1 Regular Languages

The NFA A:

(i) The DFA B:

(ii) Our initial split differentiates non-final and final states:

$$[[S, S_2], [S_0, S_1, S_{12}]]$$

Testing the non-final group with b produces a split, as for S we stay in the non-final group, while for S_2 we go to the final group:

$$[[S], [S_2], [S_0, S_1, S_{12}]]$$
Testing the final group with a produces another split, as for S_0 we go to the group $[S]$, while for S_1 and S_{12} we go to the group $[S_2]$:

$[S], [S_2], [S_0], [S_1, S_{12}]$

The only non-singleton group left, $[S_1, S_{12}]$, cannot be split by any test: on a we go to $[S_2]$, while on b we stay in $[S_1, S_{12}]$. The algorithm therefore terminates, with S_1 and S_{12} the only equivalent states.

(iii) We convert B above into the minimal C by deleting the state S_{12} and re-assigning the arc from S_1 to S_{12} to be a loop on S_1:

(iv) Note that a string is not in the language L if and only if

- it has a as its first letter, or
- it has a as its last letter, or
- it contains the substring aa.

Subgoal one: If a string w is in L, then C accepts w.

Subgoal two: If C accepts a string w, then $w \in L$.

As suggested by the hint, we reformulate both these goals for proof by contrapositive:

Subgoal one (contrapositive): If C rejects a string w, then $w \notin L$.

Subgoal two (contrapositive): If $w \notin L$, then C rejects w.

Proof of subgoal one (contrapositive): If C rejects w then $N^*(S_0, w) = S_2$ or $N^*(S_0, w) = S$. We consider each case separately.

$N^*(S_0, w) = S_2$: the only arc into S_2 is labelled by a, so w must have the form αa for some string α. But any string ending in a is not in L.

$N^*(S_0, w) = S$: because S is not the start state, the DFA must have transitioned into S from other state at some stage. The only arcs into S from other states are labelled by a, so w must have the form $\alpha a \beta$ for some strings α, β. There are two subcases then to consider, depending on which incoming arc was used: $N^*(S_0, \alpha) = S_0$ or $N^*(S_0, \alpha) = S_2$. We consider each subcase separately.
\[N^*(S_0, \alpha) = S_0 \]: there are no arcs into \(S_0 \) except the ‘start state’ arc, so the only way to validate this equation is if \(\alpha \) is the empty string \(\epsilon \). But then \(w = \alpha a \beta = a \beta \), and any string starting with \(a \) is not in \(L \).

\[N^*(S_0, \alpha) = S_2 \]: as we argued above, this can only hold if \(\alpha = \gamma a \) for some string \(\gamma \). But then \(w = \alpha a \beta = \gamma aa \beta \), and any string \(w \) containing a substring \(aa \) is not in \(L \).

Proof of subgoal two (contrapositive):

First, observe the lemma

\[N^*(S, w) = S \]

(Lemma)

for all strings \(w \). This holds because all arcs out of \(S \) go back to \(S \), so there is ‘no escape’.

Suppose \(w \notin L \). There are, as noted above, three cases by which this could be, and we consider each separately.

\(w \) starts with \(a \):

\[
N^*(S_0, w) = N^*(S_0, a\alpha) \\
= N^*(N(S_0, a), \alpha) \\
= N^*(S, \alpha) \\
= S
\]

(Lemma)

and \(S \) is a non-final state, so \(w \) is rejected.

\(w \) ends with \(a \): here \(w = \alpha a \) for some \(\alpha \). Now \(N^*(S_0, \alpha a) = N(N^*(S_0, \alpha), a) \) by the corollary to the Append Theorem. We have no idea what \(N^*(S_0, \alpha) \) is, so we consider all four possible cases:

\[
N^*(S_0, a) = S \\
N^*(S_1, a) = S_2 \\
N^*(S_2, a) = S \\
N^*(S, a) = S
\]

\(S \) and \(S_2 \) are both non-final, so \(w \) is rejected.

\(w \) contains substring \(aa \): here \(w = \alpha aa \beta \) for some \(\alpha, \beta \). Now \(N^*(S_0, \alpha aa \beta) = N^*(N^*(S_0, \alpha), aa \beta) = N^*(N^*(S_0, \alpha), aa), \beta \) by the Append Theorem. We do not know what \(N^*(S_0, \alpha) \) is, so we investigate what \(N^*(N^*(S_0, \alpha), aa) \) might be by all four cases again:

\[
N^*(S_0, aa) = S \\
N^*(S_1, aa) = S \\
N^*(S_2, aa) = S \\
N^*(S, aa) = S
\]

So \(S \) is the answer no matter what. Now

\[
N^*(S_0, w) = N^*(N^*(S_0, \alpha), \beta) \\
= N^*(S, \beta) \\
= S
\]

(Lemma)

\(S \) is non-final, so \(w \) is rejected.

\(v \)

\[
S_0 \to bS_1 | \epsilon \\
S_1 \to bS_1 | aS_2 | bS_2 | \epsilon \\
S_2 \to bS_1
\]

where \(S_0 \) is the start symbol.
The automaton below will be at state S_2 if it has just read b; it will be at state S_1 if it has just read a without b to its left (in this case we will reject unless the next token is b); it will be at S_0 if the string has just started, or we have just read ba (in this case reading an a next is legal, but will put us ‘in danger’ of rejection by transitioning to S_1).

2 Context-Free Languages

(i) Suppose for contradiction that there exists a DFA D that recognises M.

There are infinitely many strings of the form

$$a^0, a^1, a^2, \ldots$$

but only finitely many states, so by the pigeonhole principle there must be some state S such that $S = N^*(S_0, a^i)$ for infinitely many i (where S_0 is the start state). In particular, pick some $j \geq 2$ and $k \geq j + 1$ with $S = N^*(S_0, a^j) = N^*(S_0, a^k)$.

Now $2j > j + 1 > j$ (because $j \geq 2$), so $a^j b^{j+1} \in M$ and will be accepted by D, i.e. $N^*(S_0, a^j b^{j+1}) \in F$, where F is D’s set of final states.

By the Append Theorem $N^*(S_0, a^j b^{j+1}) = N^*(N^*(S_0, a^j), b^{j+1})$, so because $N^*(S_0, a^j) = N^*(S_0, a^k)$ we have $N^*(N^*(S_0, a^k), b^{j+1}) \in F$. By the Append Theorem again we have $N^*(S_0, a^k b^{j+1}) \in F$. But $k \geq j + 1$, so it is not the case that $2k > j + 1 > k$ (as k is too big!), so $a^k b^{j+1} \notin M$ and should not have been accepted, contradicting the existence of the DFA D accepting M.

(ii) It is impossible for the number of as to be less than two, so the grammar below starts off by adding two as and three bs, then proceeds by adding either one or two bs for each a added.

$$S \rightarrow aaTbbb$$

$$T \rightarrow \epsilon \mid aTb \mid aTbb$$

where S is the start symbol.

This is not the only correct answer – most context-free languages are definable via many different context-free grammars, and the language M is no exception to this. Of note, the grammar above is ambiguous (see below); designing an unambiguous grammar for M is an worthwhile exercise.

(iii) For the grammar above either of these trees are correct: