
COMP3610/6361
Principles of Programming Languages

Peter Höfner

Oct 25, 2023

1

Section 0

Admin

2

Lecturer

• A/Prof. Peter Höfner
CSIT, Room N234 (Building 108)
Peter.Hoefner@anu.edu.au
+61 2 6125 0159

Consultation
Thursday 12pm – 1pm, or by appointment

3

CoLecturer and Tutors

• Dr Fabian Muelboeck
Fabian.Muehlboeck@anu.edu.au

• Abhaas Goyal
Abhaas.Goyal@anu.edu.au

• Weiyou Wang
Weiyou.Wang@anu.edu.au

4

Lectures

• Wednesday, 3 pm – 5 pm
Thursday, 11 am – 12 pm

• Rm 5.02 Marie Reay, Bldg 155
• Q/A session in Week 12

• Etiquette
▶ engage
▶ feel free to ask questions
▶ we reject behaviour that strays into harassment,

no matter how mild

5

Tutorials

• join one of the 2 tutorials
• Thursday, 3pm – 5pm (Rm 5.02 Marie Reay)

Friday, 1pm – 2pm (Rm 4.03 Marie Reay)
• from Week 2 onwards

• Summary
▶ your chance to discuss problems
▶ discuss home work
▶ discuss additional exercises

6

Plan/Schedule I

Resources
web: https://cs.anu.edu.au/courses/comp3610/
wattle: https://wattlecourses.anu.edu.au/course/view.php?id=41142
edstem: https://edstem.org/
(you will be registered at the end of the week)

Workload
The average student workload is 130 hours for a six unit course.
That is roughly 11 hours/week.
https://policies.anu.edu.au/ppl/document/ANUP_000691

7

https://cs.anu.edu.au/courses/comp3610/
https://wattlecourses.anu.edu.au/course/view.php?id=41142
https://edstem.org/
https://policies.anu.edu.au/ppl/document/ANUP_000691

Plan/Schedule II
Assessment criteria

• Quizz: 0% (for feedback only)
• Assignments: 35%, 4 assignments (35marks)
• Oral exam: 65% (65 marks) [hurdle]
• hurdle: minimum of 40% in the final exam

Assessments (tentative)

No Hand Out Hand In Marks
0 31/07 03/08 0
1 02/08 10/08 5
2 16/08 31/08 10
3 20/09 12/10 10
4 18/10 02/11 10

8

About the Course I

This course is an introduction to
the theory and design of programming languages.

9

About the Course II
Topics (tentative)
The following schedule is tentative and likely to change.

Topic
0 Admin
1 introduction
2 IMP and its Operational Semantics
3 Types
4 Derivation and Proofs
5 Functions, Call-by-Value, Call-by-Name
6 Typing for Call-By-Value
7 Data Types and Subtyping
8 Denotational Semantics
9 Axiomatic Semantics
10 Concurrency
11 Formal Verification

10

About the Course IV

Disclaimer
This is has been redesigned fairly recently.
The material in these notes has been drawn from several different
sources, including the books and similar courses at some other
universities. Any errors are of course all the author’s own work.
As it is a newly designed course, changes in timetabling are quite likely.
Feedback (oral, email, survey, . . .) is highly appreciated.

11

Academic Integrity

• never misrepresent the work of others as your own
• if you take ideas from elsewhere

you must say so with utmost clarity

12

Reading Material

• Glynn Winskel. The Formal Semantics of Programming Languages
– An Introduction. MIT Press, 1993. ISBN 978-0-262-73103-4

• Robert Harper. Practical Foundations for Programming Languages.
Cambridge University Press, 2016. ISBN 978-1-107-15030-0

• Shriram Krishnamurthi. Programming Languages: Application and
Interpretation (2nd edition) Open Textbook Library, 2017

• additional reading material can be found online

13

Section 1

Introduction

14

Foundational Knowledge of Disciplines
Mechanical Engineering
Students learn about torque

d(r × ω)

dt
= r × dω

dt
+

dr

dt
× ω

Figure: Sydney Harbour Bridge under construction [NMA]

15

Foundational Knowledge of Disciplines
Electrical Engineering / Astro Physics
Students learn about complex impedance

ejωt = cos(ωt) + j sin(ωt)

Figure: Geomagnetic Storm alters Earth’s Magnetic field [Wikipedia]

16

Foundational Knowledge of Disciplines
Civil Engineering / Surveying
Students learn about trigonometry

sin(θ + ϕ) = sin θ cosϕ+ cos θ sinϕ

Figure: Surveying Swan River, WA [Wikipedia]

17

Foundational Knowledge of Disciplines
Software Engineering / Computer Science
Students learn about ???

Figure: First Ariane 5 Flight, 1996 [ESA] Figure: Heartbleed, 2014 [Wikipedia]

18

Programming Languages

Programming Languages: basic tools of computing
• what are programming languages?
• do they provide basic laws of software engineering?
• do they allow formal reasoning in the sense of above laws?

19

Constituents

• the syntax of programs:
the alphabet of symbols and a description of the well-formed
expressions, phrases, programs, etc.

• the semantics:
the meaning of programs, or how they behave

• often also the pragmatics:
description and examples of how the various features of the
language are intended to be used

20

Use of Semantics

• understand a particular language
what you can depend on as a programmer;
what you must provide as a compiler writer

• as a tool for language design:
▶ clear language design
▶ express design choices, understand language features and interaction
▶ for proving properties of a language, eg type safety, decidability of type

inference.
• prove properties of particular programs

21

Style of Description (Syntax and Semantics)

• natural language
• definition ‘by’ compiler behaviour
• mathematically

22

Introductory Examples: C

In C, if initially x has value 3, what is the value of the following?

x++ + x++ + x++ + x++

Is it different to the following?

x++ + x++ + ++x + ++x

23

Introductory Examples: C♯

In C♯, what is the output of the following?

delegate i n t IntThunk () ;
c lass C {

p u b l i c s t a t i c vo id Main () {
IntThunk [] funcs = new IntThunk [1 1] ;
f o r (i n t i = 0 ; i <= 10; i ++)
{

funcs [i] = delegate () { r e t u r n i ; } ;
}
foreach (IntThunk f i n funcs)
{

System . Console . Wr i teL ine (f ()) ;
}

}
}

24

Introductory Examples: JavaScript

f u n c t i o n bar (x) {
r e t u r n f u n c t i o n () {

var x = x ;
r e t u r n x ;

} ;
}

var f = bar (2 0 0) ;

f ()

25

About This Course

• background: mathematical description of syntax by means of formal
grammars, e.g. BNF (see COMP1600)
clear, concise and precise

• aim I: mathematical definitions of semantics/behaviour
• aim II: understand principles of program design

(for a toy language)
• aim III: reasoning about programs

26

Use of formal, mathematical semantics

Implementation issues
Machine-independent specification of behaviour. Correctness of program
analyses and optimisations.

Language design
Can bring to light ambiguities and unforeseen subtleties in programming
language constructs. Mathematical tools used for semantics can suggest
useful new programming styles. (E.g. influence of Church’s lambda
calculus (circa 1934) on functional programming).

Verification
Basis of methods for reasoning about program properties and program
specifications.

27

Styles of semantics

Operational
Meanings for program phrases defined in terms of the steps of
computation they can take during program execution.

Denotational
Meanings for program phrases defined abstractly as elements of some
suitable mathematical structure.

Axiomatic
Meanings for program phrases defined indirectly via the axioms and
rules of some logic of program properties.

28

Section 2

IMP
and its Operational Semantics

29

‘Toy’ languages

• real programming languages are large
many features, redundant constructs

• focus on particular aspects and abstract from others (scale up later)
• even small languages can involve delicate design choices.

30

Design choices, from Micro to Macro

• basic values
• evaluation order
• what is guaranteed at compile-time and run-time
• how effects are controlled
• how concurrency is supported
• how information hiding is enforceable
• how large-scale development and re-use are supported
• . . .

31

IMP1– Introductory Example

IMP is an imperative language with store locations, conditionals and
while loop.
For example

l2 := 0 ;
while !l1 ≥ 1 do (

l2 := !l2 + !l1 ;
l1 := !l1 + −1

)

with initial store {l1 7→ 3, l2 7→ 0}.

1Basically the same as in Winskel 1993 (IMP) and in Hennessy 1990 (WhileL)
32

IMP – Syntax
Booleans b ∈ B = {true, false}
Integers (Values) n ∈ Z = {. . . ,−1, 0, 1, . . . }
Locations l ∈ L = {l, l0, l1, l2, . . . }

Operations op ::= + | ≥

Expressions

E ::= n | b | E op E |
l := E | !l |
skip | E ; E |
if E then E else E
while E do E

33

Transition systems

A transition system consists of
• a set Config of configurations (or states), and
• a binary relation −→⊆ Config × Config.

The relation −→ is called the transition or reduction relation:
c −→ c′ reads as ‘state c can make a transition to state c′’.
(see DFA/NFA)

34

IMP Semantics (1 of 4) – Configurations

Stores are (finite) partial functions L⇀ Z.
For example, {l1 7→ 3, l3 7→ 42}

Configurations are pairs ⟨E , s⟩ of an expression E and a store s.
For example, ⟨l := 2 + !l , {l 7→ 3}⟩.

Transitions have the form ⟨E , s⟩ −→ ⟨E′ , s′⟩.
For example, ⟨l := 2 + !l , {l 7→ 3}⟩ −→ ⟨l := 2 + 3 , {l 7→ 3}⟩

35

Transitions – Examples

Transitions are single computation steps.
For example

⟨l := 2 + !l , {l 7→ 3}⟩
−→ ⟨l := 2 + 3 , {l 7→ 3}⟩
−→ ⟨l := 5 , {l 7→ 3}⟩
−→ ⟨skip , {l 7→ 5}⟩
−̸→

Keep going until reaching a value v, an expression in V = B∪Z∪{skip}.
A configuration ⟨E , s⟩ is stuck if E is not a value and ⟨E , s⟩ −̸→.

36

IMP Semantics (2 of 4) – Rules (basic operations)

(op+) ⟨n1 + n2 , s⟩ −→ ⟨n , s⟩ if n = n1 + n2

(op≥) ⟨n1 ≥ n2 , s⟩ −→ ⟨b , s⟩ if b = (n1 ≥ n2)

(op1)
⟨E1 , s⟩ −→ ⟨E′

1 , s
′⟩

⟨E1 op E2 , s⟩ −→ ⟨E′
1 op E2 , s

′⟩

(op2)
⟨E2 , s⟩ −→ ⟨E′

2 , s
′⟩

⟨v op E2 , s⟩ −→ ⟨v op E′
2 , s

′⟩

37

Rules (basic operations) – Examples

Find the possible sequences of transitions for

⟨(2 + 3) + (4 + 5) , ∅⟩

The answer is 14 – but how do we show this formally?

38

IMP Semantics (3 of 4) – Store and Sequencing

(deref) ⟨!l , s⟩ −→ ⟨n , s⟩ if l ∈ dom(s) and s(l) = n

(assign1) ⟨l := n , s⟩ −→ ⟨skip , s + {l 7→ n}⟩ if l ∈ dom(s)

(assign2)
⟨E , s⟩ −→ ⟨E′ , s′⟩

⟨l := E , s⟩ −→ ⟨l := E′ , s′⟩

(seq1) ⟨skip ; E2 , s⟩ −→ ⟨E2 , s⟩

(seq2)
⟨E1 , s⟩ −→ ⟨E′

1 , s
′⟩

⟨E1 ; E2 , s⟩ −→ ⟨E′
1 ; E2 , s

′⟩

39

Store and Sequencing – Examples

⟨l := 3 ; !l , {l 7→ 0}}⟩ −→ ⟨skip ; !l , {l 7→ 3}⟩
−→ ⟨!l , {l 7→ 3}⟩
−→ ⟨3 , {l 7→ 3}⟩

40

Store and Sequencing – Examples

⟨l := 3 ; l := !l , {l 7→ 0}⟩ −→ ?

⟨42 + !l , ∅⟩ −→ ?

41

IMP Semantics (4 of 4) – Conditionals and While

(if1) ⟨if true then E2 else E3 , s⟩ −→ ⟨E2 , s⟩

(if2) ⟨if false then E2 else E3 , s⟩ −→ ⟨E3 , s⟩

(if3)
⟨E1 , s⟩ −→ ⟨E′

1 , s
′⟩

⟨if E1 then E2 else E3 , s⟩ −→ ⟨if E′
1 then E2 else E3 , s

′⟩

(while)
⟨while E1 do E2 , s⟩ −→ ⟨if E1 then (E2 ; while E1 do E2) else skip , s⟩

42

IMP – Examples

If

E =
(
l2 := 0 ; while !l1 ≥ 1 do (l2 := !l2 + !l1 ; l1 := !l1 + −1)

)
s = {l1 7→ 3, l2 7→ 0}

then

⟨E , s⟩ −→∗ ?

43

Determinacy

Theorem (Determinacy)
If ⟨E , s⟩ −→ ⟨E1 , s1⟩ and ⟨E , s⟩ −→ ⟨E2 , s2⟩
then ⟨E1 , s1⟩ = ⟨E2 , s2⟩.

Proof.
later ⊓⊔

44

Reminder

• basic and simple imperative while-language
• with formal semantics
• given in the format structural operational semantics

• rules usually have the form
A B

C

(special rule is C, which we often write as C)
• derivation tree

(R1)

(R3)
A

(R4)
B1

(R5)
B2

B
(R2)

C

45

Language design I
Order of Evaluation
IMP uses left-to-right evaluation. For example

⟨(l := 1 ; 0) + (l := 2 ; 0) , {l 7→ 0}⟩ −→5 ⟨0 , {l 7→ 2}⟩

For right-to-left we could use

(op1’)
⟨E2 , s⟩ −→ ⟨E′

2 , s
′⟩

⟨E1 op E2 , s⟩ −→ ⟨E1 op E
′
2 , s

′⟩

(op2’)
⟨E1 , s⟩ −→ ⟨E′

1 , s
′⟩

⟨E1 op v , s⟩ −→ ⟨E′
1 op v , s

′⟩

In this language

⟨(l := 1 ; 0) + (l := 2 ; 0) , {l 7→ 0}⟩ −→5 ⟨0 , {l 7→ 1}⟩

46

Language design II

Assignment results
Recall

(assign1) ⟨l := n , s⟩ −→ ⟨skip , s + {l 7→ n}⟩ if l ∈ dom(s)

(seq1) ⟨skip ; E2 , s⟩ −→ ⟨E2 , s⟩

We have chosen to map an assignment to skip, and e1 ; e2 to progress
iff e1 = skip.

