd S Rn Rd 0 0 0 0 imm8

31:28 27:26 25 24:21 20 19:16 15:12 11:4 3:0

cond 00 0 cmd S Rn Rd 0 0 0 0 0 0 0 0 Rm

31:28 27:26 25:20 19:16 15:12 11:0

cond 01 1 1 1 0 0 L Rn Rd imm12

281

Today’s Lecture
§ Last few lectures

§ Instruction Set Architectures (ISAs): ARM and QuAC
§ Assembly programming: ARM

§ Today: Microarchitecture
§ Implementation of the ISA (arrangement of registers, memories, ALU, other blocks)
§ Many different microarchitectures for one ISA are possible

§ Design Point: Set of considerations for a given problem space (ML, automotive)
§ Requires making tradeoffs: Performance, power, reliability, cost, complexity

§ Today: Design process and principles, single-cycle microarchitecture, and
performance analysis

§ Other microarchitectures we will cover
§ Multi-cycle, pipelined, and out-of-order

Microarchitecture

ISA

Program

Algorithm

Problem

Circuits

Electrons

282

Many ISAs, Many Microarchitectures
§ There can be many implementations of the same ISA

§ MIPS R2000, R3000, R4000, R6000, R8000, R10000, …
§ x86: Intel 80486, Pentium, Pentium Pro, Pentium 4, Kaby Lake,

Coffee Lake, Comet Lake, Ice Lake, Golden Cove, Sapphire
Rapids, …, AMD K5, K7, K9, Bulldozer, BobCat, Ryzen X, …

§ POWER 4, 5, 6, 7, 8, 9, 10 (IBM), …, PowerPC 604, 605, 620, …
§ ARM Cortex-M*, ARM Cortex-A*, NVIDIA Denver, Apple A*,

M1, …
§ Alpha 21064, 21164, 21264, 21364, …
§ RISC-V …

283

How do we implement an ISA?

“Form follows function.”
 Louis Sullivan

Before we begin construction, let’s pause and ask: what is the
purpose of this computer?

In other words, how do we design a system that obeys the
hardware/software interface?

284

– FETCH
– DECODE
– EVALUATE

ADDRESS
– FETCH OPERANDS
– EXECUTE
– STORE RESULT

Purpose: To Process Instructions

285

One way to process an instruction

Six phases

– FETCH
– DECODE/RF READ
– EXECUTE
– MEMORY ACCESS
– WRITEBACK

Purpose: To Process Instructions

286

Another way to process an instructions

Five phases

How does a machine process insts?
§ What does processing an instruction mean in von Neumann model?

§ Processing an instruction: Transforming AS to AS’ according to the ISA
specification of the instruction

AS = Architectural (programmer visible) state before an instruction is processed

AS’ = Architectural (programmer visible) state after an instruction is processed

Process Instruction

287

Stored program

Sequential instruction processing

The Von Neumann Model/Architecture

288

CONTROL UNIT

PC or IP Inst Register

PROCESSING UNIT

ALU TEMP

MEMORY

Mem Addr Reg

Mem Data Reg

INPUT

Keyboard,
Mouse,
Disk…

OUTPUT

Monitor,
Printer,
Disk…

The Von Neumann Model/Architecture

289

M[0]
M[1]
M[2]
M[3]
M[4]

M[N-1]
Memory
array of storage locations
indexed by an address

Program Counter
memory address
of the current (or next) instruction

Registers
- given special names in the ISA
 (as opposed to addresses)
- general vs. special purpose

Instructions (and programs) specify how to transform
 the values of programmer visible state

Recall: Programmer Visible (Architectural) State

290

ISA = Instruction Set Architecture
§ Instruction Set Architecture = Instruction Set + Architectural State

§ Instruction Set
§ Opcodes
§ Operands
§ Data types (e.g., 2’s complement)
§ Addressing modes (e.g., base + offset)
§ Instruction formats (Data processing, Immediate, Memory)

§ Architectural state
§ Memory
§ Register set
§ Program counter

291

§ ISA specifies abstractly what AS’ should be, given an
instruction and AS
§ It defines an abstract finite state machine where

§ State = programmer-visible state
§ Next-state logic = instruction execution specification

§ From ISA point of view, there are no “intermediate states” between AS and AS’ during
instruction execution
§ One state transition per instruction

§ Microarchitecture implements how AS is transformed
to AS’
§ There are many choices in implementation
§ We can have programmer-invisible state to optimize the speed of instruction execution:

multiple state transitions per instruction
§ Choice 1: AS à AS’ (transform AS to AS’ in a single clock cycle)
§ Choice 2: AS à AS+MS1 à AS+MS2 à AS+MS3 à AS’ (take multiple clock cycles to

transform AS to AS’)

The “Process Instruction” Step

292

§ Each instruction takes a single clock cycle to
execute

§ Only combinational logic is used to implement
instruction execution
§ No intermediate, programmer-invisible

state updates
§ Easy to explain and a simple control unit!

