Why data integration and data linkage?

- Increasingly, data mining, processing, and management projects require data from more than one data source
- Data is often distributed (different databases or data warehouses)
 - For example an epidemiological study that needs information about hospital admissions and car accidents
- Geographically distributed data or historical data
 - For example, integrate historical data into a new data warehouse
- Enrich data with additional (external) data (to improve data mining accuracy)

Lecture outline

- Why data integration and data linkage?
- Data and schema integration
- Deduplication and handling redundant data
- Data linkage / database matching
 - Linkage process
 - Linkage techniques and challenges
 - Data cleaning and standardisation
 - Indexing / blocking
 - Classification
 - Geocode matching
- Data linkage research at the ANU

Data integration

- Data integration
 - Combines data from multiple sources into a coherent form
 - Schema integration (for example, A.cust-id ↔ B.cust-no)
 - Integrate Metadata from different sources
- Entity resolution (identification) problem
 - Identify real world entities from multiple data sources (for example, Bill Clinton = William Clinton, or Mr Obama = the President)
 - Also called data/record linkage or data matching
- Detecting and resolving data value conflicts
 - For the same real world entity, attribute values from different sources can be different
 - Possible reasons: different representations, different codings, different scales (for example metric vs. British units)
Schema integration

- Imagine two database tables

<table>
<thead>
<tr>
<th>PID</th>
<th>Name</th>
<th>DOB</th>
</tr>
</thead>
<tbody>
<tr>
<td>1234</td>
<td>Mayer</td>
<td>01/01/75</td>
</tr>
<tr>
<td>4791</td>
<td>Simmons</td>
<td>21-10-1969</td>
</tr>
</tbody>
</table>

- Integration issues
 - The same attribute may have different names
 - An attribute may be derived from another
 - Attributes might be redundant
 - There can be duplicate records (under different keys)

- Conflicts have to be detected and resolved
- Integration is made easier if unique entity keys are available in all the data sets (or tables) to be linked

Handling redundant data (1)

- Use correlation analysis
 - Then decide which attributes to use and which not to use
 - Possible to merge values from attributes (for example if some have missing values)

- Deduplication (also called *internal* data linkage)
 - More than one record representing the same real world entity (for example *customers, patients, businesses*, etc.)
 - Important for longitudinal (over time) studies, business mailing lists, etc.
 - If no unique entity keys are available (but even with unique keys a problem!)
 - If no consistency checks are performed and enforced
 - Analysis of values in attributes to find duplicates

Handling redundant data (2)

- Process redundant and inconsistent data
 - Easy if values are the same
 - Delete one of the values / records
 - Calculate average values (only for numerical attributes)
 - Take majority values (if more than two duplicates and some values are the same)
 - Take most recent value (for changing data, like names and addresses)
 - Use external data to find correct values
 - Apply rule based system to determine which values to use

Data linkage / matching (1)

- Task of linking together records from one or more data sources that represent the same entity
- If there are no unique entity keys in data, the available attributes have to be used
 - Often personal information (like names, addresses, dates of birth, etc.)
 - Privacy and confidentiality becomes an issue (*more later in course*)

- Application areas
 - Health (epidemiology)
 - Census, taxation, immigration, social welfare
 - Business mailing lists, collaborative e-Commerce
 - Crime, fraud and terror detection (US: TIA, MATRIX)
Data linkage / matching (2)

- Different parts of the linked records are of interest
 - Personal information (crime, fraud and terror detection, mailing lists)
 - Non-personal information (epidemiology, census, most data mining)
 For example:

<table>
<thead>
<tr>
<th>Age</th>
<th>Disease</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>55</td>
<td>Cancer</td>
<td>John Miller</td>
</tr>
<tr>
<td>32</td>
<td>Diabetes</td>
<td>Joe Meyer</td>
</tr>
<tr>
<td>57</td>
<td>Cancer</td>
<td>Lucy Smith</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Disease</th>
<th>DoBirth</th>
<th>DoDeath</th>
<th>Name</th>
<th>DoBirth</th>
<th>DoDeath</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cancer</td>
<td>04/08/47</td>
<td>12/12/02</td>
<td>J. Miller</td>
<td>04/08/47</td>
<td>12/12/02</td>
</tr>
<tr>
<td>Diabetes</td>
<td>11/09/69</td>
<td>26/02/01</td>
<td>J. Meier</td>
<td>11/09/69</td>
<td>26/02/01</td>
</tr>
<tr>
<td>Cancer</td>
<td>01/01/34</td>
<td>08/09/01</td>
<td>L. Smith</td>
<td>01/01/34</td>
<td>08/09/01</td>
</tr>
</tbody>
</table>

Data linkage techniques

- Deterministic linkage
 - Exact linkage (if a unique identifier of high quality is available: precise, robust, stable over time)
 - Examples: Medicare, ABN or Tax file number (??)
 - Rules based linkage (complex to build and maintain)

- Probabilistic linkage
 - Use available (personal) information for linkage (which can be missing, wrong, coded differently, out-of-date, etc.)
 - Examples: names, addresses, dates of birth, etc.