Instead we could have chosen the following.

(assign1’) ⟨l := n , s⟩ −→ ⟨n , s + {l 7→ n}⟩ if l ∈ dom(s)

(seq1’) ⟨v ; E2 , s⟩ −→ ⟨E2 , s⟩

47

Language design III

Store initialisation
Recall

(deref) ⟨!l , s⟩ −→ ⟨n , s⟩ if l ∈ dom(s) and s(l) = n

Assumes l ∈ dom(s).

Instead we could have
• initialise all locations to 0, or
• allow assignments to an l ̸∈ dom(s).

48

Language design IV

Storable values
• our language only allows integer values (store: L⇀ Z)
• could we store any value? Could we store locations, or even

programs?
• store is global and cannot create new locations

49

Language design V

Operators and Basic values
• Booleans are different from integers (unlike in C)
• Implementation is (probably) different to semantics

Exercise: fix the semantics to match 32-bit integers

50

Expressiveness

Is our language expressive enough to write ‘interesting’ programs?
• yes: it is Turing-powerful

Exercise: try to encode an arbitrary Turing machine in IMP
• no: no support for standard feature, such as functions, lists, trees,

objects, modules, . . .
Is the language too expressive?

• yes: we would like to exclude programs such as 3 + true

clearly 3 and true are of different type

51

Section 3

Types

52

Type systems

• describe when programs make sense
• prevent certain kinds of errors
• structure programs
• guide language design

Ideally, well-typed programs do not get stuck.

53

Run-time errors
Trapped errors
Cause execution to halt immediately.
Examples: jumping to an illegal address, raising a top-level exception.
Innocuous?

Untrapped errors
May go unnoticed for a while and later cause arbitrary behaviour.
Examples: accessing data past the end of an array, security loopholes in
Java abstract machines.
Insidious!

Given a precise definition of what constitutes an untrapped run-time
error, then a language is safe if all its syntactically legal programs cannot
cause such errors. Usually, safety is desirable. Moreover, we’d like as
few trapped errors as possible.

54

Formal type systems

We define a ternary relation Γ ⊢ E :T

expression E has type T , under assumptions Γ on the types of locations
that may occur in E.

For example (according to the definition coming up):
• {} ⊢ if true then 2 else 3 + 4 : int
• l1 : intref ⊢ if !l1 ≥ 3 then !l1 else 3 : int
• {} ⊬ 3 + true : T for any type T
• {} ⊬ if true then 3 else true : int

55

Types of IMP

Types of expressions

T ::= int | bool | unit

Types of locations

Tloc ::= intref

We write T and Tloc for the sets of all terms of these grammars.
• Γ ranges over TypeEnv, the finite partial function from L⇀ Z
• notation: write l1 : intref, . . . , lk : intref instead of
{l1 7→ intref, . . . , lk 7→ intref}

56

Type Judgement (1 of 3)

(int) Γ ⊢ n : int if n ∈ Z

(bool) Γ ⊢ b :bool if b ∈ B = {true, false}

(op+)
Γ ⊢ E1 : int Γ ⊢ E2 : int

Γ ⊢ E1 + E2 : int

(op≥)
Γ ⊢ E1 : int Γ ⊢ E2 : int

Γ ⊢ E1 ≥ E2 :bool

(if)
Γ ⊢ E1 :bool Γ ⊢ E2 :T Γ ⊢ E3 :T

Γ ⊢ if E1 then E2 else E3 :T

57

Type Judgement – Example

Prove that {} ⊢ if false then 2 else 3 + 4 : int.

{} ⊢ false :bool
(BOOL)

{} ⊢ 2 : int
(INT)

(INT)
{} ⊢ 3 : int {} ⊢ 4 : int

(INT)

{} ⊢ 3 + 4 : int
(OP+)

{} ⊢ if false then 2 else 3 + 4 : int
(IF)

58

Type Judgement (2 of 3)

(assign)
Γ(l) = intref Γ ⊢ E : int

Γ ⊢ l := E :unit

(deref)
Γ(l) = intref
Γ ⊢ !l : int

Here, (for the moment) Γ(l) = intref means l ∈ dom(Γ)

59

Type Judgement (3 of 3)

(skip) Γ ⊢ skip :unit

(seq)
Γ ⊢ E1 :unit Γ ⊢ E2 :T

Γ ⊢ E1 ; E2 :T

(while)
Γ ⊢ E1 :bool Γ ⊢ E2 :unit
Γ ⊢ while E1 do E2 :unit

60

Type Judgement – Properties

Theorem (Progress)
If Γ ⊢ E :T and dom(Γ) ⊆ dom(s) then either E is a value or there exist
E′ and s′ such that ⟨E , s⟩ −→ ⟨E′ , s′⟩.

Theorem (Type Preservation)
If Γ ⊢ E :T , dom(Γ) ⊆ dom(s) and ⟨E , s⟩ −→ ⟨E′ , s′⟩ then Γ ⊢ E′ :T
and dom(Γ) ⊆ dom(s′).

61

Type Safety

Main result: Well-typed programs do not get stuck.

Theorem (Type Safety)
If Γ ⊢ E :T , dom(Γ) ⊆ dom(s), and ⟨E , s⟩ −→∗ ⟨E′ , s′⟩ then either E′ is
a value with Γ ⊢ E′ :T , or there exist E′′, s′′ such that
⟨E′ , s′⟩ −→ ⟨E′′ , s′′⟩, Γ ⊢ E′′ :T and dom(Γ) ⊆ dom(s′′).

Here, −→∗ means arbitrary many steps in the transition system.

62

Type checking, typeability, and type inference

Type checking problem for a type system:
given Γ, E and T , is Γ ⊢ E :T derivable?

Type inference problem:
given Γ and E, find a type T such that Γ ⊢ E :T is derivable, or show
there is none.

Type inference is usually harder than type checking, for a type T needs
to be computed.

For our type system, though, both are easy.

63

Properties

Theorem (Type inference)
Given Γ and E , one can find T such that Γ ⊢ E :T , or show that there is
none.

Theorem (Decidability of type checking)
Given Γ, E and T , one can decide whether Γ ⊢ E :T holds.

Moreover

Theorem (Uniqueness of typing)
If Γ ⊢ E :T and Γ ⊢ E :T ′ then T = T ′.

64

Section 4

Proofs (Structural Induction)

65

Why Proofs

• how do we know that the stated theorems are actually true?
intuition is often wrong – we need proof

• proofs strengthen intuition about language features
• examines all the various cases
• can guarantee items such as type safety
• most of our definitions are inductive; we use structural induction

66

(Mathematical) Induction

Mathematical induction proves that we can climb as high as we
like on a ladder, by proving that we can climb onto the bottom
rung (the basis) and that from each rung we can climb up to the
next one (the step).

[Concrete Mathematics (1994), R. Graham]

67

Natural Induction I

A proof by (natural) induction consists of two cases.

The base case proves the statement for n = 0 without assuming any
knowledge of other cases.
The induction step proves that if the statement holds for any given case
n = k, then it must also hold for the next case n = k + 1.

68

Natural Induction II

Theorem
∀n ∈ IN .Φ(n).

Proof.
Base case: show Φ(0)
Induction step: ∀k. Φ(k) =⇒ Φ(k + 1)
For that we fix an arbitrary k.
Assume Φ(k) derive Φ(k + 1). ⊓⊔

Example: 0 + 1 + 2 + · · ·+ n = n·(n+1)
2 .

69

Natural Induction III

Theorem
∀n ∈ IN .Φ(n).

Proof.
Base case: show Φ(0)
Induction step: ∀i, k.0 ≤ i ≤ k. Φ(i) =⇒ Φ(k + 1)
For that we fix an arbitrary k.
Assume ϕ(i) for all i ≤ k derive ϕ(k + 1). ⊓⊔

Example: Fn = φn−ψn

φ−ψ ,

with Fn is the n-th Fibonacci number, φ = 1+
√
5

2 (the golden ratio) and
ψ = 1−

√
5

2 .

70

Structural Induction I

• generalisation of natural induction
• prove that some proposition Φ(x) holds for all x of some sort of

recursively defined structure
• requires well-founded partial order

Examples: lists, formulas, trees

71

Structural Induction II

Determinacy structural induction for E
Progress rule induction for Γ ⊢ E :T

(induction over the height of derivation tree)
Type Preservation rule induction for ⟨E , s⟩ −→ ⟨E′ , s′⟩
Safety mathematical induction on −→n

Uniqueness of typing . . .
Decidability of typability exhibiting an algorithm
Decidability of type checking corollary of other results

72

Structural Induction over Expressions

Prove facts about all expressions, e.g. Determinacy?

Theorem (Determinacy)
If ⟨E , s⟩ −→ ⟨E1 , s1⟩ and ⟨E , s⟩ −→ ⟨E2 , s2⟩
then ⟨E1 , s1⟩ = ⟨E2 , s2⟩.

Do not forget the elided universal quantifiers.

Theorem (Determinacy)
For all E, s, E1, s1, E2 and s2,
if ⟨E , s⟩ −→ ⟨E1 , s1⟩ and ⟨E , s⟩ −→ ⟨E2 , s2⟩
then ⟨E1 , s1⟩ = ⟨E2 , s2⟩.

73

Abstract Syntax

Remember the definition of expressions:

E ::= n | b | E op E |
l := E | !l |
if E then E else E |
skip | E ; E |
while E do E

This defines an (infinite) set of expressions.

74

Abstract Syntax Tree I

Example: if !l ≥ 0 then skip else (skip ; l := 0)

if then else

≥

!l 0

skip ;

skip l :=

0

75

Abstract Syntax Tree II

• equivalent expressions are not the same, e.g., 2 + 2 ̸= 4

+

2 2 4

• ambiguity, e.g., (1 + 2) + 3 ̸= 1 + (2 + 3)

+

+

1 2

3

+

1 +

2 3

Parentheses are only used for disambiguation – they are not part of
the grammar

76

Structural Induction (for abstract syntax)

Theorem
∀E ∈ IMP. Φ(E)

Proof.
Base case(s): show Φ(E) for each unary tree constructor (leaf)
Induction step(s): show it for the remaining constructors

∀c. ∀E1, . . . Ek. (Φ(E1) ∧ · · · ∧ Φ(Ek)) =⇒ Φ(c(E1, . . . , Ek))

⊓⊔

77

Structural Induction (syntax IMP)

To show ∀E ∈ IMP. Φ(E).
base cases
nullary: Φ(skip)

∀b ∈ B. Φ(b)
∀n ∈ Z. Φ(n)
∀l ∈ L. Φ(!l)

steps
unary: ∀l ∈ L. ∀E. Φ(E) =⇒ Φ(l := E)
binary: ∀op. ∀E1, E2. (Φ(E1) ∧ Φ(E2)) =⇒ Φ(E1 op E2)

∀E1, E2. (Φ(E1) ∧ Φ(E2)) =⇒ Φ(E1 ; E2)
∀E1, E2. (Φ(E1) ∧ Φ(E2)) =⇒ Φ(while E1 do E2)

ternary: ∀E1, E2, E3. (Φ(E1) ∧ Φ(E2) ∧ Φ(E3))
=⇒ Φ(if E1 then E2 else E3)

78

Proving Determinacy – Outline

Theorem (Determinacy)
For all E, s, E1, s1, E2 and s2,
if ⟨E , s⟩ −→ ⟨E1 , s1⟩ and ⟨E , s⟩ −→ ⟨E2 , s2⟩
then ⟨E1 , s1⟩ = ⟨E2 , s2⟩.

Proof.
Choose

Φ(E)
def
= ∀s, E′, s′, E′′, s′′.

(⟨E , s⟩ −→ ⟨E′ , s′⟩ ∧ ⟨E , s⟩ −→ ⟨E′′ , s′′⟩)
=⇒ ⟨E′ , s′⟩ = ⟨E′′ , s′′⟩

and show Φ(E) by structural induction over E. ⊓⊔

79

Proving Determinacy – Sketch

Some cases on whiteboard

80

Proving Determinacy – auxiliary lemma

Values do not reduce.

Lemma
For all E ∈ IMP, if E is a value then
∀s. ¬(∃E′, s′. ⟨E , s⟩ −→ ⟨E′ , s′⟩).

Proof.
• E is a value iff it is of the form n, b, skip
• By examination of the rules . . .

there is no rule with conclusion of the form ⟨E , s⟩ −→ ⟨E′ , s′⟩ for E
a value

⊓⊔

81

Inversion I

In proofs involving inductive definitions. one often needs an inversion
property.
Given a tuple in one inductively defined relation, gives you a case
analysis of the possible “last rule” used.

Lemma (Inversion for −→)
If ⟨E , s⟩ −→ ⟨Ê , ŝ⟩ then either

1. (op+): there exists n1, n2 and n such that E = n1 op n2, Ê = n,
ŝ = s and n = n1 + n2,
(Note: +s have different meanings in this statements), or

2. (op1): there exists E1, E2, op and E′
1 such that E = E1 op E2,

Ê = E′
1 op E2 and ⟨E1 , s⟩ −→ ⟨E′

1 , s
′⟩, or

3. . . .

82

Inversion II

Lemma (Inversion for ⊢)
If Γ ⊢ E :T then either

• . . .

83

Determinacy – Intuition

The intuition behind structural induction over expressions. Consider
(!l + 2) + 3. How can we see that Φ((!l + 2) + 3) holds?

+

+

!l 2

3

84

Rule Induction

How to prove the following theorems?

Theorem (Progress)
If Γ ⊢ E :T and dom(Γ) ⊆ dom(s) then either E is a value or there exist
E′ and s′ such that ⟨E , s⟩ −→ ⟨E′ , s′⟩.

Theorem (Type Preservation)
If Γ ⊢ E :T , dom(Γ) ⊆ dom(s) and ⟨E , s⟩ −→ ⟨E′ , s′⟩ then Γ ⊢ E′ :T
and dom(Γ) ⊆ dom(s′).

85

Inductive Definition of −→

What does ⟨E , s⟩ −→ ⟨E′ , s′⟩ actually mean?