Very Basic Instruction Processing Engine

293

§ Single-cycle machine

§ What is the clock cycle time determined by?
§ What is the critical path (i.e., longest delay path) of the

combinational logic determined by?

AS’ ASSequential
Logic
(State)

Combinational
Logic

AS: Architectural State

Basic Instruction Processing Engine

294

§ Single-cycle machines
§ Each instruction takes a single clock cycle
§ All state updates made at the end of an instruction’s execution
§ Big disadvantage: The slowest instruction determines cycle time à long clock cycle

time

§ Multi-cycle machines
§ Instruction processing broken into multiple cycles/stages
§ State updates can be made during an instruction’s execution
§ Architectural state updates made at the end of an instruction’s execution
§ Advantage over single-cycle: The slowest “stage” determines cycle time

§ Both single-cycle and multi-cycle machines literally follow the von Neumann
model at the microarchitecture level

Single-Cycle vs. Multi-Cycle Machines

295

§ Single-cycle machine

AS’ ASSequential
Logic
(State)

Combinational
Logic

AS: Architectural State

Basic Instruction Processing Engine

296

ARM State (AS) Elements

§ PC: Logically part of the register file
§ Read and written every cycle, independently of the normal register file

operation. Should it be “physically” part of the register file?
§ Instruction memory has a single read port. One 32-bit address input. One 32-bit

instruction (RD) output.
§ Register file: 15 registers (R0 to R14) + additional input to receive R15 from PC

§ Two read ports 4-bit A1 and A2 and 32-bit RD1 and RD2
§ One write port A3 (and WD3) and a write enable input
§ Read of R15 returns PC + 8
§ Write of R15 must be handled properly if PC is outside the register file
§ Reads are combinational and writes happen on the rising edge of the clock 297

ARM State (AS) Elements

§ Data Memory: Single read/write port
§ If write enable (WE) is TRUE then it writes data WD into address A on the rising

edge of the clock
§ If the write enable is FALSE, then it reads value at address A onto RD

§ All reads are combinational and constant time (not realistic but Ok for now)
§ All writes and state updates happen on the rising edge of the clock

§ Synchronous sequential circuit

298

Microarchitecture Division
§ Two interacting parts

§ Datapath (32-bit in our case)
§ Control unit

§ Datapath operates on words of data
§ Memories, registers, ALUs, and multiplexers

§ Control unit informs the datapath how to execute an instruction
§ Receives the current instruction from the datapath
§ Produces multiplexer selects, ALU control, register enable, and memory

write signals to control the operation of the datapath

299

Role of Control Unit
Codes stored in memory control the hardware of the computer ... As a puppeteer
controlling a troupe of marionettes in an exquisitively choreographed dance of arithmetic
and logic. The CPU control signals are the strings.

 CODE, Charles Petzold

300

Design Process/1
§ We will add the logic for one instruction at a time

§ LDR (LoaD Register)

§ STR (STore Register)

§ Data Processing (DP) instructions with 2nd source operand as an immediate

§ DP with 2nd source operand as a register

§ Branch instruction

§ Then build the “Control Unit”
301

§ We limit ourselves to a subset of instructions

§ Data-processing instructions: ADD, SUB, AND, ORR (with register and
immediate offsets)

§ Memory instructions: LDR, STR (with positive immediate offset)

§ Branches: B

§ Once you understand these you can expand the
hardware to handle others

302

Design Process/2

§ New connections are emphasized in black

§ Hardware already studied in gray

§ Control signals in blue

303

Design Process/3

LDR with Src2 as Immediate
§ I (Bit 25) = 1: Src2 = imm12 where imm12 is a 12-bit unsigned

offset added to the value in the base register (Rn)

31:28 27:26 25:20 19:16 15:12 11:0

cond 01 1 1 1 0 0 1 Rn Rd imm12

§ Format of LoaD Register instruction
 LDR R0, [R1, #12]

 LDR Rd, [Rn, #imm12]

§ L (Bit 20) = 1: CPU performs an LDR

304

31:28 27:26 25:20 19:16 15:12 11:0

cond 01 1 1 1 0 0 L Rn Rd imm12

The LDR Datapath
Step 1: Read (Fetch) instruction from memory

§ Remember the distinction between PC (current state) and PC’ (next state)
§ From this point on, CPU actions depend on the instruction fetched

31:28 27:26 25:20 19:16 15:12 11:0

cond 01 1 1 1 0 0 L Rn Rd imm12

The LDR Datapath
Step 2: Read source operand (base register, Rn) from register file

§ Data is read onto RD1

31:28 27:26 25:20 19:16 15:12 11:0

cond 01 1 1 1 0 0 L Rn Rd imm12

The LDR Datapath
Step 3: Zero-extend the immediate field stored in Instr11:0

Zero Extension
§ Appending leading zeros to make a smaller quantity equal to a

bigger quantity

§ ImmExt31:12 = 0 and ImmExt11:0 = Instr11:0

308

31:28 27:26 25:20 19:16 15:12 11:0

cond 01 1 1 1 0 0 L Rn Rd imm12

The LDR Datapath
Step 4: Compute memory address (ALUControl = 00)
ALU can perform many operations (which one do we want: ADD)

31:28 27:26 25:20 19:16 15:12 11:0

cond 01 1 1 1 0 0 L Rn Rd imm12

The LDR Datapath
Step 5: Write back data from read by data memory to Rd in Reg File
When is the ReadData written to the register file?

