Topics

1. Concurrency [3]
5. Data Parallelism [1]
7. Safety and liveness [2]
8. Distributed systems [4]
9. Architectures [1]

9.1. Hardware architecture
- From switches to registers and adders
- CPU architecture
- Hardware concurrency

9.2. Language architecture
- Chapel
- Occam
- Rust
- Ada
- C++

24 Lectures

1. Concurrency [3]
 1.1. Forms of concurrency [1]
 - Coupled dynamical systems
 1.2. Models and terminology [1]
 - Abstractions
 - Interleaving
 - Atomicity
 - Proofs in concurrent and distributed systems
 1.3. Processes & threads [1]
 - Basic definitions
 - Process states
 - Implementations

 2.1. by shared variables [1]
 - Failure possibilities
 - Dekker's algorithm
 2.2. by test-and-set hardware support [0.5]
 - Minimal hardware support
 2.3. by semaphores [0.5]
 - Dijkstra definition
 - OS semaphores

 3.1. Shared memory synchronization [2]
 - Semaphores
 - Cond. variables
 - Conditional critical regions
 - Monitors
 - Protected objects
 - Asynchronous / synchronous
 - Remote invocation / rendezvous
 - Message structure
 - Addressing

 4.1. Correctness under non-determinism [1]
 - Forms of non-determinism
 - Non-determinism in concurrent/distributed systems
 - Is consistency/correctness plus non-determinism a contradiction?
 4.2. Select statements [1]
 - Forms of nondeterministic message reception

5. Data Parallelism [1]
 5.1. Data-Parallelism
 - Vectorization
 - Reduction
 - General data-parallelism
 5.2. Examples
 - Image processing
 - Cellular automata

 6.1. Problem definition and design space [1]
 - Which problems are addressed / solved by scheduling?
 6.2. Basic scheduling methods [1]
 - Assumptions for basic scheduling
 - Basic methods

7. Safety and liveness [2]
 7.1. Safety properties
 - Essential time-independent safety properties
 7.2. Livelocks, fairness
 - Forms of livelocks
 - Classification of fairness
 7.3. Deadlocks
 - Detection
 - Avoidance
 - Prevention (& recovery)
 7.4. Failure modes
 7.5. Idempotent & atomic operations
 - Definitions

8. Distributed systems [4]
 8.1. Networks [1]
 - OSI model
 - Network implementations
 8.2. Global times [1]
 - Synchronized clocks
 - Logical clocks
 8.3. Distributed states [1]
 - Consistency
 - Snapshots
 - Termination
 8.4. Distributed communication [1]
 - Name spaces
 - Multi-casts
 - Elections
 - Network identification
 - Dynamical groups
 8.5. Distributed safety and liveness [1]
 - Distributed deadlock detection
 8.6. Forms of distribution/redundancy [1]
 - Computation
 - Memory
 - Operations
 8.7. Transactions [2]

9. Architectures [1]
 9.1. Hardware architecture
 - From switches to registers and adders
 - CPU architecture
 - Hardware concurrency
 9.2. Language architecture
 - Chapel
 - Occam
 - Rust
 - Ada
 - C++

Laboratories & Assignments

Laboratories [11]

 - Program structures
 - Data structures

2. Tasks [1]
 - Generics
 - Abstract types

3. Protection [1]
 - Memory based synchronization

4. Task Lifetimes [1]
 - Creation
 - Termination

5. Communicating Tasks [1]
 - Rendezvous

6. Distributing Server [1]
 - Entry families
 - Requeue facility

7. Implicit Concurrency [1]

8. Synchronized Data [1]

9. Distribution [1]
 - Multi-core process creation, termination
 - Multi-core process communication

10. Pipelines [1]

Assignments [2]

1. Concurrent programming [15%]
 - Programming task involving:
 - Mutual exclusion
 - Synchronization
 - Message passing

2. Concurrent programming in multi-core systems [15%]
 - Multi-core programming task involving:
 - Process communication

Examinations [3]

1. Hurdle check [5%]
 - Week 4 lab exam

2. Mid-semester check [15%]
 - Exam or Self-test

3. Final exam [50%]
 - Examining the complete course

Marking

The final mark is based on the assignments [30%] plus the examinations [65%] plus the lab mark [5%].