We defined the transition relation by providing some rules, such as
(op+) ⟨n1 + n2 , s⟩ −→ ⟨n , s⟩ if n = n1 + n2

(op1)
⟨E1 , s⟩ −→ ⟨E′

1 , s
′⟩

⟨E1 op E2 , s⟩ −→ ⟨E′
1 op E2 , s

′⟩

These rules (their concrete instances) inductively/recursively define a set
of derivation trees. The last step in the derivation tree defines a step in
the transition system.
We define the (infinite) set of all finite derivation trees

86

Derivation Tree (Transition Relation) – Example

⟨2 + 2 , {}⟩ −→ ⟨4 , {}⟩
(OP+)

⟨(2 + 2) + 3 , {}⟩ −→ ⟨4 + 3 , {}⟩
(OP1)

⟨(2 + 2) + 3 ≥ 5 , {}⟩ −→ ⟨4 + 3 ≥ 5 , {}⟩
(OP1)

87

Derivation Tree (Typing Judgement) – Example

Γ(l) = intref
Γ ⊢!l : int

(DERREF)
Γ ⊢ 2 : int

(INT)

Γ ⊢ !l + 2 : int
(OP+)

Γ ⊢ 3 : int
(INT)

Γ ⊢ (!l + 2) + 3 : int
(OP+)

88

Principle of Rule Induction I

For any property Φ(a) of elements a of A, and any set of rules which
define a subset SR of A, to prove

∀a ∈ SR. Φ(a)

it is enough to prove that {a | Φ(a)} is closed under the rules,
i.e., for each

h1 . . . hk

c

if Φ(h1) ∧ · · · ∧ Φ(hk) then Φ(c).

89

Principle of Rule Induction II

For any property Φ(a) of elements a of A, and any set of rules which
define a subset SR of A, to prove

∀a ∈ SR. Φ(a)

it is enough to prove that for each

h1 . . . hk

c

if Φ(h1) ∧ · · · ∧ Φ(hk) then Φ(c).

90

Proving Progress I

Theorem (Progress)
If Γ ⊢ E :T and dom(Γ) ⊆ dom(s) then either E is a value or there exist
E′ and s′ such that ⟨E , s⟩ −→ ⟨E′ , s′⟩.

Proof.
Choose

Φ(Γ, E, T) = ∀s. dom(Γ) ⊆ dom(s)

=⇒ value(E) ∨ (∃E′, s′. ⟨E , s⟩ −→ ⟨E′ , s′⟩)

We show that for all Γ, E, T , if Γ ⊢ E :T then Φ(Γ, E, T), by rule
induction on the definition of ⊢. ⊓⊔

91

Proving Progress II

Rule induction for our typing rules means:

(int) ∀Γ, n. Φ(Γ, n, int)

(deref) ∀Γ, l. Γ(l) = intref =⇒ Φ(Γ, !l, int)

(op+) ∀Γ, E1, E2.
(
Φ(Γ, E1, int) ∧ Φ(Γ, E2, int) ∧ Γ ⊢ E1 : int ∧ Γ ⊢ E2 : int

)
=⇒ Φ(Γ, E1 + E2, int)

(seq) ∀Γ, E1, E2.
(
Φ(Γ, E1,unit) ∧ Φ(Γ, E2, T) ∧ Γ ⊢ E1 :unit ∧ Γ ⊢ E2 :T

)
=⇒ Φ(Γ, E1;E2, int)

. . . [10 rules in total]

92

Proving Progress III

Φ(Γ, E, T) = ∀s. dom(Γ) ⊆ dom(s)

=⇒ value(E) ∨ (∃E′, s′. ⟨E , s⟩ −→ ⟨E′ , s′⟩)

Case (op+):

(op+)
Γ ⊢ E1 : int Γ ⊢ E2 : int

Γ ⊢ E1 + E2 : int

• assume Φ(Γ, E1, int), Φ(Γ, E2, int), Γ ⊢ E1 : int and Γ ⊢ E2 : int
• we have to show Φ(Γ, E1 + E2, int)
• assume an arbitrary but fixed s, and dom(Γ) ⊆ dom(s)
• E1 + E2 is not a value; hence we have to show

∃E′, s′. ⟨E1 + E2 , s⟩ −→ ⟨E′ , s′⟩

93

Proving Progress IV

Case (op+) (cont’d):
• we have to show

∃E′, s′. ⟨E1 + E2 , s⟩ −→ ⟨E′ , s′⟩

• Using Φ(Γ, E1, int) and Φ(Γ, E2, int) we have
case E1 reduces. Then E1 + E2 does, by (op1).
case E1 is a value and E2 reduces. Then E1 + E2 does, by (op2).
case E1 and E2 are values; we want to use

(op+) ⟨n1 + n2 , s⟩ −→ ⟨n , s⟩ if n = n1 + n2

we assumed Γ ⊢ E1 : int and Γ ⊢ E2 : int we need E1 = n1 and
E2 = n2; then E1 + E2 reduces, by (op+).

94

Proving Progress V

Lemma
For all Γ, E, T , if Γ ⊢ E :T is a value with T = int
then there exists n ∈ Z with E = n.

95

Derivation Tree (Typing Judgement) – Example

Γ(l) = intref
Γ ⊢ !l : int

(DEREF)
Γ ⊢ 2 : int

(INT)

Γ ⊢ !l + 2 : int
(OP+)

Γ ⊢ 3 : int
(INT)

Γ ⊢ (!l + 2) + 3 : int
(OP+)

96

Which Induction Principle to Use?

• matter of convenience (all equivalent)
• use an induction principle that matches the definitions

97

Structural Induction (Repetition)

Determinacy structural induction for E
Progress rule induction for Γ ⊢ E :T

(induction over the height of derivation tree)
Type Preservation rule induction for ⟨E , s⟩ −→ ⟨E′ , s′⟩
Safety mathematical induction on −→n

Uniqueness of typing . . .
Decidability of typability exhibiting an algorithm
Decidability of type checking corollary of other results

98

Why care about Proofs?

1. sometimes it seems hard or pointless to prove things because they
are ‘obvious’, . . .
(in particular with our language)

2. proofs illustrate (and explain) why ‘things are obvious’
3. sometimes the obvious facts are false . . .
4. sometimes the obvious facts are not obvious at all

(in particular for ‘real’ languages)
5. sometimes a proof contains or suggests an algorithm that you need

(proofs that type inference is decidable (for fancier type systems))
6. force a clean language design

99

Section 5

Functions

100

Functions, Methods, Procedures, . . .

• so far IMP was really minimalistic
• the most important ‘add-on’ are functions
• this requires variables and other concepts

101

Examples

add one : : I n t −> I n t
add one n = n + 1

p u b l i c i n t add one (i n t x) {
r e t u r n (x +1) ;

}

<s c r i p t type =” t e x t / v b s c r i p t ”>
f u n c t i o n addone (x)

addone = x+1
end f u n c t i o n
</ s c r i p t>

102

Introductory Examples: C♯

In C♯, what is the output of the following?

delegate i n t IntThunk () ;
c lass C {

p u b l i c s t a t i c vo id Main () {
IntThunk [] funcs = new IntThunk [1 1] ;
f o r (i n t i = 0 ; i <= 10; i ++)
{

funcs [i] = delegate () { r e t u r n i ; } ;
}
foreach (IntThunk f i n funcs)
{

System . Console . Wr i teL ine (f ()) ;
}

}
}

In my opinion, the design was wrong.

103

Functions – Examples

We want include the following expressions:

(fn x : int ⇒ x + 1)

(fn x : int ⇒ x + 1) 7

(fn y : int ⇒ (fn x : int ⇒ x + y))

(fn y : int ⇒ (fn x : int ⇒ x + y)) 1

(fn x : int → int ⇒ (fn y : int ⇒ x (x y)))

(fn x : int → int ⇒ (fn y : int ⇒ x (x y))) (fn x : int ⇒ x + 1)(
(fn x : int → int ⇒ (fn y : int ⇒ x (x y))) (fn z : int ⇒ z + 1)

)
7

104

Functions – Syntax

We extend our syntax:

Variables x ∈ X for a set X = {x, y, z, . . . } (countable)

Expressions
E ::= . . . | (fn x : T ⇒ E) | E E | x

Types

T ::= int | bool | unit | T → T

Tloc ::= intref

105

Variable Shadowing

(fn x : int ⇒ (fn x : int ⇒ x + 1))

106

Alpha conversion

In expressions (fn x : T ⇒ E), variable x is a binder
• inside E, any x (not being a binder themselves and not inside

another (fn x : T ′ ⇒ . . .)) mean the same
• it is the formal parameter of this function
• outside (fn x : T ⇒ E), it does not matter which variable we use – in

fact, we should not be able to tell
For example, (fn x : int ⇒ x + 2) should be the same as
(fn y : int ⇒ y + 2)

Binders are known from many areas of mathematics/logics.

107

Alpha conversion: free and bound variables

An occurrence x in an expression E is free if it is not inside any
(fn x : T ⇒ . . .).
For example:

17

x + y

(fn x : int ⇒ x + 2)

(fn x : int ⇒ x + z)

if y then 2 + x else ((fn x : int ⇒ x + 2) z)

108

Alpha Conversion – Binding Examples

(fn x : int ⇒ x + 2)

(fn x : int ⇒ x + z)

(fn y : int ⇒ y + z)

(fn z : int ⇒ z + z)

(fn x : int ⇒ (fn x : int ⇒ x + 2))

109

Alpha Conversion – Convention

• we want to allow to replace binder x (and all occurrences of x bound
by that x) by another binder y

• if it does not change the binding graph

For example

(fn x : int ⇒ x + z) = (fn y : int ⇒ y + z) ̸= (fn z : int ⇒ z + z)

• called ‘working up to alpha conversion’
• extend abstract syntax trees by pointers

110

Syntax Trees up to Alpha Conversion

(fn x : int ⇒ x + z) = (fn y : int ⇒ y + z) ̸= (fn z : int ⇒ z + z)

Standard abstract syntax trees

(fn x : int ⇒)

+

x z

(fn y : int ⇒)

+

y z

(fn z : int ⇒)

+

z z

111

Syntax Trees up to Alpha Conversion II

(fn x : int ⇒ x + z) = (fn y : int ⇒ y + z) ̸= (fn z : int ⇒ z + z)

Add pointers

(fn • : int ⇒)

+

• z

(fn • : int ⇒)

+

• z

(fn • : int ⇒)

+

• •

112

Syntax Trees up to Alpha Conversion III

(fn x : int ⇒ (fn x : int ⇒ x + 2))

= (fn y : int ⇒ (fn z : int ⇒ z + 2)) ̸= (fn z : int ⇒ (fn y : int ⇒ z + 2))

(fn • : int ⇒)

(fn • : int ⇒)

+

• z

(fn • : int ⇒)

(fn • : int ⇒)

+

• z

113

Syntax Trees up to Alpha Conversion IV
Application and function type

(fn x : int ⇒ x) 7 (fn z : int → int → int ⇒ (fn y : int ⇒ z y y))

@

(fn • : int ⇒)

•

7

(fn • : int → int → int ⇒)

(fn • : int ⇒)

@

@

• •

•

114

De Bruijn indices
• these pointers are known as De Bruijn indices
• each occurrence of a bound variable is represented by the number

of fn-nodes you have to pass

(fn • : int ⇒ (fn • : int ⇒ v0 + 2)) ̸= (fn • : int ⇒ (fn • : int ⇒ v1 + 2))

(fn • : int ⇒)

(fn • : int ⇒)

+

• 2

(fn • : int ⇒)

(fn • : int ⇒)

+

• 2

115

Free Variables

• free variables of an expression E are the set of variables for which
there is an occurrence of x free in E

fv(x) = {x}
fv(E1 op E2) = fv(E1) ∪ fv(E2)

fv((fn x : T ⇒ E)) = fv(E)− {x}

• an expression E is closed if fv(E) = ∅
• For a set E of expressions fv(E) =

⋃
E∈E fv(E)

• these definitions are alpha-invariant
(all forthcoming definitions should be)

116

Substitution – Examples

• semantics of functions will involve substitution (replacement)
• {E/x}E′ denotes the expression E′ where all free occurrences of x

are substituted by E

Examples

{3/x} (x ≥ x) = (3 ≥ 3)

{3/x} ((fn x : int ⇒ x + y) x) = (fn x : int ⇒ x + y) 3

{y + 2/x} (fn y : int ⇒ x + y) = (fn z : int ⇒ (y + 2) + z)

117

Substitution

Definition

{E/z}x def
=

{
E if x = z
x otherwise

{E/z} (fn x : T ⇒ E1)
def
= (fn x : T ⇒ ({E/z}E1)) if x ̸= z and x ̸∈ fv(E)(∗)

{E/z} (E1 E2)
def
= ({E/z}E1) ({E/z}E2)

. . .

if (∗) is false, apply alpha conversion to generate a variant of (fn x : T ⇒ E1) to
make (∗) true

118

Substitution – Example

Substitution – Example Again

{y + 2/x} (fn y : int ⇒ x + y)

= {y + 2/x} (fn z : int ⇒ x + z)

= (fn z : int ⇒ {y + 2/x} (x + z))

= (fn z : int ⇒ {y + 2/x}x + {y + 2/x} z)
= (fn z : int ⇒ (y + 2) + z)

119

Simultaneous Substitution

• a substitution σ is a finite partial function from variables to
expressions

• notation: {E1/x1, . . . , Ek/xk} instead of {x1 7→ E1, . . . , xk 7→ Ek}
• the formal definition is straight forward

120

Definition Substitution [for completeness]

Let σ be {E1/x1, . . . , Ek/xk}.
Moreover, dom(σ) = {x1, . . . , xk} and ran(σ) = {E1, . . . , Ek}.

σ x =

{
Ei if x = xi (and xi ∈ dom(σ)
x otherwise

σ (fn x : T ⇒ E) = (fn x : T ⇒ (σ E)) if x ̸∈ dom(σ) and x ̸∈ fv(ran(σ)) (∗)
σ (E1 E2) = (σ E1) (σ E2)
σ n = n
σ (E1 op E2) = (σ E1) op (σ E2)
σ (if E1 then E2 else E3) = if (σ E1) then (σ E2) else (σ E3)
σ b = b
σ skip = skip
σ (l := E) = l := (σ E)
σ (!l) = !l
σ (E1 ; E2) = (σ E1) ; (σ E2)
σ (while E1 do E2) = while (σ E1) do (σ E2)

121

Function Behaviour

• we are now ready to define the semantics of functions
• there are some choices to be made

▶ call-by-value
▶ call-by-name
▶ call-by-need

122

Function Behaviour

Consider the expression

E = (fn x : unit ⇒ (l := 1) ; x) (l := 2)

What is the transition relation

⟨E , {l 7→ 0}⟩ −→∗ ⟨skip , {l 7→ ???}⟩

123

Choice 1: Call-by-Value
Idea: reduce left-hand-side of application to an fn-term;
then reduce argument to a value;
then replace all occurrences of the formal parameter in the fn-term by
that value.