31:28 27:26 25:20 19:16 15:12 11:0

cond 01 1 1 1 0 0 L Rn Rd imm12

The LDR Datapath
Step 6: Compute address of next instruction (PC’ = PC + 4)
Recall: Hardware in inherently parallel

PC will become PC’ the following cycle (recall photography example)

31:28 27:26 25:20 19:16 15:12 11:0

cond 01 1 1 1 0 0 L Rn Rd imm12

The LDR Datapath
Step 7/a: Reading register R15 returns PC + 8

31:28 27:26 25:20 19:16 15:12 11:0

cond 01 1 1 1 0 0 L Rn Rd imm12

The LDR Datapath
Step 7/b: Writing register R15 (PC may be an instruction’s result)

STR Instruction
§ STR instruction uses the same instruction format

§ LDR and STR behave differently at the machine level
§ Rd is a source operand (specifies the register to store to mem)

§ Format of STore Register instruction
 STR R0, [R1, #12]

 STR Rd, [Rn, #imm12]

31:28 27:26 25:20 19:16 15:12 11:0

cond 01 1 1 1 0 0 L Rn Rd imm12

314

31:28 27:26 25:20 19:16 15:12 11:0

cond 01 1 1 1 0 0 L Rn Rd imm12

The STR Datapath
Step 8: Read a second register (Rd) and write its value to memory

ignored

§ ReadData is ignored because RegWrite is FALSE

DP Instructions: Immediate
§ Like the LDR instruction, but two important differences

§ imm8 instead of imm12
§ The destination register stores the result of the ALU

operation instead of memory access
§ Format
 ADD R0, R1, #16

 ADD Rd, Rn, #imm8

31:28 27:26 25 24:21 20 19:16 15:12 11:8 7:0

cond 00 1 cmd S Rn Rd 0 0 0 0 imm8
316

Adding Support for DP Instructions

ALUControl Function

00 ADD

01 SUB

10 AND

11 ORR

§ The ALU functions and encoding

§ The ALU also produces four flags that are sent to the control unit
§ Register file either receives data from the data memory or the ALU

§ Add a multiplexer to choose between ReadData and ALUResult
§ This multiplexer is controlled by MemtoReg
§ MemtoReg = 1 for LDR and 0 for data processing instructions 317

DP-Immediate Datapath
Step 9: Change extend block, and add signal to write ALU result to RF

31:28 27:26 25 24:21 20 19:16 15:12 11:8 7:0

cond 00 1 cmd S Rn Rd 0 0 0 0 imm8

RF

318

DP Instructions: Register
§ The second source operand is Rm instead of an immediate
§ Place Rm on the A2 port of the register file for DP instructions

with register as the second operand

§ Format
 ADD R0, R1, R3

 ADD Rd, Rn, Rm

31:28 27:26 25 24:21 20 19:16 15:12 11:4 3:0

cond 00 0 cmd S Rn Rd 0 0 0 0 0 0 0 0 Rm
319

DP-Register Datapath
Step 10: Read 2nd register (Rm) from Reg File and send RD2 to ALU
We need multiplexers on the inputs of register file and ALU to select the second source register

31:28 27:26 25 24:21 20 19:16 15:12 11:4 3:0

cond 00 0 cmd S Rn Rd 0 0 0 0 0 0 0 0 Rm
320

Branch Instruction: Unconditional
§ The second source operand is Rm instead of an immediate
§ Place Rm on the A2 port of the register file for DP instructions

with register as the second operand

§ Format
 B TARGET

 B imm24

31:28 27:26 25:24 23:0

1110 10 10 imm24
321

Branch Datapath
Step 11: Change extend block, and add a bit to RegSrc for branch

31:28 27:26 25:24 23:0

1110 10 10 imm24
322

Operation of the Extend Block

ImmSrc1:0 ExtImm Description

00 {24’b0, Instr7:0} Zero-extended imm8

01 {20’b0, Instr11:0} Zero-extended imm12

10 {6{Instr23}, Instr23:0}00 Sign-extended imm24

§ Each of the three instruction formats interpret the
immediate field differently
§ ImmSrc1:0 is the 2-bit control signal input to the

extend block

323

Datapath with Control

324

Control Unit
§ Generate control signals based on instruction fields

§ Instr31:20 (cond)
§ Instr27:26 (opcode)
§ Instr25:20 (funct)
§ Flags (needed for conditional execution)
§ Destination register (to update PC properly)

