1 Finite State Automata and Regular Language

The NFA A:

(i) The DFA B:

(ii) Our initial split differentiates non-final and final states:

\[\left[\left[S_0, S_{01} \right], \left[S_{02}, S_{012} \right] \right] \]

Testing the non-final group with \(b \) produces a split, as for \(S_0 \) we stay in the non-final group, while for \(S_{01} \) we go to the final group:

\[\left[\left[S_0 \right], \left[S_{01} \right], \left[S_{02}, S_{012} \right] \right] \]

Testing the final group with \(a, b, c \) produces no split, as each leaves us still in the final group. Every other group is a singleton. Hence the algorithm terminates with the groups as above, and \(S_{02} \) and \(S_{012} \) are the only equivalent states.
(iii) We convert B above into the minimal C by deleting the state S_{012} and re-assigning every arc into S_{012} to go to S_{02}:

(iv) **Subgoal one:** C accepts all strings $\gamma ab\delta$, for any $\gamma, \delta \in \{a, b, c\}^*$, i.e.,

\[N^*(S_0, \gamma ab \delta) = S_{02} \]

Subgoal two: if C accepts a string w, i.e., $N^*(S_0, w) = S_{02}$, then there exists $\gamma, \delta \in \{a, b, c\}^*$ such that $w = \gamma ab\delta$.

Proof of subgoal one: we first prove the following lemma:

Lemma 1

$N^*(S_0, \gamma ab) = S_{02}$

Proof: the left hand side equals $N^*(N^*(S_0, \gamma), ab)$ by the append theorem. But we have no way of knowing what $N^*(S_0, \gamma)$ is, so we consider every possibility:

- $N^*(S_0, ab) = S_{02}$
- $N^*(S_{01}, ab) = S_{02}$
- $N^*(S_{02}, ab) = S_{02}$

We next prove

Lemma 2

$N^*(S_{02}, \delta) = S_{02}$

Proof: this follows by an easy induction on the length of δ:

(Base case) $N^*(S_{02}, \epsilon) = S_{02}$ \hspace{1cm} (Def. of N^*)

(Inductive case)

\[
N^*(S_{02}, x\delta) = N^*(N(S_{02}, x), \delta) = N^*(S_{02}, \delta) = S_{02}
\]

(Holds for all $x \in \{a, b, c\}$) \hspace{1cm} (IH)

We may now complete our proof of subgoal one:

\[
N^*(S_0, \gamma ab \delta) = N^*(N^*(S_0, \gamma ab), \delta)
\]

(Append Theorem)
\[N^*(S_0, \delta) = S_{02} \] \hspace{1cm} \text{(Lemma 1)}

\[= S_{02} \] \hspace{1cm} \text{(Lemma 2)}

Proof of subgoal two: We first prove that

Lemma 3

\[N^*(S_0, w) = S_{02} \Rightarrow \exists \gamma', \delta. (w = \gamma'b\delta \land N^*(S_0, \gamma') = S_{01}) \]

Proof: by induction on the length of \(w \). Base case, \(w = \epsilon \), which follows because \(N^*(S_0, \epsilon) \neq S_{02} \), so the LHS of the implication is false, and the implication is vacuously true. Inductive case, suppose \(N^*(S_0, wx) = S_{02} \). Now \(N^*(S_0, wx) = N(N^*(S_0, w), x) \) by the corollary to the append theorem. We cannot know what \(N^*(S_0, w) \) is, but can eliminate one possibility: there is no \(x \in \{a, b, c\} \) such that \(N(S_0, x) = S_{02} \), so \(N^*(S_0, w) \neq S_{02} \). If \(N^*(S_0, w) \) were \(S_{01} \) then \(x \) can only be \(b \), and so Lemma 3 holds by setting \(\gamma' = w \) and \(\delta = \epsilon \). If \(N^*(S_0, w) \) were \(S_{02} \), then by the IH \(w = \gamma'b\delta \) and \(N^*(S_0, \gamma') = S_{01} \). Therefore \(wx = \gamma'(b\delta x) \), whatever \(x \) is. So Lemma 3 holds in this case too.

We next observe that

Lemma 4

\[N^*(S_0, w) = S_{01} \Rightarrow \exists \gamma. w = \gamma a \]

Proof: simply because all arcs into \(S_{01} \) are labelled by \(a \).

Hence there exist strings \(\gamma, \gamma', \delta \) such that

\[N^*(S_0, w) = S_{01} \Rightarrow w = \gamma'b\delta \land N^*(S_0, \gamma') = S_{01} \] \hspace{1cm} \text{(Lemma 3)}

\[\Rightarrow w = \gamma'b\delta \land \gamma' = \gamma a \] \hspace{1cm} \text{(Lemma 4)}

\[\Rightarrow w = \gamma ab\delta \]

(v)

\[
S_0 \rightarrow aS_0 \mid bS_0 \mid cS_0 \mid aS_1 \\
S_1 \rightarrow bS_2 \\
S_2 \rightarrow aS_2 \mid bS_2 \mid cS_2 \mid \epsilon
\]

where \(S_0 \) is the start symbol

(vi) Suppose for contradiction that there exists a DFA \(D \) that recognises \(M \).