E = (fn x : unit ⇒ (l := 1) ; x) (l := 2)

⟨E , {l 7→ 0}⟩
−→ ⟨(fn x : unit ⇒ (l := 1) ; x) skip , {l 7→ 2}⟩
−→ ⟨(l := 1) ; skip , {l 7→ 2}⟩
−→ ⟨skip ; skip , {l 7→ 1}⟩
−→ ⟨skip , {l 7→ 1}⟩

124

Call-by-Value – Semantics
Values
v ::= b | n | skip | (fn x : T ⇒ E)

SOS rules
all sos rules we used so far, plus the following

(app1)
⟨E1 , s⟩ −→ ⟨E′

1 , s
′⟩

⟨E1 E2 , s⟩ −→ ⟨E′
1 E2 , s

′⟩

(app2)
⟨E2 , s⟩ −→ ⟨E′

2 , s
′⟩

⟨v E2 , s⟩ −→ ⟨v E′
2 , s

′⟩

(fn) ⟨(fn x : T ⇒ E) v , s⟩ −→ ⟨{v/x}E , s⟩

125

Call-by-Value – Example I

⟨(fn x : int ⇒ (fn y : int ⇒ x + y)) (3 + 4) 5 , s⟩
= ⟨

(
(fn x : int ⇒ (fn y : int ⇒ x + y)) (3 + 4)

)
5 , s⟩

−→ ⟨
(
(fn x : int ⇒ (fn y : int ⇒ x+ y)) 7

)
5 , s⟩

−→ ⟨
(
{7/x} (fn y : int ⇒ x+ y)

)
5 , s⟩

= ⟨(fn y : int ⇒ 7 + y) 5 , s⟩
−→ ⟨{5/y} 7 + y , s⟩
= ⟨7 + 5 , s⟩

−→ ⟨12 , s⟩

126

Call-by-Value – Example II

(fn f : int → int ⇒ f 3) (fn x : int ⇒ (1 + 2) + x) −→∗ ???

127

Choice 2: Call-by-Name
Idea: reduce left-hand-side of application to an fn-term;
then replace all occurrences of the formal parameter in the fn-term by
that argument.

E = (fn x : unit ⇒ (l := 1) ; x) (l := 2)

⟨E , {l 7→ 0}⟩
−→ ⟨(l := 1) ; (l := 2) , {l 7→ 0}⟩
−→ ⟨skip ; (l := 2) , {l 7→ 1}⟩
−→ ⟨l := 2 , {l 7→ 1}⟩
−→ ⟨skip , {l 7→ 2}⟩

128

Call-by-Name – Semantics
SOS rules

(CBN-app)
⟨E1 , s⟩ −→ ⟨E′

1 , s
′⟩

⟨E1 E2 , s⟩ −→ ⟨E′
1 E2 , s

′⟩

(CBN-fn) ⟨(fn x : T ⇒ E1) E2 , s⟩ −→ ⟨{E2/x}E1 , s⟩

No evaluation unless needed

⟨(fn x : unit ⇒ skip) (l := 2) , {l 7→ 0}⟩
−→ ⟨{l := 2/x}skip , {l 7→ 0}⟩
= ⟨skip , {l 7→ 0}⟩

but if it is needed, repeated evaluation possible.

129

Choice 3: Full Beta

Idea: allow reductions on left-hand-side and right-hand-side;
any time if left-hand-side is an fn-term;
replace all occurrences of the formal parameter in the fn-term by that
argument; allow reductions inside functions

⟨(fn x : int ⇒ 2 + 2) , s⟩ −→ ⟨(fn x : int ⇒ 4) , s⟩

130

Full Beta – Semantics
Values
v ::= b | n | skip | (fn x : T ⇒ E)

SOS rules

(beta-app1)
⟨E1 , s⟩ −→ ⟨E′

1 , s
′⟩

⟨E1 E2 , s⟩ −→ ⟨E′
1 E2 , s

′⟩

(beta-app2)
⟨E2 , s⟩ −→ ⟨E′

2 , s
′⟩

⟨E1 E2 , s⟩ −→ ⟨E1 E
′
2 , s

′⟩

(beta-fn1) ⟨(fn x : T ⇒ E1) E2 , s⟩ −→ ⟨{E2/x}E1 , s⟩

(beta-fn2)
⟨E , s⟩ −→ ⟨E′ , s′⟩

⟨(fn x : T ⇒ E) , s⟩ −→ ⟨(fn x : T ⇒ E′) , s′⟩

131

Full Beta – Example

(fn x : int ⇒ x + x) (2 + 2)

(fn x : int ⇒ x + x) 4 (2 + 2) + (2 + 2)

4 + (2 + 2)

4 + 4

8

(2 + 2) + 4

132

Choice 4: Normal-Order Reduction

Idea: leftmost, outermost variant of full beta.

133

Section 6

Typing for Call-By-Value

134

Typing Functions - TypeEnvironment

• so far Γ ranges over TypeEnv, the finite partial function from
L⇀ Tloc

• with functions, it summarises assumptions on the types of variables
• type environments Γ are now pairs of a Γloc (L⇀ Tloc)

and a Γvar, a partial function from X to T (X⇀ T).

For example, Γloc = {l1 : intref} and Γvar = {x : int, y : bool → int}.
• dom(Γ) = dom(Γloc) ∪ dom(Γvar).
• notation: if x ̸∈ dom(Γvar), we write Γ, x : T , which adds x : T to
Γvar

135

Typing Functions

(var) Γ ⊢ x :T if Γ(x) = T

(fn)
Γ, x : T ⊢ E :T ′

Γ ⊢ (fn x : T ⇒ E) :T → T ′

(app)
Γ ⊢ E1 :T → T ′ Γ ⊢ E2 :T

Γ ⊢ E1 E2 :T
′

136

Typing Functions – Example I

(FN)

(OP+)

(VAR)
x : int ⊢ x : int x : int ⊢ 2 : int

(INT)

x : int ⊢ x + 2 : int
{} ⊢ (fn x : int ⇒ x + 2) : int → int {} ⊢ 2 : int

(INT)

{} ⊢ (fn x : int ⇒ x + 2) 2 : int
(APP)

137

Typing Functions – Example II

Determine the type of

(fn x : int → int ⇒ x (fn x : int ⇒ x) 3)

138

Properties Typing

We only consider closed programs, with no free variables.

Theorem (Progress)
If E closed, Γ ⊢ E :T and dom(Γ) ⊆ dom(s) then either E is a value or
there exist E′ and s′ such that ⟨E , s⟩ −→ ⟨E′ , s′⟩.

There are more configurations that get stuck, e.g. (3 4).

Theorem (Type Preservation)
If E closed, Γ ⊢ E :T , dom(Γ) ⊆ dom(s) and ⟨E , s⟩ −→ ⟨E′ , s′⟩ then
Γ ⊢ E′ :T and dom(Γ) ⊆ dom(s′).

139

Proving Type Preservation

Theorem (Type Preservation)
If E closed, Γ ⊢ E :T , dom(Γ) ⊆ dom(s) and ⟨E , s⟩ −→ ⟨E′ , s′⟩ then
Γ ⊢ E′ :T and dom(Γ) ⊆ dom(s′).

Proof outline.
Choose

Φ(E, s,E′, s′) = ∀Γ, T.
(
Γ ⊢ E :T ∧ closed(E) ∧ dom(Γ) ⊆ dom(s)

=⇒ Γ ⊢ E′ :T ∧ closed(E′) ∧ dom(Γ) ⊆ dom(s′)
)

show ∀E, s,E′, s′. ⟨E , s⟩ −→ ⟨E′ , s′⟩ =⇒ Φ(E, s,E′, s′), by rule
induction ⊓⊔

140

Proving Type Preservation – Auxiliary Lemma

Lemma (Substitution)
If E closed, Γ ⊢ E :T and Γ, x : T ⊢ E′ :T ′ with x ̸∈ dom(Γ) then
Γ ⊢ {E/x}E′ :T ′.

141

Type Safety

Main result: Well-typed programs do not get stuck.

Theorem (Type Safety)
If Γ ⊢ E :T , dom(Γ) ⊆ dom(s), and ⟨E , s⟩ −→∗ ⟨E′ , s′⟩ then either E′ is
a value with Γ ⊢ E′ :T , or there exist E′′, s′′ such that
⟨E′ , s′⟩ −→ ⟨E′′ , s′′⟩, Γ ⊢ E′′ :T and dom(Γ) ⊆ dom(s′′).

Here, −→∗ means arbitrary many steps in the transition system.

142

Normalisation

Theorem (Normalisation)
In the sublanguage without while loops, if Γ ⊢ E :T and E closed then
there does not exist an infinite reduction sequence

⟨E , {}⟩ −→ ⟨E1 , {}⟩ −→ ⟨E2 , {}⟩ −→ . . .

Proof.
See B. Pierce, Types and Programming Languages, Chapter 12. ⊓⊔

143

Section 7

Recursion

144

Scoping

Name Definitions
restrict the scope of variables

E ::= . . . | let val x : T = E1 in E2 end

• x is a binder for E2

• can be seen as syntactic sugar:

let val x : T = E1 in E2 end ≡ (fn x : T ⇒ E2) E1

145

Derived sos-rules and typing

let val x : T = E1 in E2 end ≡ (fn x : T ⇒ E2) E1

(let)
Γ ⊢ E1 :T Γ, x : T ⊢ E2 :T

′

Γ ⊢ let val x : T = E1 in E2 end :T ′

(let1)
⟨E1 , s⟩ −→ ⟨E′

1 , s
′⟩

⟨let val x :T =E1 in E2 end , s⟩ −→ ⟨let val x :T =E′
1 in E2 end , s′⟩

(let2) ⟨let val x : T = v in E2 end , s⟩ −→ ⟨{v/x}E2 , s⟩

146

Recursion – An Attempt
Consider

r = (fn y : int ⇒ if y ≥ 1 then y + (r (y + −1)) else 0)

where r is the recursive call (variable occurring in itself).
What is the evaluation of r 3?

We could try

E ::= . . . | let val rec x : T = E in E′ end

where x is a binder for both E and E′.

let val rec r : int → int =
(fn y : int ⇒ if y ≥ 1 then y + (r (y + −1)) else 0)

in r 3 end

147

However . . .

• What about let val rec x : T = (x, x) in x end?
• What about let val rec x : int list = 3 :: x in x end?

Does this terminate? and if it does is it equal to
– let val rec x : int list = 3 :: 3 :: x in x end

• Does let val rec x : int list = 3 :: (x + 1) in x end terminate?
• In Call-by-Name (Call-by-Need) these are reasonable
• In Call-by-Value these would usually be disallowed

148

Recursive Functions

Idea specialise the previous let val rec
• T = T1 → T2 (recursion only at function types)
• E = (fn y : T1 ⇒ E1) (and only for function values)

149

Recursive Functions – Syntax and Typing

E ::= . . . | let val rec x : T1 → T2 = (fn y : T1 ⇒ E1) in E2 end

Here, y binds in E1 and x bind in (fn y : T1 ⇒ E1) and E2

(recT)
Γ, x:T1 →T2, y:T1 ⊢ E1 :T2 Γ, x:T1 →T2 ⊢ E2 :T

Γ ⊢ let val rec x : T1 → T2 = (fn y : T1 ⇒ E1) in E2 end :T

150

Recursive Functions – Semantics

(rec) ⟨let val rec x :T1→T2= (fn y : T1 ⇒ E1) in E2 end , s⟩
−→

⟨{(fn y :T1⇒ let val rec x :T1→T2= (fn y : T1 ⇒ E1) in E1 end)/x}E2 , s⟩

151

Redundancies?

• Do we need E1 ; E2?
No: E1 ; E2 ≡ (fn y : unit ⇒ E2) E1

• Do we need while E1 do E2?
No:

while E1 do E2 ≡ let val rec w : unit → unit =

(fn y : unit ⇒ if E1 then (E2 ; (w skip)) else skip)
in

w skip
end

152

Redundancies?

• Do we need recursion?
Yes! Previously, normalisation theorem effectively showed that
while adds expressive power; now, recursion is even more powerful.