§ Controller for single-cycle microarchitecture is purely combinational

§ Conditional logic must enable updates to the architectural state when the
instruction should be conditionally executed
§ Write enables must be TRUE only if conditional instruction is in fact

executed
325

One way to build the control unit

326

One way to build the control unit
The write enable lines that update the architectural state could be “killed”
by the conditional logic

327

Decoder Truth Table
§ Only selected signals are shown in the truth table

O
p

Funct5

Funct0

Type

Branch

M
em

toReg

M
em

W

ALU
Src

Im
m

Src

RegW

RegSrc

ALU
O

p

00 0 X DP Reg 0 0 0 0 XX 1 00 1

00 1 X DP Imm 0 0 0 1 00 1 X0 1

01 X 0 STR 0 X 1 1 01 0 10 0

01 X 1 LDR 0 1 0 1 01 1 X0 0

11 X X B 1 0 0 1 10 0 X1 0

Example: Generating PCSrc Signal
§ PCSrc is 1 when

§ Destination register (Rd) is R15
§ RegW is 1 (ADD/SUB or LDR)
§ Instruction is a branch

§ PCSrc = ((Rd == 15) & RegW) | Branch
§ Assuming the control unit generates a signal called Branch

when opcode is 10 (B or BL)

§ Important: Be careful to take conditional execution into
account for the assignment!

329

Processor Operation: ORR

330

Processor Operation: ORR

PCSrc 0

MemtoReg 0

MemWrite 0

ALUControl 11

ALUSrc 0

ImmSrc0:1 XX

RegWrite 1

RegSrc0:1 00

ALUControl Function

00 ADD

01 SUB

10 AND

11 ORR

331

Processor Operation: LDR

332

Processor Operation: LDR

PCSrc 0

MemtoReg 1

MemWrite 0

ALUControl 00

ALUSrc 1

ImmSrc0:1 01

RegWrite 1

RegSrc0:1 00

ALUControl Function

00 ADD

01 SUB

10 AND

11 ORR

ImmSrc1:0 ExtImm Description

00 {24’b0, Instr7:0} Zero-extended imm8

01 {20’b0, Instr11:0} Zero-extended imm12

10 {6{Instr23}, Instr23:0}00 Sign-extended imm24

333

Drawback of Single-Cycle CPU
§ Is this the best way to build a CPU?

§ What are the critical issues?

§ Next: performance analysis basics

334

Performance Analysis

335

Processor Performance
§ Performance is quantified by the execution time

§ The time it takes for a program to execute from start to finish

§ For example, for a given ISA and technology, how long does it
take to run a program on the single-cycle CPU?

336

§ How fast is my program?
§ Every program consists of a series of instructions
§ Each instruction needs to be executed

§ So how fast are my instructions?
§ Instructions are realized on the hardware
§ They can take one or more clock cycles to complete
§ Cycles per Instruction = CPI

§ How much time is one clock cycle?
§ The critical path determines how much time one cycle requires = clock period
§ 1/clock period = clock frequency = how many cycles can be done each second

Processor Performance

337

Execution Time
Execution	time	= (#instructions)(!"!#$%

&'%()*!(&+'
)	(%$!+',%

!"!#$
)

§ # instructions (N)
§ Depends on the ISA, skill of programmer, compiler, algorithm

§ cycles per instruction (CPI)
§ Depends on the microarchitecture

§ seconds per cycle (clock period, inverse is clock frequency, f)
§ critical path, circuit technology, type of adders, gate-level

details
338

§ N x CPI x (1/f)

§ Reduce the number of instructions (N)
§ Make instructions that ‘do’ more (CISC)
§ Use better compilers

§ Use fewer cycles to perform the instruction (CPI)
§ Simpler instructions (RISC)
§ Use multiple units/ALUs/cores in parallel

§ Increase the clock frequency (f)
§ Find a ‘newer’ technology to manufacture
§ Redesign time-critical components
§ Adopt pipelining

How Can I Make the Program Run
Faster?

339

Execution Time (Single-Cycle CPU)
Execution	time	= (#instructions)(!"!#$%

&'%()*!(&+'
)	(%$!+',%

!"!#$
)

§ # instructions (ARM is a RISC ISA)

§ cycles per instruction (= One, fixed, bad idea!)

§ seconds per cycle (critical path of the CPU circuit)

340

Critical Path Analysis
§ Each instruction in single-cycle CPU takes one clock cycle

§ Determining the cycle time requires finding the critical path

§ Different instructions use different resources
§ LDR uses instruction and data memory
§ ADD does not use data memory
§ STR does not write anything back to the register file

§ Which instruction is the slowest?
§ Let us revisit the schematics and find out

341

Elements of Critical Path

Parameter Description
tpcq_PC	 PC clock-to-Q delay
tmem Memory read
tdec Decoder propagation delay
tmux Multiplexer delay
tRFread Register file read
text Extension block delay
tALU ALU delay
tRFsetup Set up RF for write (next cycle)

