24 Lectures

1. Concurrency [3]
 1.1. Forms of concurrency [1]
  Coupled dynamical systems
 1.2. Models and terminology [1]
  Abstractions
  Interleaving
  Atomicity
  Proofs in concurrent and distributed systems
 1.3. Processes & threads [1]
  Basic definitions
  Process states
  Implementations

 2.1. by shared variables [1]
  Failure possibilities
  Dekker's algorithm
 2.2. by test-and-set hardware support [0.5]
  Minimal hardware support
 2.3. by semaphores [0.5]
  Dijkstra definition
  OS semaphores

 3.1. Shared memory synchronization [2]
  Semaphores
  Cond. variables
  Conditional critical regions
  Monitors
  Protected objects
  Asynchronous / synchronous
  Remote invocation / rendezvous
  Message structure
  Addressing

 4.1. Correctness under non-determinism [1]
  Forms of non-determinism
  Non-determinism in concurrent/distributed systems
  Is consistency/correctness plus non-determinism a contradiction?
 4.2. Select statements [1]
  Forms of non-deterministic message reception

5. Scheduling [2]
 5.1. Problem definition and design space [1]
  Which problems are addressed / solved by scheduling?
 5.2. Basic scheduling methods [1]
  Assumptions for basic scheduling
  Basic methods

 6.1. Safety properties
  Essential time-independent safety properties
 6.2. Livelocks, fairness
  Forms of livelocks
  Classification of fairness
 6.3. Deadlocks
  Detection
  Avoidance
  Prevention (& recovery)
 6.4. Failure modes
 6.5. Idempotent & atomic operations
  Definitions

7. Architectures for CDS [1]
 7.1. Hardware architecture
  From switches to registers and adders
  CPU architecture
  Hardware concurrency
 7.2. Language architecture
  Chapel
  Occam
  Ada
  Rust
  C++

8. Distributed systems [7]
 8.1. Networks [1]
  OSI model
  Network implementations
 8.2. Global times [1]
  Synchronized clocks
  Logical clocks
 8.3. Distributed states [1]
  Consistency
  Snapshots
  Termination
 8.4. Distributed communication [1]
  Name spaces
  Multicasts
  Elections
  Network identification
  Dynamical groups
 8.5. Distributed safety and liveness
 8.6. Forms of distribution/redundancy
 8.7. Transactions [2]