153

Side remarks I
• naive implementations (in particular substitutions) are inefficient

(more efficient implementations are shown in courses on compiler
construction)

• more concrete – closer to implementation or machine code – are
possible

• usually refinement to prove compiler to be correct
(e.g. CompCert or CakeML)

154

Side remarks I – CakeML

155

Side remarks II: Big-step Semantics
• we have seen a small-step semantics

⟨E , s⟩ −→ ⟨E′ , s′⟩

• alternatively, we could have looked at a big-step semantics

⟨E , s⟩ ⇓ ⟨E′ , s′⟩

For example

⟨n , s⟩ ⇓ ⟨n , s⟩
⟨E1 , s⟩ ⇓ ⟨n1 , s′⟩ ⟨E2 , s

′⟩ ⇓ ⟨n2 , s′′⟩
⟨E1 + E2 , s⟩ ⇓ ⟨n , s′′⟩

(n = n1+n2)

• no major difference for sequential programs
• small-step much better for modelling concurrency and proving type

safety

156

Section 8

Data

157

Recap and Missing Steps

• simple while language
• with functions
• but no data structures

158

Products – Syntax

T ::= . . . | T ∗ T

E ::= . . . | (E,E) | fst E | snd E

159

Products – Typing

(pair)
Γ ⊢ E1 :T1 Γ ⊢ E2 :T2

Γ ⊢ (E1, E2) :T1 ∗ T2

(proj1)
Γ ⊢ E :T1 ∗ T2
Γ ⊢ fst E :T1

(proj2)
Γ ⊢ E :T1 ∗ T2
Γ ⊢ snd E :T2

160

Products – Semantics
Values
v ::= . . . | (v, v)

SOS rules

(pair1)
⟨E1 , s⟩ −→ ⟨E′

1 , s
′⟩

⟨(E1, E2) , s⟩ −→ ⟨(E′
1, E2) , s

′⟩

(pair2)
⟨E2 , s⟩ −→ ⟨E′

2 , s
′⟩

⟨(v,E2) , s⟩ −→ ⟨(v,E′
2) , s

′⟩

(proj1) ⟨fst (v1, v2) , s⟩ −→ ⟨v1 , s⟩ (proj2) ⟨snd (v1, v2) , s⟩ −→ ⟨v2 , s⟩

(proj3)
⟨E , s⟩ −→ ⟨E′ , s′⟩

⟨fst E , s⟩ −→ ⟨fst E′ , s′⟩
(proj4)

⟨E , s⟩ −→ ⟨E′ , s′⟩
⟨snd E , s⟩ −→ ⟨snd E′ , s′⟩

161

Sums (Variants, Tagged Unions) – Syntax

T ::= . . . | T + T

E ::= . . . | inl E :T | inr E :T |
case E of inl x1 :T1 ⇒ E | inr x2 :T2 ⇒ E

x1 and x2 are binders for E1 and E2, up to alpha-equivalence

162

Sums – Typing I

(inl)
Γ ⊢ E :T1

Γ ⊢ inl E : T1 + T2 :T1 + T2

(inr)
Γ ⊢ E :T2

Γ ⊢ inr E : T1 + T2 :T1 + T2

(case)
Γ ⊢ E :T1 + T2 Γ, x :T1 ⊢ E1 :T Γ, y :T2 ⊢ E2 :T

Γ ⊢ case E of inl x :T1 ⇒ E1 | inr y :T2 ⇒ E2 :T

163

Sums – Typing II

case E of inl x :T1 ⇒ E1 | inr y :T2 ⇒ E2

Why do we need to carry around type annotations?
• maintain the unique typing property

Otherwise inl 3 : could be of type int + int or int + bool
• many programming languages allow type polymorphism

164

Sums – Semantics
Values
v ::= . . . | inl v :T | inr v :T

SOS rules

(inl)
⟨E , s⟩ −→ ⟨E′ , s′⟩

⟨inl E :T , s⟩ −→ ⟨inl E′ :T , s′⟩
(inr)

⟨E , s⟩ −→ ⟨E′ , s′⟩
⟨inr E :T , s⟩ −→ ⟨inr E′ :T , s′⟩

(case1)
⟨E , s⟩ −→ ⟨E′ , s′⟩

⟨case E of inl x :T1 ⇒ E1 | inr y :T2 ⇒ E2 , s⟩
−→ ⟨case E′ of inl x :T1 ⇒ E1 | inr y :T2 ⇒ E2 , s

′⟩

(case2) ⟨case inl v :T of inl x :T1 ⇒ E1 | inr y :T2 ⇒ E2 , s⟩
−→ ⟨{v/x}E1 , s⟩

(case3) ⟨case inr v :T of inl x :T1 ⇒ E1 | inr y :T2 ⇒ E2 , s⟩
−→ ⟨{v/y}E2 , s⟩

165

Constructors and Destructors

type constructors destructors

T → T (fn x : T ⇒) E

T ∗ T (,) fst snd

T + T inl :T inr :T case

bool true false if then else

166

Proofs as Programs

The Curry-Howard correspondence

(var) Γ, x :T ⊢ x :T Γ, P ⊢ P

(fn)
Γ, x :T ⊢ E :T ′

Γ ⊢ (fn x : T ⇒ E) :T → T ′
Γ, P ⊢ P ′

Γ ⊢ P → P ′

(app)
Γ ⊢ E1 :T → T ′ Γ ⊢ E2 :T

Γ ⊢ E1 E2 :T
′

Γ ⊢ P → P ′ Γ ⊢ P
Γ ⊢ P ′ (modus ponens)

. . .

167

Proofs as Programs: The Curry-Howard
correspondence

(var) Γ, x:T ⊢ x :T Γ, P ⊢ P

(fn)
Γ, x:T ⊢ E :T ′

Γ ⊢ (fn x : T ⇒ E) :T → T ′
Γ, P ⊢ P ′

Γ ⊢ P → P ′

(app)
Γ ⊢ E1 :T → T ′ Γ ⊢ E2 :T

Γ ⊢ E1 E2 :T ′
Γ ⊢ P → P ′ Γ ⊢ P

Γ ⊢ P ′ (modus ponens)

(pair)
Γ ⊢ E1 :T1 Γ ⊢ E2 :T2

Γ ⊢ (E1, E2) :T1 ∗ T2
Γ ⊢ P1 Γ ⊢ P2

Γ ⊢ P1 ∧ P2

(proj1)
Γ ⊢ E :T1 ∗ T2
Γ ⊢ fst E :T1

(proj2)
Γ ⊢ E :T1 ∗ T2
Γ ⊢ snd E :T2

Γ ⊢ P1 ∧ P2

Γ ⊢ P1

Γ ⊢ P1 ∧ P2

Γ ⊢ P2

(inl)
Γ ⊢ E :T1

Γ ⊢ inl E :T1 + T2 :T1 + T2
(inr)

Γ ⊢ E :T2
Γ ⊢ inr E :T1 + T2 :T1 + T2

Γ ⊢ P1

Γ ⊢ P1 ∨ P2

Γ ⊢ P2

Γ ⊢ P1 ∨ P2

(case)
Γ ⊢ E :T1 + T2 Γ, x : T1 ⊢ E1 :T Γ, y : T2 ⊢ E2 :T

Γ ⊢ case E of inl x :T1 ⇒ E1 | inr y :T2 ⇒ E2 :T

Γ ⊢ P1 ∨ P2 Γ, P1 ⊢ P Γ, P2 ⊢ P
Γ ⊢ P

(unit), (zero), . . . ; but not (letrec)

168

Curry-Howard correspondence (abstract)

Programming side Logic side
bottom type false formula
unit type true formula
sum type disjunction
product type conjunction
function type implication
generalised sum type (Σ type) existential quantification
generalised product type (Π type) universal quantification

169

Datatypes in Haskell

Datatypes in Haskell generalise both sums and products

data Pa i r = P I n t Double
data E i t h e r = I I n t | D Double

The expression

data Expr = I n t V a l I n t
| BoolVal Bool
| Pai rVa l I n t Bool

is (roughly) like saying

Expr = int + bool + (int ∗ bool)

170

More Datatypes - Records

A generalisation of products.
Labels lab ∈ LAB for a set LAB = {p, q, ...}

T ::= . . . | {lab1 : T1, . . . , labk : Tk}
E ::= . . . | {lab1 = E1, . . . , labk = Ek} | #lab E

(where in each record (type or expression) no lab occurs more than
once)

171

Records – Typing

(record)
Γ ⊢ E1 :T1 . . . Γ ⊢ Ek :Tk

Γ ⊢ {lab1 = E1, . . . , labk = Ek} :{lab1 : T1, . . . , labk : Tk}

(recordproj)
Γ ⊢ E :{lab1 : T1, . . . , labk : Tk}

Γ ⊢ #labi E :Ti

172

Records – Semantics
Values
v ::= . . . | {lab1 = v1, . . . , labk = vk}

SOS rules

(record1)
⟨Ei , s⟩ −→ ⟨E′

i , s
′⟩

⟨{lab1 = v1, . . . , labi−1 = vi−1, labi = Ei, . . . , labk = Ek} , s⟩
−→ ⟨{lab1 = v1, . . . , labi−1 = vi−1, labi = E′

i, . . . , labk = Ek} , s′⟩

(record2) ⟨#labi {lab1 = v1, . . . , labk = vk} , s⟩ −→ ⟨vi , s⟩

(record3)
⟨E , s⟩ −→ ⟨E′ , s′⟩

⟨#labi E , s⟩ −→ ⟨#labi E′ , s′⟩

173

Mutable Store I

Most languages have some kind of mutable store.
Two main choices:

1. our approach
E ::= . . . | l := E | !l | x

▶ locations store mutable values
▶ variables refer to a previously calculated value – immutable
▶ explicit dereferencing and assignment

(fn x : int ⇒ l := (!l) + x)

174

Mutable Store II

Most languages have some kind of mutable store.
Two main choices:

2. languages as C or Java
▶ variables can refer to a previously calculated value

and overwrite that value
▶ implicit dereferencing
▶ some limited type machinery to limit mutability

vo id foo (x : i n t) {
l = l + x
. . .

}

175

References

T ::= . . . | T ref

Tloc ::= intref T ref

E ::= · · · | ll := E | !l

| E1 := E2 | !E | ref E | l

176

References – Typing

(ref)
Γ ⊢ E :T

Γ ⊢ ref E :T ref

(assign)
Γ ⊢ E1 :T ref Γ ⊢ E2 :T

Γ ⊢ E1 := E2 :unit

(deref)
Γ ⊢ E :T ref
Γ ⊢ !E :T

(loc)
Γ(l) = T ref
Γ ⊢ l :T ref

177

References – Semantics I

Values
A location is a value v ::= . . . | l

Stores s were finite partial functions L⇀ Z.
We now take them to be finite partial functions from L to all values.

SOS rules

(ref1) ⟨ref v , s⟩ −→ ⟨l , s+ {l 7→ v}⟩ if l ̸∈ dom(s)

(ref2)
⟨E , s⟩ −→ ⟨E′ , s′⟩

⟨ref E , s⟩ −→ ⟨ref E′ , s′⟩

178

References – Semantics II
(deref1) ⟨!l , s⟩ −→ ⟨v , s⟩ if l ∈ dom(s) and s(l) = v

(deref2)
⟨E , s⟩ −→ ⟨E′ , s′⟩
⟨!E , s⟩ −→ ⟨!E′ , s′⟩

(assign1) ⟨l := v , s⟩ −→ ⟨skip , s+ {l 7→ v}⟩ if l ∈ dom(s)

(assign2)
⟨E , s⟩ −→ ⟨E′ , s′⟩

⟨l := E , s⟩ −→ ⟨l := E′ , s′⟩

(assign3)
⟨E , s⟩ −→ ⟨E′ , s′⟩

⟨E := E2 , s⟩ −→ ⟨E′ := E2 , s′⟩

179

Type Checking the Store

• so far we used dom(Γ) ⊆ dom(s) in theorems such as progress and
type preservation

• expressed ‘all locations in Γ exist in store s ’
• we need more
• for each l ∈ dom(s) we require that s(l) is typable
• moreover, s(l) might contain some other locations . . .

180

Type Checking – Example
Example

E = let val x : (int → int) ref = ref (fn z : int ⇒ z) in
(x := (fn z : int ⇒ if z ≥ 1 then z + ((!x) (z +−1)) else 0);

(!x) 3) end

which has reductions

⟨E , {}⟩
−→∗ ⟨E1 , {l1 7→ (fn z : int ⇒ z)⟩
−→∗ ⟨E2 , {l1 7→ (fn z : int ⇒ if z ≥ 1 then z + ((!l1)(z +−1)) else 0)}⟩
−→∗ ⟨6 , . . . ⟩

181

Progress and Type Preservation

Definition (Well-type store)
Let Γ ⊢ s if dom(Γ) = dom(s) and if
∀l ∈ dom(s). Γ(l) = T ref =⇒ Γ ⊢ s(l) :T .

Theorem (Progress)
If E closed, Γ ⊢ E :T and Γ ⊢ s then either E is a value or there exist E′

and s′ such that ⟨E , s⟩ −→ ⟨E′ , s′⟩.

Theorem (Type Preservation)
If E closed, Γ ⊢ E :T , Γ ⊢ s and ⟨E , s⟩ −→ ⟨E′ , s′⟩ then E′ is closed
and for some Γ′ (with disjoint domain to Γ) Γ,Γ′ ⊢ E′ :T and Γ,Γ′ ⊢ s′.

182

Type Safety

Theorem (Type Safety)
If E closed, Γ ⊢ E :T , Γ ⊢ s, and ⟨E , s⟩ −→∗ ⟨E′ , s′⟩ then either E′ is a
value with Γ ⊢ E′ :T , or there exist E′′, s′′ such that
⟨E′ , s′⟩ −→ ⟨E′′ , s′′⟩, and there exists a Γ′ s.t. Γ,Γ′ ⊢ E′′ :T and
Γ,Γ′ ⊢ s′′.

183

Section 9

Exceptions

184

Motivation
Trapped errors
Cause execution to halt immediately.
Examples: jumping to an illegal address, raising a top-level exception.
Innocuous?

Untrapped errors
May go unnoticed for a while and later cause arbitrary behaviour.
Examples: accessing data past the end of an array, security loopholes in
Java abstract machines.
Insidious!

program should signal error
• devision by zero
• index out of bound (e.g.

record type)
• . . .

• lookup key missing
• file not found

185

Choice 1: Raising Exceptions

Idea: introduce term error that completely aborts an evaluation of
a term.

E ::= . . . | error

(no change of values nor types)

(err) Γ ⊢ error :T

186

Errors – Semantics

SOS rules

(apperr1) ⟨error E , s⟩ −→ ⟨error , s⟩

(apperr2) ⟨v error , s⟩ −→ ⟨error , s⟩

187

Errors

• (fn x : int ⇒ x) error →?

• let val rec x : int → int = (fn y : int ⇒ y) in x error end →?

• error can have arbitrary type, which violates type uniqueness
(can be fixed by subtyping)

• type preservation is maintained
• progress property needs adaptation (homework 2)

188

Choice 2: Handling Exceptions

Idea: install exception handlers (e.g. ML or Java)

E ::= . . . | try E with E

(no change of values nor types)

189

Handling Exceptions – Typing and Semantics
try E1 with E2 means ‘return result of evaluating E1, unless it aborts, in
which case the handler E2 is evaluated’

Typing

(try)
Γ ⊢ E1 :T Γ ⊢ E2 :T

Γ ⊢ try E1 with E2 :T

SOS rules

(try1) ⟨try v with E , s⟩ −→ ⟨v , s⟩

(try2) ⟨try error with E , s⟩ −→ ⟨E , s⟩

(try3)
⟨E1 , s⟩ −→ ⟨E′

1 , s
′⟩

⟨try E1 with E2 , s⟩ −→ ⟨try E′
1 with E2 , s′⟩

190

Choice 3: Exceptions with Values

Idea: inform user about type of error

E ::= . . . | error | raise E | try E with E

(no change of values)

191

Exceptions with Values – Typing

Typing

(try ex)
Γ ⊢ E :Tex

Γ ⊢ raise E :T

(try v)
Γ ⊢ E1 :T Γ ⊢ E2 :Tex → T

Γ ⊢ try E1 with E2 :T

192

Exceptions with Values – Semantics
SOS rules

(apprai1) ⟨(raise v) E , s⟩ −→ ⟨raise v , s⟩

(apprai2) ⟨v1 (raise v2) , s⟩ −→ ⟨raise v2 , s⟩

(rai)
⟨E , s⟩ −→ ⟨E′

1 , s
′⟩

⟨raise E , s⟩ −→ ⟨raise E′ , s′⟩
(rai2) ⟨raise (raise v) , s⟩ −→ ⟨raise v , s⟩

(try1) ⟨try v with E , s⟩ −→ ⟨v , s⟩

(try2) ⟨try raise v with E , s⟩ −→ ⟨E v , s⟩

(try3)
⟨E1 , s⟩ −→ ⟨E′

1 , s
′⟩

⟨try E1 with E2 , s⟩ −→ ⟨try E′
1 with E2 , s′⟩

193

The Type Tex (I)
• Tex = nat: corresponds to errno in Unix OSs;
0 indicates success; other values report various exceptional
conditions.
(similar in C++).