342

Critical Path: LDR

Tc	=	tpcq_PC	+	2tmem	+	tdec	+	tRFread	+	tALU	+	2tmux	+	tRFsetup	

Tc	=	tpcq_PC	+	tmem	+	tdec	+	max[tmux	+	tRFread,	text	+	tmux]	+	tALU	
+	tmem		+	tmux	+	tRFsetup	

§ Memories & register files slower than combinational logic
§ Therefore,	tmux	+	tRFread	>>	text	+	tmux

Final Equation

343

Critical Path: DP-R

Tc	=	tpcq_PC	+	tmem	+	tdec	+	tRFread	+	tALU	+	2tmux	+	tRFsetup	
Final Equation

Tc	=	tpcq_PC	+	tmem	+	tdec	+	tmux	+	tRFread	+	tALU	+	tmux		
	 	+	tRFsetup	

344

Critical Path Analysis
§ Different instructions have different critical paths

§ LDR is the slowest instruction
§ DP-R and B have shorter critical paths because they do

not need to access data memory (Memory is slow!)

§ Single-cycle processor is a synchronous sequential circuit
§ Clock period must be constant and long enough to

accommodate the slowest instruction

§ The numerical values of different variables in the critical path
equation depend on the specific manufacturing technology

345

Exercise 1: Performance Analysis
§ Find the time it takes to execute a program with 100 billion

instructions on a single-cycle CPU in 16 nm CMOS manufacturing
process. See the table for delays of logic elements.

Parameter Delay (ps)
tpcq_PC	 40
tmem 200
tdec 70
tmux 25
tRFread 100
tALU 120
tRFsetup 60

Tc	=	tpcq_PC	+	2*tmem	+	tdec	+	tRFread	+	tALU	+	
	 		2*tmux	+	tRFsetup	

346

C code:
 int i;
 int sum = 0;

 for (i = 0; i < 10; i = i + 1)
 sum = sum + i;

Exercise 2: Performance Analysis
Assembly code:
; R0 = i
; R1 = sum
 MOV R0, #0
 MOV R1, #0
COND
 CMP R0, #10
 BLT FOR
 B DONE
FOR
 ADD R1, R1, R0
 ADD R0, R0, #1
 B COND
DONE

§ Find the execution time for each of the two implementations of
the for loop. Use CPU parameters from next slide.

347

Assembly code:
; R0 = i
; R1 = sum
 MOV R0, #0
 MOV R1, #0
FOR
 CMP R0, #10
 BGE DONE
 ADD R1, R1, R0
 ADD R0, R0, #1
 B FOR
DONE

Drawbacks of Single-Cycle CPU
§ Requires two memories (no reuse)

§ Requires three adders (no reuse)

§ Clock period is dictated by the slowest instruction

§ No way to make the common case fast (e.g., DP instructions)

348

Coming Attractions

349

Multi-Cycle CPU
§ Divide each instruction into a number of steps

§ Perform one step in one clock cycle (instead of an entire
instruction)

§ Need non-architectural (microarchitectural) registers to store
intermediate state

§ Need an FSM-based controller to transition between steps
§ Different control signals on different steps

§ After the teaching break: Possible ext. for assignment 1
Section 7.4 of H&H

350

Multi-Cycle CPU Sneak Peek (Week 7)

Section 7.4 of H&H

§ Can you spot the non-architectural state (registers)?

351

Multi-Cycle CPU Cycle by Cycle (Week 7)

CLK: 0
1

ADD LDR B NOP

§ Hypothetical multi-cycle CPU

§ ADD and SUB takes 3 cycles

§ LDR and STR take 4 cycles

§ Unconditional branch takes 1 cycle
352

Multi-Cycle Control Unit FSM (Week 7)

353

ISA Tradeoffs

354

ISA Impacts Software and Hardware
§ Complex instructions

§ (Upside) Dense and efficient code
§ (Downside) Complex circuits with longer critical paths
§ Example: x86 operate instructions can have both register and memory operands

§ Register-Memory architecture

§ Simple instructions
§ (Upside) Simple circuits (microarchitecture)
§ (Downside) Large instruction footprint (many instruction to solve the same problem)
§ (Downside) Big semantic gap between high-level code and assembly code
§ Example: ARM allows accessing memory only via LDR/STR

§ Load-Store architecture

§ Number of Registers (tradeoff)
§ Large register file demands more space in the ISA for encoding
§ But, more registers reduce trips to memory (memory references)

355

ISA Impacts Software and Hardware
§ ISA impacts

§ Performance

§ Power and energy

§ Code size and instruction footprint

§ Circuit cost and complexity (chip area)

§ Future growth (ISA evolution)
356

§ How close instructions & data types &
addressing modes are to high-level language
(HLL)

Semantic Gap

357

Harder mapping of HLL to ISA
More work for software designer
Less work for hardware designer
Optimization burden on SW