There are infinitely many strings of the form

\[a^0, a^1, a^2, \ldots \]

but only finitely many states, so by the pigeonhole principle there must be some state \(S \) such that \(S = N^*(S_0, a^i) \) for infinitely many \(i \) (where \(S_0 \) is the start state). In particular, pick some \(j \geq 2 \) and \(k \geq j + 1 \) with \(S = N^*(S_0, a^j) = N^*(S_0, a^k) \).
Now $2j > j + 1 > j$ (because $j \geq 2$), so $a^j b^{j+1} \in M$ and will be accepted by D, i.e. $N^*(S_0, a^j b^{j+1}) \in F$, where F is D’s set of final states.

By the Append Theorem $N^*(S_0, a^j b^{j+1}) = N^*(N^*(S_0, a^j), b^{j+1})$, so because $N^*(S_0, a^j) = N^*(S_0, a^k)$ we have $N^*(N^*(S_0, a^k), b^{j+1}) \in F$. By the Append Theorem again we have $N^*(S_0, a^k b^{j+1}) \in F$. But $k \geq j + 1$, so it is not the case that $2k > j + 1 > k$ (as k is too big!), so $a^k b^{j+1} \notin M$ and should not have been accepted, contradicting the existence of the DFA D accepting M.

2 Pushdown Automata and Context-Free Language

(i) It is impossible for the number of as to be less than two, so the grammar below starts off by adding two as and three bs, then proceeds by adding either one or two bs for each a added.

$$S \rightarrow aaTbbb$$
$$T \rightarrow \epsilon \mid aTb \mid aTbb$$

where S is the start symbol.

This is not the only correct answer – most context-free languages are definable via many different context-free grammars, and the language M is no exception to this. Of note, the grammar above is ambiguous (see below); designing an unambiguous grammar for M is an worthwhile exercise.

(ii) For the grammar above either of these trees are correct:

(iii) The constructed (non-deterministic PDA) has an initial state q_0, with the following transitions:
Initialisation: \(\delta(q_0, \epsilon, Z) \rightarrow q_1/SZ \)
Non-terminals:
\(\delta(q_1, \epsilon, S) \rightarrow q_1/T \)
\(\delta(q_1, \epsilon, S) \rightarrow q_1/W \)
\(\delta(q_1, \epsilon, T) \rightarrow q_1/UV \)
\(\delta(q_1, \epsilon, U) \rightarrow q_1/aUb \)
\(\delta(q_1, \epsilon, U) \rightarrow q_1/\epsilon \)
\(\delta(q_1, \epsilon, V) \rightarrow q_1/eV \)
\(\delta(q_1, \epsilon, V) \rightarrow q_1/\epsilon \)
\(\delta(q_1, \epsilon, W) \rightarrow q_1/XY \)
\(\delta(q_1, \epsilon, X) \rightarrow q_1/aX \)
\(\delta(q_1, \epsilon, X) \rightarrow q_1/\epsilon \)
\(\delta(q_1, \epsilon, Y) \rightarrow q_1/bYc \)
\(\delta(q_1, \epsilon, Y) \rightarrow q_1/\epsilon \)
Terminals:
\(\delta(q_1, x, x) \rightarrow q_1/\epsilon \)
Termination:
\(\delta(q_1, \epsilon, Z) \rightarrow q_2/\epsilon \)

where \(x \in \{a, b, c\} \).

(iv) The PDA trace for processing the string \(abbc \) is as below.

\[
\begin{align*}
(q_0, abbc, Z) & \Rightarrow (q_1, abbc, SZ) \\
& \Rightarrow (q_1, abbc, WZ) \\
& \Rightarrow (q_1, abbc, XYZ) \\
& \Rightarrow (q_1, abbc, aXYZ) \\
& \Rightarrow (q_1, bbc, XYZ) \\
& \Rightarrow (q_1, bbc, bYcZ) \\
& \Rightarrow (q_1, bbc, bYcZ) \\
& \Rightarrow (q_1, cc, YcZ) \\
& \Rightarrow (q_1, cc, ccZ) \\
& \Rightarrow (q_1, c, cZ) \\
& \Rightarrow (q_1, \epsilon, Z) \\
& \Rightarrow (q_2, \epsilon, \epsilon) \\
& \text{Accept.}
\end{align*}
\]
3 Turing Machine and Computability

(i) An example Turing machine looks like follows:

(ii) Call this language P and suppose it is accepted by some $TM M_j$. Since all TM codes end in a 0, j must be even, and hence equal some $2i$. We now ask whether w_i is accepted by M_{2i}. If it’s accepted, then w_i is not in P, thus not accepted by M_j, but M_j is the same as M_{2i}. If it’s rejected, then w_i is in P, hence accepted by M_j, which is the same as M_{2i}. In both cases we have a contradiction. Therefore M_j cannot exist.