• Tex = string: avoids looking up error codes; more descriptive; error
handling may now require parsing a string

• Tex could be of type record

Tex ::= {dividedByZero : unit,
overflow : unit,
fileNotFound : string,
fileNotReadable : string,
. . . }

194

The Type Tex (II)

• ‘Tex in ML’: make records more flexible to allow fields to be added,
sometimes called extensible records or extensible variant type

• ‘Tex in Java’: use of classes, uses keyword throwable, which allows
the declaration of new errors. (We do not yet know what an object is)

• . . .

195

Section 10

Subtyping

196

Motivation (I)

• so far we carried around types explicitly to avoid ambiguity of types
• programming languages use polymorphisms to allow different types
• some of it can be captured by subtyping
• common in all object-oriented languages
• subtyping is cross-cutting extension, interacting with most other

language features

197

Polymorphism

Ability to use expressions at many different types
• ad-hoc polymorphism (overloading),

e.g. + can be used to add two integers and two reals,
see Haskell type classes

• Parametric Polymorphism (e.g. ML or Isabelle)
write a function that for any type α takes an argument of type α list
and computes its length (parametric – uniform in whatever α is)

• Subtype polymorphism – as in various OO languages. See here.

198

Motivation (II)

(app)
Γ ⊢ E1 :T → T ′ Γ ⊢ E2 :T

Γ ⊢ E1 E2 :T ′

we cannot type

Γ ⊬ (fn x : {p : int} ⇒ #p x) {p = 3, q = 4} : int
Γ ⊬ (fn x : int ⇒ x) 3 : int (assuming 3 is of type nat)

even though the function gets a ‘better’ argument, with more structure

199

Subsumption

better: any term of type {p : int, q : int} can be used wherever a term of
type {p : int} is expected.

Introduce a subtyping relation between types
• T is a subtype of T ′ (a T is useful in more contexts than a T ′)

T <: T ′

• should include {p : int, q : int} <: {p : int} <: {}
• introduce subsumption rule

(sub)
Γ ⊢ E :T T <: T ′

Γ ⊢ E :T ′

200

Example

x : {p:int} ⊢ x :{p:int}
(var)

x : {p:int} ⊢ #p x : int
(recordproj)

{} ⊢ (fn x : {p:int} ⇒ #p x) :{p:int} → int
(fn)

{} ⊢ 3 : int
(var)

{} ⊢ 4 : int
(var)

{} ⊢ {p=3, q=4} :{p:int, q:int}
(record) {p:int, q:int} <: {p:int}

{} ⊢ {p=3, q=4} :{p:int}
(sub)

{} ⊢ (fn x : {p:int} ⇒ #p x) {p=3, q=4} : int
(app)

201

The Subtype Relation <:

(s-refl) T <: T

(s-trans)
T <: T ′ T ′ <: T ′′

T <: T ′′

the subtype order is not anti-symmetric – it is a preorder

202

Subtyping – Records

(s-rcd1) {lab1:T1, . . . , labk:Tk, labk+1:Tk+1, .., labk+n:Tk+n}
<: {lab1:T1, . . . , labk:Tk}

e.g. {p:int, q:int} <: {p:int}

(s-rcd2)
T1 <: T

′
1 . . . Tk <: T

′
k

{lab1:T1, . . . , labk:Tk} <: {lab1 : T ′
1, . . . , labk:T

′
k}

(s-rcd3)
π a permutation of 1, . . . , k

{lab1:T1, . . . , labk:Tk} <: {labπ(1) : Tπ(1), . . . , labπ(k):Tπ(k)}

203

Subtyping – Functions (I)

(s-fn)
T ′
1 <: T1 T2 <: T

′
2

T1 → T2 <: T ′
1 → T ′

2

• contravariant on the left of →
• covariant on the right of →

204

Subtyping – Functions (II)

If f : T1 → T2 then
– f can use any argument which is a subtype of T1;
– the result of f can be regarded as any supertype of T2

Example: let f = (fn x : {p:int} ⇒ {p=#p x, q=42})
we have

Γ ⊢ f :{p:int} → {p:int, q:int}
Γ ⊢ f :{p:int} → {p:int}
Γ ⊢ f :{p:int, q:int} → {p:int, q:int}
Γ ⊢ f :{p:int, q:int} → {p:int}

205

Subtyping – Functions (III)

Example: let f = (fn x : {p:int, q:int} ⇒ {p=(#p x) + (#q x)})

we have

Γ ⊢ f :{p:int, q:int} → {p:int}
Γ ⊬ f :{p:int} → T

Γ ⊬ f :T → {p:int, q:int}

206

Subtyping – Top and Bottom

(s-top) T <: Top

• not strictly necessary, but convenient
• corresponds to Object found in most OO languages

Does it make sense to have a bottom type Bot?
(see B. Pierce for an answer)

207

Subtyping – Products and Sums

Products

(s-pair)
T1 <: T

′
1 T2 <: T

′
2

T1 ∗ T2 <: T ′
1 ∗ T ′

2

Sums

Exercise

208

Subtyping – References (I)

Does one of the following make sense?

T <: T ′

T ref <: T ′ ref
T ′ <: T

T ref <: T ′ ref

No

209

Subtyping – References (II)

(s-ref)
T <: T ′ T ′ <: T

T ref <: T ′ ref

• ref needs to be an invariant
• a more refined analysis of references is possible

(using Source – capability to read –, and Sink – capability to write)

Example:
{a:int, b:bool} ref <: {b:bool, a:int} ref

210

Typing – Remarks

Semantics
no change required (we did not change the grammar for expressions)

Properties
Type preservation, progress and type safety hold

Implementation
Type inference is more complicated; good run-time is also tricky due to
re-ordering

211

Down Casts

The rule (sub) permits up-casting. How down-casting?

E ::= . . . | (T)E

Typing rule
Γ ⊢ E :T ′

Γ ⊢ (T)E :T

• requires dynamic type checking
(verify type safety of a program at runtime)

• gives flexibility, at the cost of potential run-time errors
• better handled by parametric polymorphism, a.k.a. generics (for

example Java)

212

Section 11

(Imperative) Objects
Case Study

213

Motivation

• use our language with subtyping, records and references to model
key keatures of OO programming

• encode/approximate concepts into our language
• OO concepts

▶ multiple representations (object carry their methods)
(in contrast to abstract data types (ADTs)

▶ encapsulation
▶ subtyping

interface is the set of names and types of its operations
▶ inheritance share common parts (class and subclasses)

some languages use delegations (e.g. C♯), which combine classes and
objects

▶ open recursion (self or this)

214

(Simple) Objects

• data structure encapsulating some internal state
• access via methods
• internal state typically a number of mutable instance variables (or

fields)
• attention lies on building, rather than usage

215

Reminder

Scope Restriction

E ::= . . . | let val x : T = E1 in E2 end

• x is a binder for E2

• can be seen as syntactic sugar:

let val x : T = E1 in E2 end ≡ (fn x : T ⇒ E2) E1

216

Objects – Example

A Counter Object
let val c : {get :unit → int, inc :unit → unit} =

let val x : int ref = ref 0 in
{get = (fn y : unit ⇒ !x),

inc = (fn y : unit ⇒ x := !x+ 1)}

end
in

(#inc c)() ; (#get c)()

end

Counter = {get :unit → int, inc :unit → unit}

217

Objects – Example
Subtyping I
let val c : {get :unit → int, inc :unit → unit , reset :unit → unit} =

let val x : int ref = ref 0 in
{get = (fn y : unit ⇒ !x),

inc = (fn y : unit ⇒ x := !x+ 1)}

reset = (fn y : unit ⇒ x := 0)}

end
in

(#inc c)() ; (#get c)()

end

ResCounter = {get :unit → int, inc :unit → unit, reset :unit → unit}

218

Objects – Example

Subtyping II

ResCounter <: Counter

219

Objects – Example
Object Generators

let val newCounter : unit → Counter =

(fn y : unit ⇒

let val x : int ref = ref 0 in
{get = (fn y : unit ⇒ !x),

inc = (fn y : unit ⇒ x := !x+ 1)}

end)
in

(#inc (newCounter()))()

end

newRCounter defined in similar fashion

220

Simple Classes

• pull out common features
• ignore complex features

such as visibility annotations, static fields and methods, friend
classes . . .

• most primitive form, a class is a data structure that can
– be instantiated to yields a fresh object, or – extended to yield
another class

221

Reusing Method Code

Counter = {get :unit → int, inc :unit → unit}
CounterRep = {p : int ref}

222

(Simple) Classes

let val CounterClass : CounterRep → Counter =

(fn x : CounterRep ⇒

{get = (fn y : unit ⇒ !(#p x)),

inc = (fn y : unit ⇒ (#p x) := !(#p x) + 1)})

let val newCounter : unit → Counter =

(fn y : unit ⇒

let val x : CounterRep = {p = ref 0} in

CounterClass x

end)

223

IMP vs. Java

c lass Counter
{ pro tec ted i n t p ;

Counter () { t h i s . p=0; }
i n t get () { r e t u r n t h i s . p ; }
vo id inc () { t h i s . p++ ; }

} ;

224

(Simple) Classes
(fn ResCounterClass : CounterRep → ResCounter ⇒

(fn x : CounterRep ⇒

let val super : Counter = CounterClass x in

{get = #get super,

inc = #inc super,

reset = (fn y : unit ⇒ (#p x) := 0)}

end))

CounterRep = {p : int ref}
Counter = {get :unit → int, inc :unit → unit}

ResCounter = {get :unit → int, inc :unit → unit, reset :unit → unit}

225

IMP vs. Java

c lass ResetCounter
extends Counter
{ vo id rese t () { t h i s . p=0;}
} ;

226

(Simple) Classes

BuCounter = {get :unit → int, inc :unit → unit,
reset :unit → unit, backup :unit → unit}

BuCounterRep = {p : int ref, b : int ref}

let val BuCounterClass : BuCounterRep → BuCounter =

(fn x : BuCounterRep ⇒

let val super : ResCounter = ResCounterClass x in

{get = #get super, inc = #inc super,

reset = (fn y : unit ⇒ (#p x) := !(#b x))}

backup = (fn y : unit ⇒ (#b x) := !(#p x))}

end)
227

Section 12

Implementing IMP

228

Motivation

• started with (a variant) of IMP
• added several features

(e.g. functions, exceptions, objects, . . .)
• no concurrency yet
• no verification

(you may have seen some bits of Hoare logic)

229

Implementations of IMP I

• ML
https://www.cl.cam.ac.uk/teaching/2021/Semantics/L2/

P. Sewell
• C

“any compiler”
• Java
https://www.cl.cam.ac.uk/teaching/2021/Semantics/L1/l1.java

M. Parkinson
• Haskell

(several implementations available)

230

https://www.cl.cam.ac.uk/teaching/2021/Semantics/L2/
https://www.cl.cam.ac.uk/teaching/2021/Semantics/L1/l1.java

Implementations of IMP II

• Coq
https://softwarefoundations.cis.upenn.edu/lf-current/Imp.html

B. Pierce
• Isabelle
https://isabelle.in.tum.de (src/HOL/IMP)
G. Klein and T. Nipkow

231

https://softwarefoundations.cis.upenn.edu/lf-current/Imp.html
https://isabelle.in.tum.de

Section 13

IMP in Isabelle/HOL

232

Motivation/Disclaimer

• generic proof assistant
• express mathematical formulas in a formal language
• tools for proving those formulas in a logical calculus
• originally developed at the University of Cambridge

and Technische Universität München
(now numerous contributions, including Australia)

• this is neither a course about Isabelle nor a proper
introduction to Isabelle

233

Isabelle/HOL – Introduction

Isabelle/HOL = Functional Programming + Logic

Isabelle HOL has
• datatypes
• recursive functions
• logical operators
• . . .