HLL

HW
Control
Signals

HLL

HW
Control
Signals

ISA with
Complex Inst
& Data Types
& Addressing Modes ISA with

Simple Inst
& Data Types
& Addressing Modes

Small Semantic Gap

Large Semantic Gap

Easier mapping of HLL to ISA
Less work for software designer
More work for hardware designer
Optimization burden on HW

Semantic Gap

358

Addressing Mode Tradeoffs

359

Addressing Modes
§ Addressing mode specifies how instruction operands are addressed

§ Source and destination registers
§ Target address of a memory reference
§ Target address that a branch will jump to

§ ARM uses four main modes
§ Register
§ Immediate
§ Base
§ PC-relative

§ First three modes for reading/writing operands
§ Last mode is for writing the program counter

360

ARM Addressing Modes
§ Some of the addressing modes allow the second source operand

to be shifted
§ Check your references for details

361Section 6.4.4 of H&H

Addressing Mode Tradeoffs
§ Complex addressing modes simplify high-level code to assembly

translation

§ But they result in more complex circuits (microarchitecture)
§ ALU to add base and offset
§ Shifter in front of ALU

§ Where to place the burden of optimization? Software or Hardware
§ Many simple instructions + Simple microarchitecture
§ Few complex instructions + Complex microarchitecture

362

Aside: Data Dependences
§ In Von Neumann model, instructions depend on each other for

data

§ Data (True) Dependence: One instruction produces a result that
the subsequent instruction consumes

363

Aside: Data Dependences
§ One can visualize a sequential program as an instruction

flow or data flow

364

Aside: Data Dependences
§ Data dependence implies the two instructions must execute in

program order

§ They cannot be executed simultaneously (in parallel at the
same time)

§ There are also control dependences due to branches as
instruction can only execute if a branch evaluates to TRUE

§ And false dependences (we will see the details later)

365

Implication for microarchitecture
§ In the end we care about the correctness of the program

§ From the initial architectural state to the final architectural state

§ Preserving data flow (not instruction flow) is critical for program correctness

§ Single-cycle CPU is one way to satisfy the program correctness criteria
§ Very strict and highly constrained. And hence, poor performance

§ High performance requires out of the box thinking
§ Key technique is parallelism: we must execute several (independent)

instructions at the same time

§ Understanding dependences is the key to unlocking parallelism
366

Aside: What if a machine processes
instructions out of program order?
§ What does the programmer care about?

§ Does the programmer care if i3 executed before i4?

§ No: Programmer only cares R1 was updated before R0
§ Can update AS in program order and process instructions out of order (OOO)

§ Why would a machine ever do that?
§ Fact: Almost EVERY high-performance computer does that!
§ In-program-order instruction processing (execution) is an illusion in high-

end computers

i1: CMP R0, #10
i2: BGE DONE
i3: ADD R1, R1, R0
i4: ADD R0, R0, #1

367

We will meet after two weeks

Revise the lecture content and do the quiz

Finish assignment 1

368

Shift Instructions

369

Category: Data Processing

Shift Instructions
§ Shift the value in a register left or right, drop bits off the end

§ Logical Shift Left (LSL)
§ Logical Shift Right (LSR)
§ Arithmetic Shift Right (ASR)
§ Rotate Right (ROR)

§ Logical Shift: shifts the number to the left/right and fills empty slots with zero

§ Arithmetic Shift: On right shifts fill the most significant bits with the sign bit

§ Rotate: rotates number in a circle such that empty spots are filled with bits
shifted off the other end

370

Logical Shift Left (LSL)

11000000

§ Binary Number in Decimal = 3

371

Logical Shift Left (LSL)

11000000

§ Shift the number LEFT by ONE BIT
§ INSERT 0 in Least Significant Position
§ Get RID of the Most Significant BIT

11000000 0❌

372

= 3

Logical Shift Left (LSL)

11000000

§ Binary Number after shift in Decimal = 6
§ SHIFT LEFT = MULTIPLY BY 2

1100000 0

373

= 3

= 6

Logical Shift Right (LSR)

11000000

§ Binary Number after right shift in Decimal = 1
§ SHIFT RIGHT = DIVIDE BY 2

0000000 1

374

= 3

= 1

Logical Shift Left (LSL)

1 1 1 1 1 1 1 1 0 0 0 1 1 1 0 0 0 0 0 1 0 0 0 0 1 1 1 0 0 1 1 1

1 1 1 1 1 1 1 1 0 0 0 1 1 1 0 0 0 0 0 1 0 0 0 0 1 1 1 0 0 1 1 1 0 0 0

1 1 1 1 1 0 0 0 1 1 1 0 0 0 0 0 1 0 0 0 0 1 1 1 0 0 1 1 1 0 0 0

31 0

LSL R0, R5, #3ARM Instruction

R5

R0

❌❌❌

§ Shift all bits left 3 positions, fill 3 least significant bits with 0’s
§ Drop the 3 bits off the end

375

Logical Shift Right (LSR)