- Modern approaches
 - Based on machine learning, data mining, artificial intelligence or information retrieval techniques

Applications for data linkage

- Health sector: Link various data collections to enrich data for studies that are not possible otherwise
- National security: Terrorism or crime watch lists, identify records of criminals who provide wrong identities
- Identity fraud: Find identities in several databases that do not ‘look right’ (stolen or fabricated identities)
- Census: Link records across time to reconstruct families and households (allows many social studies, as well as ‘genealogical epidemiology’)
- Measuring research impact: Match bibliographic databases with researcher's citation counts

Data linkage challenges

- Often no unique entity identifiers (keys) are available
- Real world data is dirty (typographical errors and variations, missing and out-of-date values, different coding schemes, etc.)
- Scalability to very large databases
 - Naive comparison of all record pairs is $O(n \times n)$
 - Some form of blocking, indexing or filtering is required (more later)
- Privacy and confidentiality (because personal information, like names and addresses, are commonly required for matching)
- No training data in many matching applications
 - No record pairs with known true match status
 - Possible to manually prepare training data (but, how accurate will manual classification be?)
Data linkage process

Why data cleaning and standardisation?
- Real world data is often dirty
 - Typographical and other errors
 - Different coding schemes
 - Missing values
 - Data changing over time
- Name and addresses are especially prone to data entry errors
 - Scanned, hand-written, over telephone, hand-typed
 - Same person often provides her/his details differently
 - Different correct spelling variations for proper names (for example Gail and Gayle, or Dixon and Dickson)

Cleaning and standardisation tasks

Cleaning and standardisation approaches
- Traditionally: Rules based
 - Manually developed parsing and transformation rules
 - Time consuming and complex to develop and maintain
- Recently: Probabilistic methods
 - Mainly based on hidden Markov models (HMMs)
 - More flexible and robust with regard to new unseen data
 - Drawback: Training data needed for most methods

HMMs are widely used in natural language processing and speech recognition, as well as for text segmentation and information extraction.
Why blocking / indexing?

- The number of record pair comparisons equals the product of the sizes of the two data sets (for example, linking two data sets with 1 and 5 million records will result in $1,000,000 \times 5,000,000 = 5 \times 10^{13}$ record pairs)
- Performance bottleneck in a data linkage system is usually the (expensive) comparison of field values between record pairs (similarity measures / field comparison functions)
- Blocking / indexing / filtering techniques are used to reduce the large amount of comparisons
- Aim of blocking: Cheaply remove candidate record pairs which are obviously not matches

Traditional blocking

- Traditional blocking works by only comparing record pairs that have the same value for a blocking variable (for example, only compare records which have the same postcode value)
- Problems with traditional blocking
 - An erroneous value in a blocking variable results in a record being inserted into the wrong block (several passes with different blocking variables can solve this)
 - Values of blocking variable should be uniformly distributed (as the most frequent values determine the size of the largest blocks)
 - Example: Frequency of ‘Smith’ in NSW: 25,425

Improved blocking

- Recent research methods
 - Sorted neighbourhood approach (sliding window over sorted blocking variable)
 - Fuzzy blocking using n-grams (for example: bigrams: 'peter' -> ['pe','et','te','er']. 'pete' -> ['pe','et','te'])
 - Overlapping canopy clustering (where records are inserted into several clusters)
- Post-blocking filtering (like length differences or n-grams count differences)
- US Census Bureau: BigMatch (pre-process ‘smaller’ data set so its values can be directly accessed in main memory; with all blocking passes in one go)

Probabilistic data or record linkage

- Computer assisted data linkage goes back as far as the 1950s
 - Based on ad-hoc heuristic methods
- Basic ideas of probabilistic linkage were introduced by Newcombe and Kennedy (1962)
- Theoretical foundation by Fellegi and Sunter (1969)
 - Compare common attributes from record pairs and calculate similarity values (also called matching weights)
 - Using matching weights based on frequency ratios
 - Summation of matching weights is used to classify a pair of records as match, possible match or non-match
 - Manual clerical review required to determine the match status of the possible matches
Record pair comparison example

- Attributes are compared using various comparison functions (like exact or approximate string, numeric, date, age, etc.)

 Record A: [Dr, Peter, Paul, Miller]
 Record B: [Mr, John, , Miller]
 [0.2, -3.2, 0.0, 2.4] -0.6

Record pair classification

- The final matching weight is the sum of the attribute comparison weights (similarity values)
 - Record pairs with a weight above an upper threshold are classified as a match
 - Record pairs with a weight below a lower threshold are classified as a non-match
 - Record pairs with a weight between the thresholds are classified as a possible match

Geocode matching

- Match addresses against geocoded reference data (addresses and their geographic locations: latitudes and longitudes)
- Useful for spatial data analysis / mining and for loading data into geographical information systems
- Matching accuracy is critical for good geocoding (as is accurate geocoded address data)
- Australia has a Geocoded National Address File (G-NAF) since early 2004 (all Australian property addresses and their locations)
- Commercial geocoding systems mainly work on street centreline data

Improved record pair classification

- Summing of weights results in loss of information
 (like same name but different address, or different address but same name)
- View record pair classification as a multidimensional binary classification problem
 (use weight vector to classify record pairs a matches or non-matches, but no possible matches)
- Many machine learning techniques can be used
 - Supervised: Decision trees, neural networks, learnable string comparisons, active learning, etc.
 - Un-supervised: Various clustering algorithms
- Major issue: Lack of training data
Data linkage research at the ANU

- We have been working in data linkage since 2002 (see: http://datamining.anu.edu.au/linkage.html)
- Research projects in collaboration with the New South Wales Department of Health, Sydney, and Veda Advantage (credit bureau)
- We have developed an open source data linkage system called *Febrl* (Freely Extensible Biomedical Record Linkage)
- Only data cleaning, deduplication and record linkage system in the world that is free and has a graphical user interface
- Interested in this area? We have projects at various levels (implementation, honours, PhD/MPhil)