Isabelle/HOL is a programming language, too
• Higher-order means that functions are values, too

234

Isabelle/HOL – Terms (Expressions)
• Functions

▶ application: f E
call of function f with parameter E

▶ abstraction: λx. E
function with parameter x (of some type) and result E ((fn x : T? ⇒ t))

▶ Convention (as always) f E1 E2 E3 ≡ ((f E1) E2) E3

• Basic syntax (Isabelle)
t ::= (t)

| a identifier (constant or variable)
| t t function application
| λx. t function abstraction
| . . . syntactic sugar

• Substitution notation: t[u/x]

235

Isabelle/HOL – Types I
• Basic syntax (Isabelle)

τ ::= (τ)
| bool | int | string | . . . base types
| ′a | ′b | . . . type variables
| τ ⇒ τ functions
| τ × τ pairs
| τ list lists
| τ set sets
| . . . user-defined types

Convention: τ1 ⇒ τ2 ⇒ τ3 ≡ τ1 ⇒ (τ2 ⇒ τ3)

• Terms must be well-typed; in particular

t :: τ1 ⇒ τ2 u :: τ1
t u :: τ2

236

Isabelle/HOL – Types II
Type inference

• automatic
• function overloading possible

can prevent type inference
• type annotation t :: τ (for example f (x :: int)

Currying
• curried vs. tupled

f τ1 ⇒ τ2 ⇒ τ3 vs f τ1 × τ2 ⇒ τ3

• use curried versions if possible
• advantage: allow partial function application

f a1 where a1 :: τ1

237

Isabelle (Cheatsheet I)

Isabelle module = Theory (File structure)

Syntax: theory MyTh
imports Th1, . . . , Thn
begin

(definitions, lemmas, theorems, proofs, . . .)∗

end

MyTh: name of theory. Must live in file MyTh.thy
Thi: names of imported theories; imports are transitive

Usually: imports Main

238

IMP – Syntax (recap)

Booleans b ∈ B = {true, false}
Integers (Values) n ∈ Z = {. . . ,−1, 0, 1, . . . }
Locations l ∈ L = {l, l0, l1, l2, . . . }

Operations op ::= + | ≥

Expressions
E ::= n | b | E op E |

l := E | !l |
if E then E else E |
skip | E ; E |
whileE do E

239

IMP – Syntax (aexp and bexp)
Booleans b ∈ B
Integers (Values) n ∈ Z
Locations l ∈ L = {l, l0, l1, l2, . . . }

Operations aop ::= +

Expressions
aexp ::= n | !l | aexp aop aexp
bexp ::= b | bexp ∧ bexp | aexp ≥ aexp

com ::= n | b | E op E |
l ::= aexp | !l |
IF bexp THEN com ELSE com |
SKIP | com ;; com |
WHILE bexp DO com

240

IMP – Syntax (Isabelle)

Booleans bool

Integers (Values) int

Locations string

Expressions

datatype aexp ::= N int | L loc | Plus aexp aexp

datatype bexp ::= B bool | Geq aexp aexp

datatype com ::= Assign loc aexp |
If bexp com com |
SKIP | Seq com com |
WHile bexp com

241

IMP – Syntax (Isabelle)

LINK: /src/HOL/IMP

242

https://isabelle.in.tum.de/library/HOL/HOL-IMP

Isabelle (Cheatsheet II)

type synonym specify synonym for a type
datatype define recursive (polymorphic) types
fun define (simple, recursive) function

(tries to prove exhaustiveness, non-overlappedness, and termination)
value evaluate a term

243

Small-step semantics

• a configuration ⟨E , s⟩ can perform a step if there is a derivation tree
• vice versa the set of all transitions can be defined inductively
• it is an infinite set

244

IMP Semantics

(deref) ⟨!l , s⟩ −→ ⟨n , s⟩ if l ∈ dom(s) and s(l) = n

(assign1) ⟨l := n , s⟩ −→ ⟨skip , s+ {l 7→ n}⟩ if l ∈ dom(s)

(assign2) ⟨E , s⟩ −→ ⟨E′ , s′⟩
⟨l := E , s⟩ −→ ⟨l := E′ , s′⟩

(seq1) ⟨skip;E2 , s⟩ −→ ⟨E2 , s⟩

(seq2) ⟨E1 , s⟩ −→ ⟨E′
1 , s

′⟩
⟨E1;E2 , s⟩ −→ ⟨E1;E2 , s⟩

(if1) ⟨if true then E2 else E3 , s⟩ −→ ⟨E2 , s⟩
(if2) ⟨if false then E2 else E3 , s⟩ −→ ⟨E3 , s⟩

(if3) ⟨E1 , s⟩ −→ ⟨E′
1 , s

′⟩
⟨if E1 then E2 else E3 , s⟩ −→ ⟨if E′

1 then E2 else E3 , s
′⟩

(while) ⟨whileE1 do E2 , s⟩ −→ ⟨if E1 then (E2;whileE1 do E2) then skip , s⟩

245

IMP Semantics

(assign1) ⟨l := n , s⟩ −→ ⟨skip , s+ {l 7→ n}⟩ if l ∈ dom(s)

(seq1) ⟨skip;E2 , s⟩ −→ ⟨E2 , s⟩

(seq2) ⟨E1 , s⟩ −→ ⟨E′
1 , s

′⟩
⟨E1;E2 , s⟩ −→ ⟨E1;E2 , s⟩

(if1) ⟨if true then E2 else E3 , s⟩ −→ ⟨E2 , s⟩
(if2) ⟨if false then E2 else E3 , s⟩ −→ ⟨E3 , s⟩
(while) ⟨whileE1 do E2 , s⟩ −→ ⟨if E1 then (E2;whileE1 do E2) then skip , s⟩

246

IMP Semantics (Isabelle)

LINK: /src/HOL/IMP/Small Step

247

https://isabelle.in.tum.de/library/HOL/HOL-IMP/Small_Step.html

IMP – Examples

• If E = (l2 := 0;while !l1 ≥ 1 do (l2 := !l2+ !l1; l1 := !l1 +−1))
s = {l1 7→ 3, l2 7→ 0}

then ⟨E , s⟩ −→∗ ?

• determinacy
• progress

248

Isabelle (Cheatsheet III)

inductive defines (smallest) inductive set
print theorems shows generated theorems
find theorems searches available theorems

by name and/or pattern
apply (<rule/tactic>) applies rule to proof goal

(simp, auto, blast, rule <name>)

249

Big-step semantics
(in Isabelle/HOL)

250

Another View: Big-step Semantics
• we have seen a small-step semantics

⟨E , s⟩ −→ ⟨E′ , s′⟩

• alternatively, we could have looked at a big-step semantics

⟨E , s⟩ ⇓ ⟨E′ , s′⟩

For example

⟨n , s⟩ ⇓ ⟨n , s⟩
⟨E1 , s⟩ ⇓ ⟨n1 , s′⟩ ⟨E2 , s

′⟩ ⇓ ⟨n2 , s′′⟩
⟨E1 + E2 , s⟩ ⇓ ⟨n , s′′⟩

(n = n1+n2)

• no major difference for sequential programs
• small-step much better for modelling concurrency

251

Final State

• Isabelle’s version of IMP has only one value: SKIP
• big-step semantics can be seen as relation

⟨E , s⟩ =⇒ s′

252

Semantics
(Skip) ⟨SKIP , s⟩ =⇒ s

(Assign) ⟨l := a , s⟩ =⇒ s+ {l 7→ aval a s) (l ∈ L, a ∈ aexp)

(Seq)
⟨E1 , s⟩ =⇒ s′ ⟨E2 , s

′⟩ =⇒ s′′

⟨E1 ; E2 , s⟩ =⇒ s′′

(IfT)
bval b s = true ⟨E1 , s⟩ =⇒ s′

⟨if b then E1 else E2 , s⟩ =⇒ s′

(IfF)
bval b s = false ⟨E2 , s⟩ =⇒ s′

⟨if b then E1 else E2 , s⟩ =⇒ s′

(WhileF)
bval b s = false

⟨while b do E , s⟩ =⇒ s

(WhileT)
bval b s = true ⟨E , s⟩ =⇒ s′ ⟨while b do E , s′⟩ =⇒ s′′

⟨while b do E , s⟩ =⇒ s′′

253

IMP Semantics (Isabelle)

LINK: /src/HOL/IMP/Big Step

• inversion rules
• induction set up
• see Nipkow/Klein for more details and explanation

254

https://isabelle.in.tum.de/library/HOL/HOL-IMP/Big_Step.html

Are big and small-step semantics equivalent?

255

Isabelle (Cheatsheet IV)

Proof Styles/Proof ‘Tactics’

apply-style apply rules (backwards)
ISAR human readable proofs
slegdehammer the ‘secret’ weapon

incorporating automated theorem provers

256

From Big to Small

Theorem
If cs⇒ s′ then cs −→∗ ⟨SKIP , s′⟩.
Proof by rule induction (on cs⇒ s′).

In two cases a lemma is needed.

Lemma
If ⟨E , s⟩ −→∗ ⟨E′ , s′⟩ then ⟨E ; E2 , s⟩ −→∗ ⟨E′ ; E2 , s

′⟩.
Proof by rule induction.
(generalisation of (seq2))

257

From Small to Big

Theorem
If cs −→∗ ⟨SKIP , s′⟩ then cs⇒ s′.
Proof by rule induction (on cs −→∗ ⟨SKIP , s′⟩).

The induction step needs the following (interesting) lemma.

Lemma
If cs −→ cs′ and cs′ ⇒ s then cs⇒ s.
Proof by rule induction on cs −→ cs′.

258

Equivalence

Corollary
cs −→∗ ⟨SKIP , s′⟩ if and only if cs⇒ s′.

LINK: /src/HOL/Small Step

259

https://isabelle.in.tum.de/library/HOL/HOL-IMP/Small_Step.html

But are they really equivalent?
• What about premature termination?
• What about (non) termination?

Lemma
1. final ⟨E , s⟩ if and only if E = SKIP.
2. ∃s. cs⇒ s if and only if ∃cs′. cs −→∗ cs′ ∧ final cs′.

where final cs ≡ (¬∃cs′. cs→ cs′)

Proof.
1. induction and rule inversion
2. (∃s. cs⇒ s) ⇔ ∃s. cs −→∗ ⟨SKIP , s⟩ (by big = small)

⇔ ∃cs′. cs −→∗ cs′ ∧ final cs′ (by final = SKIP)
⊓⊔

260

Typing
(almost straight-forward)

LINK: /src/HOL/Types

inductive btyping :: ''tyenv ⇒ bexp ⇒ bool''(infix ''⊢''50)
where

B ty:''Γ ⊢ Bc v'' |
Not ty:''Γ ⊢ b =⇒ Γ ⊢ Not b'' |
And ty:''Γ ⊢ b1 =⇒ Γ ⊢ b2 =⇒ Γ ⊢ And b1 b2'' |
Less ty:''Γ ⊢ a1 : τ =⇒ Γ ⊢ a2 : τ =⇒ Γ ⊢ Less a1 a2''

inductive ctyping ::''tyenv ⇒ com ⇒ bool''(infix '' ⊢ ''50)
where

Skip ty:''Γ ⊢ SKIP'' |
Assign ty:''Γ ⊢ a : Γ(x) =⇒ Γ ⊢ x ::= a'' |
Seq ty:''Γ ⊢ c1 =⇒ Γ ⊢ c2 =⇒ Γ ⊢ c1 ; ; c2'' |
If ty:''Γ ⊢ b =⇒ Γ ⊢ c1 =⇒ Γ ⊢ c2 =⇒ Γ ⊢ IF b THEN c1 ELSE c2'' |
While ty:''Γ ⊢ b =⇒ Γ ⊢ c =⇒ Γ ⊢ WHILE b DO c''

261

https://isabelle.in.tum.de/library/HOL/HOL-IMP/Types.html

Section 14

Semantic Equivalence

262

Operational Semantics (Reminder)

• describe how to evaluate programs
• a valid program is interpreted as sequences of steps
• small-step semantics

▶ individual steps of a computation
▶ more rules (compared to big-step)
▶ allows to reason about non-terminating programs, concurrency, . . .

• big-step semantics
▶ overall results of the executions

‘divide-and-conquer manner’
▶ can be seen as relations
▶ fewer rules, simpler proofs
▶ no non-terminating behaviour

• allow non-determinism

263

Motivation

When are two programs considered the ‘same’

• compiler construction
• program optimisation
• refinement
• . . .

CakeML

264

Equivalence: Intuition I

l :=!l + 2
?≃ l :=!l + (1 + 1)

?≃ l :=!l + 1 ; l :=!l + 1

• are these expressions the same
• in what sense

▶ different abstract syntax trees
▶ different reduction sequences

• in any (sequential) program one could replace one by the other
without affecting the result

Note: mathematicians often take these equivalences for granted

265

Equivalence: Intuition II
l := 0 ; 4

?≃ l := 1 ; 3 +!l

• produce same result (for all stores)
• cannot be replaced in an arbitrary context C

For example, let C[] = + !l

C[l := 0 ; 4] = (l := 0 ; 4) +!l
̸≃

C[l := 1 ; 3 +!l] = (l := 1 ; 3 + !l) +!l

On the other hand (l :=!l + 2) ≃ (l :=!l + 1 ; l :=!l + 1)

266

Equivalence: Intuition III

From particular expressions to general laws

• E1 ; (E2 ; E3)
?≃ (E1 ; E2) ; E3

• (if E1 then E2 else E3) ; E
?≃ if E1 then E2 ; E else E3 ; E

• E ; (if E1 then E2 else E3)
?≃ if E1 then E ; E2 else E ; E3

• E ; (if E1 then E2 else E3)
?≃ if E ; E1 then E2 else E3

267

Exercise

let val x : int ref = ref 0 in (fn y : int ⇒ (x :=!x + y) ;!x) end

?≃

let val x : int ref = ref 0 in (fn y : int ⇒ (x :=!x− y) ; (0−!x)) end

268

Exercise II

Extend our language with location equality

op := . . . | =

(op =)
Γ ⊢ E1 :T ref Γ ⊢ E2 :T ref

Γ ⊢ E1 = E2 :bool

(op=1) ⟨l = l′ , s⟩ −→ ⟨b , s⟩ if b = (l = l′)

(op=2) . . .

269

Exercise II
f

?≃ g

for

f = let val x : int ref = ref 0 in
let val y : int ref = ref 0 in
(fn z : int ref ⇒ if z = x then y else x)
end end

and

g = let val x : int ref = ref 0 in
let val y : int ref = ref 0 in
(fn z : int ref ⇒ if z = y then y else x)
end end

270

Exercise II (cont’d)

f
?≃ g NO

Consider C[] = t with

t = (fn h : (int ref → int ref) ⇒
let val z : int ref = ref 0 in h (h z) = h z end)

⟨t f , s⟩ −→∗ ?

⟨t g , s⟩ −→∗ ?

271

A ‘good’ notion of semantic equivalence

We might
• understand what a program is
• prove that some particular expressions to be equivalent

(e.g. efficient algorithm vs. clear specification)
• prove the soundness of general laws for equational reasoning about

programs
• prove some compiler optimisations are sound (see CakeML or

CertiCos)
• understand the differences between languages

272

What does ‘good’ mean?

1. programs that result in observably-different values (for some store)
must not be equivalent

(∃s, s1, s2, v1, v2.
⟨E1 , s⟩ −→∗ ⟨v1 , s1⟩ ∧
⟨E2 , s⟩ −→∗ ⟨v2 , s2⟩ ∧
v1 ̸= v2)

⇒ E1 ̸≃ E2

2. programs that terminate must not be equivalent to programs that do
not terminate

273

What does ‘good’ mean?

3. ≃ must be an equivalence relation, i.e.
reflexivity E ≃ E
symmetry E1 ≃ E2 ⇒ E2 ≃ E1

transitivity E1 ≃ E2 ∧ E2 ≃ E3 ⇒ E1 ≃ E3

4. ≃ must be a congruence, i.e,
if E1 ≃ E2 then for any context C we must have C[E1] ≃ C[E2]

(for example, (E1 ≃ E2) ⇒ (E1 ; E ≃ E2 ; E))

5. ≃ should relate as many programs as possible

– an equivalence relation that is a congruence is sometimes called congruence relation
– this semantic equivalence, is called observable operational or contextual equivalence
– congruence proofs are often tedious, and incredible hard when it comes to recursion

274

Semantic Equivalence for (simple) Typed IMP

Definition
E1 ≃TΓ E2 iff for all stores s with dom(Γ) ⊆ dom(s) we have

Γ ⊢ E1 :T and Γ ⊢ E2 :T ,

and either
(i) ⟨E1 , s⟩ −→ω and ⟨E2 , s⟩ −→ω, or
(ii) for some v, s′ we have ⟨E1 , s⟩ −→∗ ⟨v , s′⟩ and ⟨E2 , s⟩ −→∗ ⟨v , s′⟩.