1 1 1 1 1 1 1 1 0 0 0 1 1 1 0 0 0 0 0 1 0 0 0 0 1 1 1 0 0 1 1 1

0 0 0 1 1 1 1 1 1 1 1 0 0 0 1 1 1 0 0 0 0 0 1 0 0 0 0 1 1 1 0 0 1 1 1

0 0 0 1 1 1 1 1 1 1 1 0 0 0 1 1 1 0 0 0 0 0 1 0 0 0 0 1 1 1 0 0

31 0

§ Shift all bits right 3 positions, insert three 0’s from the right
§ Drop the 3 bits from the left

LSR R0, R5, #3ARM Instruction

R5

R0

❌❌❌

376

Arithmetic Shift Right (ASR)

1 1 1 1 1 1 1 1 0 0 0 1 1 1 0 0 0 0 0 1 0 0 0 0 1 1 1 0 0 1 1 1

1 1 1 1 1 1 1 1 1 1 1 0 0 0 1 1 1 0 0 0 0 0 1 0 0 0 0 1 1 1 0 0 1 1 1

1 1 1 1 1 1 1 1 1 1 1 0 0 0 1 1 1 0 0 0 0 0 1 0 0 0 0 1 1 1 0 0

31 0

§ Shift all bits right 3 positions, insert three 1’s from the right
§ Drop the 3 bits from the left

ASR R0, R5, #3ARM Instruction

R5

R0

❌❌❌

377

Rotate Right (ROR)

1 1 1 1 1 1 1 1 0 0 0 1 1 1 0 0 0 0 0 1 0 0 0 0 1 1 1 0 0 1 1 1
31 0

ROR R0, R5, #21ARM Instruction

R5
20

§ Do a circular shift
§ Right shift by 21 and put back bits that fall off at left end

1 1 1 1 1 1 1 1 0 0 0 1 1 1 0 0 0 0 0 1 0 0 0 0 1 1 1 0 0 1 1 1
31 0

R5
20

1 1 1 0 0 0 0 0 1 0 0 0 0 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 1 0 0 0 R0
Result

378

Binary Encoding of Shift Instructions
§ Self Study

§ Section 6.4 of H&H

379

Shifts: Machine Representation

DP-R

31:28 27:26 25 24:21 20 19:16 15:12 11:4 3:0

cond 00 0 cmd S Rn Rd 0 0 0 0 0 0 0 0 Rm

Shift Instructions
31:28 27:26 25 24:21 20 19:16 15:12 11:7 6:5 4 3:0

cond 00 0 1101 S 0000 Rd shamt5 sh 0 Rm

§ cmd = 1101
§ sh = 00 (LSL), 01 (LSR), 10 (ASR), 11 (ROR)
§ Rn = 0
§ shamt5 = 5-bit shift amount

380

§ Format (Src2 = Register)
 LSL R0, R5, #3

 LSL Rd, Rm, shamt5

31:28 27:26 25 24:21 20 19:16 15:12 11:7 6:5 4 3:0

cond 00 0 cmd S Rn Rd shamt5 sh 0 Rm

Shifts: Machine Representation

381

§ ARM also has instructions with shift amount held in a register

LSL R4, R8, R6

ROR R5, R8, R6

31:28 27:26 25 24:21 20 19:16 15:12 11:8 7 6:5 4 3:0

cond 00 0 cmd S Rn Rd Rs 0 sh 1 Rm

382

Shifts: Machine Representation

Use of Shift Instructions
§ Left shift by N = Multiplication by 2N

§ Arithmetic right shift by N = Division by 2N

§ Extract bits or assemble new bit patterns
§ Network programming

§ Cryptography

§ Compression of data
383

Examples of Shift Instructions

384Page 305 of H&H

Shift amount can be
in a register

Manipulating Characters & Bytes

385

§ Reading and writing text is ubiquitous

§ Different devices (tablet, laptop, desktop, mobile)

§ Different applications (word, whatsapp, email)

§ Different manufactures (Apple, Intel, Samsung)

§ Need a standardized way to represent characters that make up text
§ From bits and bytes to character representations

§ Things still go wrong!

Characters & Encoding

386

Thinking about Character Input/Output
§ Keyboard data is captured in a register

§ Some binary data is sent to a special memory associated with
graphics chip to display the character

387

Manipulating Characters
§ Manipulating characters is common

§ We need architectural support for manipulating characters

§ Character is the same as a byte

§ So, architectural support for manipulating bytes

§ Regular LDR/STR deal with words (not bytes) 388

§ English characters can be encoded in a single byte (< 256)

§ 1963: ASCII was developed
§ American Standard Code for Information & Interchange
§ Assigns each text character a unique byte
§ Information exchange became feasible across manufactures and

geographical boundaries

§ The C language uses the type char to represent byte or character

§ Optimize the common case: Need architectural support for
manipulating bytes

ASCII Encoding

389

§ Other programming languages such as Java, use different
character encodings

§ Unicode is the most well-known

§ 16 bits to represent accents, Asian languages, and more

§ www.unicode.org

Other Encodings

390

Lower case and upper case differ by 0x20 (32) 391

Instructions for Loading/Storing Bytes
§ LDRB

§ Load byte in register, and zero-extend to fill the 32 bits

§ LDRSB
§ Load byte in register, and sign-extend to fill the 32 bits

§ STRB
§ Store the LSB of the 32-bit integer into the specified byte in

memory
§ More significant bits of the register are ignored

392

Loading/Storing Bytes

...

F7

8C

42

03

4

3

2

1

0

Byte Address Data Registers

xx xx xx xx

xx xx xx xx

11 10 A1 9B

LDRB R1, [R4, #2]

LDRSB R2, [R4, #2]

STRB R3, [R4, #3]

§ What is in R1, R2, and memory after each of the instruction
has executed? Assume R4 = 0

R1

R2

R3

393

Loading/Storing Bytes

...

9B

8C

42

03

4

3

2

1

0

Byte Address Data Registers

00 00 00 8C

FF FF FF 8C

xx xx xx 9B

LDRB R1, [R4, #2]

LDRSB R2, [R4, #2]

STRB R3, [R4, #3]

§ What is in R1, R2, and memory after each of the instruction
has executed? Assume R4 = 0

R1

R2

R3

394

§ A series of characters is a string

§ Two ways to create strings in C

§ char welcome[6] = {’H’, ‘E’, ‘L’, ’L’, ‘O’, ‘\0’};

§ char welcome[] = “HELLO”;

§ Different strings have different number of characters
§ We need to know the end of the string to write correct

programs that manipulate strings
§ The null terminator ‘\0’ marks the end of the string

Strings in C

395

Strings in C

§ Need a way to
know the end of
the string
§ C strings are

null-terminated

§ Compiler inserts
a null terminator
‘\0’ automatically

§ Compiler figures
out the length

§ 5 + 1 for ‘\0’
§ Manually track

length (unlike
Python)

§ char welcome[6] = {’H’, ‘E’, ‘L’, ’L’, ‘O’, ‘\0’};
§ char welcome[] = “HELLO”;

396

Exercise: Manipulating Char Array

C code:

 char array[11] = “anthonymay”;
 int i;

 for (i = 0; i < 10; i = i + 1)
 array[i] = array[i] – 32;

397

C code:

 char array[11] = “anthonymay”;
 int i;

 for (i = 0; i < 10; i = i + 1)
 array[i] = array[i] – 32;

Assembly code:
; R0 = base addr, R1 = i
 MOV R1, #0
LOOP
 CMP R1, #10
 BGE DONE
 LDRB R2, [R0, R1]
 SUB R2, R2, #32
 STRB R2, [R0, R1]
 ADD R1, R1, #1
 B LOOP
DONE

§ Transform the 10-character ASCII string, namely
array, from lower case to upper case

§ i = 0

§ i < 10?
§ if i >= 10, exit
§ R2 = array[i]
§ subtract 32
§ store array[i]
§ i = i + 1
§ repeat loop

Exercise: Manipulating Char Array

398

§ Show how “HELLO!” is stored in memory below
at address 0x1522FFF0.

Byte 0Byte 3

DataAddress

0x1522FFF0
0x1522FFF4

H 0x48

E 0x65

L 0x6C

O 0x6F

! 0x21

Null 0x00

ASCII Encoding

Exercise: Strings in Memory

399

Exercise: Strings in Memory

00 21 6F

6C 6C 65 48
Byte 0Byte 3

0x1522FFF0
0x1522FFF4

H 0x48

E 0x65

L 0x6C

O 0x6F

! 0x21

Null 0x00

§ Show how “HELLO!” is stored in memory below
at address 0x1522FFF0.

DataAddressASCII Encoding

400

Some Assembly Practice

401

More Assembly Practice

ARM Assembly Code
; R0 = array base address

 MOV R0, #0x60000000 ; R0 = 0x60000000

 LDR R1, [R0] ; R1 = array[0]

 LSL R1, R1, #3 ; R1 = R1 << 3 = R1*8

 STR R1, [R0] ; array[0] = R1

 LDR R1, [R0, #4] ; R1 = array[1]
 LSL R1, R1, #3 ; R1 = R1 << 3 = R1*8

 STR R1, [R0, #4] ; array[1] = R1

C Code
 int array[5];

 array[0] = array[0] * 8;

 array[1] = array[1] * 8;

402

ARM Assembly Code
; R0 = array base address, R1 = i

 MOV R0, 0x60000000

 MOV R1, #199

FOR
 LDR R2, [R0, R1, LSL #2] ; R2 = array(i)
 LSL R2, R2, #3 ; R2 = R2<<3 = R3*8
 STR R2, [R0, R1, LSL #2] ; array(i) = R2
 SUBS R1, R1, #1 ; i = i – 1
 ; and set flags
 BPL FOR ; if (i>=0) repeat
loop

C Code
int array[200];

int i;

for (i=199; i >= 0; i = i - 1)
 array[i] = array[i] * 8;

More Assembly Practice

403