−→ω : infinite sequence
−→∗: finite sequence (reflexive transitive closure)

275

Justification

Part (ii) requires same value v and same store s′. If a program generates
different stores, we can distinguish them using contexts:

• If T = unit then C[] = ;!l

• If T = bool then C[] = if then !l else !l

• If T = int then C[] = (l1 := ;!l)

276

Equivalence Relation

Theorem
The relation ≃TΓ is an equivalence relation.

Proof.
trivial ⊓⊔

277

Congruence for (simple) Typed IMP
contexts are:

C[] ::= op E2 | E1 op |
if then E2 else E3 |
if E1 then else E3 |
if E1 then E2 else |
l := |
; E2 | E1 ;

while do E2 | while E1 do

Definition
The relation ≃TΓ has the congruence property if, for all E1 and E2,
whenever E1 ≃TΓ E2 we have for all C and T ′, if Γ ⊢ C[E1] :T

′ and
Γ ⊢ C[E2] :T

′ then
C[E1] ≃T

′

Γ C[E2]

278

Congruence Property
Theorem (Congruence for (simple) typed IMP)
The relation ≃TΓ has the congruence property.

Proof.
By case distinction, considering all contexts C. ⊓⊔

For each context C (and arbitrary expression E and store s) consider the
possible reduction sequence

⟨C[E] , s⟩ −→ ⟨E1 , s1⟩ −→ ⟨E2 , s2⟩ −→ . . .

and deduce the behaviour of E:

⟨E , s⟩ −→ ⟨Ê1 , s1⟩ −→ . . .

Use E ≃TΓ E′ find a similar reduction sequence of E′ and use the
reduction rules to construct a sequence of C[E′].

279

Proof of Congruence Property

Case C = (l :=)

Suppose E ≃TΓ E′, Γ ⊢ l := E :T ′ and Γ ⊢ l := E′ :T ′.
By examination of the typing rule, we have T = int and T ′ = unit.
To show (l := E) ≃T ′

Γ (l := E′) we have to show that for all stores s if
dom(Γ) ⊆ dom(s) then

• Γ ⊢ l := E :T ′, (obvious)
• Γ ⊢ l := E′ :T ′,(obvious)
• and either

(i) ⟨l := E , s⟩ −→ω and ⟨l := E′ , s⟩ −→ω

(ii) for some v, s′ we have ⟨l := E , s⟩ −→∗ ⟨v , s′⟩ and
⟨l := E′ , s⟩ −→∗ ⟨v , s′⟩.

280

Proof of Congruence Property
Subcase ⟨l := E , s⟩ −→ω

That is
⟨l := E , s⟩ −→ ⟨E1 , s1⟩ −→ ⟨E2 , s2⟩ −→ . . .

All these must be instances of Rule (assign2), with

⟨E , s⟩ −→ ⟨Ê1 , s1⟩ −→ ⟨Ê2 , s2⟩ −→ . . .

and E1 = (l := Ê1), E2 = (l := Ê2), . . .
By E ≃TΓ E′ there is an infinite reduction sequence of ⟨E′ , s⟩.
Using Rule (assign2) there is an infinite reduction sequence of
⟨l := E′ , s⟩.

We made the proof simple by staying in a deterministic language with
unique derivation trees.

281

Proof of Congruence Property

Subcase ¬(⟨l := E , s⟩ −→ω)

That is

⟨l := E , s⟩ −→ ⟨E1 , s1⟩ −→ ⟨E2 , s2⟩ −→ . . . −→ ⟨Ek , sk⟩ ̸−→

All these must be instances of Rule (assign2), except the last step which
is an instance of (assign1)

⟨E , s⟩ −→ ⟨Ê1 , s1⟩ −→ ⟨Ê2 , s2⟩ −→ . . . −→ ⟨Êk−1 , sk−1⟩

and E1 = (l := Ê1), E2 = (l := Ê2), . . . , Ek−1 = (l := Êk−1) and
Êk−1 = n, Ek = skip and sk = sk−1 + {l 7→ n}, for some n.

282

Proof of Congruence Property

Subcase ¬(⟨l := E , s⟩ −→ω) (cont’d)

Hence there is some n and sk−1 such that

⟨E , s⟩ −→∗ ⟨n , sk−1⟩ and ⟨l := E , s⟩ −→ ⟨skip , sk−1 + {l 7→ n}⟩ .

By E ≃TΓ E′ we have ⟨E′ , s⟩ −→∗ ⟨n , sk−1⟩.

Using Rules (assign2) and (assign1)

⟨l := E′ , s⟩ −→∗ ⟨l := n , sk−1⟩ → ⟨skip , sk−1 + {l 7→ n}⟩ .

283

Congruence Proofs

Congruence proofs are
• tedious
• long
• mostly boring (up to the point where they brake)
• error prone
• recursion is often the killer case

There are dozens of different semantic equivalences
(and each requires a proof)

284

Back to Examples

• 1 + 1 ≃int
Γ 2 for any Γ

• (l := 0 ; 4) ̸≃int
Γ (l := 1 ; 3 + !l) for any Γ

• (l :=!l + 1) ; (l :=!l + 1) ≃unit
Γ (l :=!l + 2) for any Γ including l : intref

285

General Laws

Conjecture
E1 ; (E2 ; E3) ≃TΓ (E1 ; E2) ; E3

for any Γ, T , E1, E2 and E3 such that Γ ⊢ E1 :unit, Γ ⊢ E2 :unit and
Γ ⊢ E3 :T .

Conjecture
((if E1 then E2 else E3) ; E) ≃TΓ (if E1 then E2 ; E else E3 ; E)
for any Γ, T , E, E1, E2 and E3 such that Γ ⊢ E1 :bool, Γ ⊢ E2 :unit,
Γ ⊢ E3 :unit, and Γ ⊢ E :T .

Conjecture
(E ; (if E1 then E2 else E3)) ̸≃TΓ (if E1 then E ; E2 else E ; E3)

286

General Laws

Suppose Γ ⊢ E1 :unit and Γ ⊢ E2 :unit.
When is E1 ; E2 ≃unit

Γ E2 ; E1?

287

A Philosophical Question
What is a typed expression Γ ⊢ E :T?

for example l : intref ⊢ if !l ≥ 0 then skip else (skip ; l := 0) : unit.

1. a list of tokens (after parsing) [IF, DEREF, LOC "l", GTEQ, ...]

2. an abstract syntax tree
3. the function taking store s to the reduction sequence

⟨E , s⟩ −→ ⟨E1 , s1⟩ −→ ⟨E2 , s2⟩ −→ . . .

4. the equivalence class {E′ | E ≃TΓ E′}
5. the partial function [[E]]Γ that takes any store s with

dom(s) = dom(Γ) and either is undefined if ⟨E , s⟩ −→ω, or is
⟨v , s′⟩, if ⟨E , s⟩ −→∗ ⟨v , s′⟩

288

Section 15

Denotational Semantics

289

Operational Semantics (Reminder)

• describe how to evaluate programs
• a valid program is interpreted as sequences of steps
• small-step semantics

▶ individual steps of a computation
▶ more rules (compared to big-step)
▶ allows to reason about non-terminating programs, concurrency, . . .

• big-step semantics
▶ overall results of the executions

‘divide-and-conquer manner’
▶ can be seen as relations
▶ fewer rules, simpler proofs
▶ no non-terminating behaviour

• allow non-determinism

290

Operational vs Denotational

An operational semantics is like an interpreter

⟨E , s⟩ −→ ⟨E′ , s′⟩ and ⟨E , s⟩ ⇓ ⟨v , s′⟩

A denotational semantics is like a compiler.
A denotational semantics defines what a program means as a (partial)
function:

C[[com]] ∈ Store ⇀ Store

Allows the use of ‘standard’ mathematics

291

Big Picture

E

NForm

op. sem

E/ ≃T
Γ

[[]]≃T
Γ

Semantics

denot. sem

292

IMP – Syntax (aexp and bexp)

Booleans b ∈ B
Integers (Values) n ∈ Z
Locations l ∈ L = {l, l0, l1, l2, . . . }

Operations aop ::= +

Expressions
aexp ::= n |!l | aexp aop aexp

bexp ::= b | bexp ∧ bexp | aexp ≥ aexp

com ::= l := aexp |
if bexp then com else com |
skip | com ; com |
while bexp do com

293

Semantic Domains

C[[c]] ∈ Store ⇀ Store C[[]] : com → Store ⇀ Store

A[[a]] ∈ Store ⇀ int A[[]] : aexp → Store ⇀ int

B[[b]] ∈ Store ⇀ bool B[[]] : bexp → Store ⇀ bool

Convention: (Partial) Functions are defined point-wise.
C[[]] is the denotation function.

294

Partial Functions

Remember that partial functions can be represented as sets.
• C[[c]] can be described as a set
• the equation C[[c]] = S,

for a set S gives the definition for command c
• C[[c]](s) is a store

295

Denotational Semantics for IMP

Arithmetic Expressions

A[[n]] = {(s, n)}

A[[!l]] = {(s, s(l)) | l ∈ dom(s)}

A[[a1 + a2]] = {(s, n) | (s, n1) ∈ A[[a1]] ∧ (s, n2) ∈ A[[a2]] ∧ n = n1 + n2}

n is syntactical, n semantical value.

296

Denotational Semantics for IMP
Boolean Expressions

B[[true]] = {(s, true)}

B[[false]] = {(s, false)}

B[[b1 ∧ b2]] = {(s, b) | (s, b′) ∈ B[[b1]] ∧ (s, b′′) ∈ B[[b2]] ∧ (b = b′ ∧ b′′)}

B[[a1 ≥ a2]] = {(s, true) | (s, n1) ∈ A[[a1]] ∧ (s, n2) ∈ A[[a2]] ∧ n1 ≥ n2} ∪
{(s, false) | (s, n1) ∈ A[[a1]] ∧ (s, n2) ∈ A[[a2]] ∧ n1 < n2}

297

Denotational Semantics for IMP
Arithmetic and Boolean Expressions in Function-Style

A[[n]](s) = n

A[[!l]](s) = s(l) if l ∈ dom(s)

A[[a1 + a2]](s) = A[[a1]](s) +A[[a2]](s)

B[[true]](s) = true

B[[false]](s) = false

B[[a1 ∧ a2]](s) = B[[b1]](s) ∧ B[[b2]](s)

B[[b1 ≥ a2]](s) =

{
true if A[[a1]](s) ≥ A[[a2]](s)
false otherwise

298

Denotational Semantics for IMP
Commands

C[[skip]] = {(s, s)}

C[[l := a]] = {(s, s + {l 7→ n}) | (s, n) ∈ A[[a]]}

C[[c1 ; c2]] = {(s, s′′) | ∃s′. (s, s′) ∈ C[[c1]] ∧ (s′, s′′) ∈ C[[c2]]}

C[[if b then c1 else c2]] = {(s, s′) | (s, true) ∈ B[[b]] ∧ (s, s′) ∈ C[[c1]]} ∪
{(s, s′) | (s, false) ∈ B[[b]] ∧ (s, s′) ∈ C[[c2]]}

299

Denotational Semantics for IMP
Commands in Function-Style

C[[skip]](s) = s

C[[l := a]](s) = s + {l 7→ (A[[a]](s))}

C[[c1 ; c2]] = C[[c2]] ◦ C[[c1]]
(or C[[c1 ; c2]](s) = C[[c2]](C[[c1]](s)))

C[[if b then c1 else c2]](s) =
{
C[[c1]](s) if B[[b]](s) = true

C[[c2]](s) if B[[b]](s) = false

denotational semantics is often compositional

300

Denotational Semantics for IMP
Commands
(cont’d)

C[[while b do c]] = {(s, s) | (s, false) ∈ B[[b]]} ∪
{(s, s′) | (s, true) ∈ B[[b]] ∧

∃s′′. (s, s′′) ∈ C[[c]] ∧ (s′′, s′) ∈ C[[while b do c]]}

C[[while b do c]](s) = C[[if b then c ; (while b do c) else skip]](s)

=

{
C[[while b do c]](C[[c]](s)) if B[[b]](s) = true

C[[skip]](s) if B[[b]](s) = false

Problem: this is not a function definition;
it is a recursive equation, we require its solution

301

Recursive Equations – Example

f(x) =

{
0 if x = 0
f(x− 1) + 2x− 1 otherwise

Question: What function(s) satisfy this equation?
Answer: f(x) = x2

302

Recursive Equations – Example II

g(x) = g(x) + 1

Question: What function(s) satisfy this equation?
Answer: none

303

Recursive Equations – Example III

h(x) = 4 · h
(x
2

)

Question: What function(s) satisfy this equation?
Answer: multiple

304

Solving Recursive Equations
Build a solution by approximation (interpret functions as sets)

f0 = ∅

f1 =

{
0 if x = 0
f0(x− 1) + 2x− 1 otherwise

= {(0, 0)}

f2 =

{
0 if x = 0
f1(x− 1) + 2x− 1 otherwise

= {(0, 0), (1, 1)}

f3 =

{
0 if x = 0
f2(x− 1) + 2x− 1 otherwise

= {(0, 0), (1, 1), (2, 4)}

305

Solving Recursive Equations

Model this process as higher-order function F that takes the
approximation fk as input and returns the next approximation.

F : (IN⇀ IN) → (IN⇀ IN)

where

(F (f))(x) =

{
0 if x = 0
f(x− 1) + 2x− 1 otherwise

Iterate till a fixed point is reached (f = F (f))

306

Fixed Point

Definition
Given a function F : A→ A, a ∈ A is a fixed point of F if F (a) = a.
Notation: Write a = fix (F) to indicate that a is a fixed point of F .

Idea: Compute fixed points iteratively, starting from the completely
undefined function. The fixed point is the limit of this process:

f =fix (F)
=f0 ∪ f1 ∪ f2 ∪ . . .
=∅ ∪ F (∅) ∪ F (F (∅)) ∪ . . .

=

∞⋃
i≥0

F i(∅)

307

Denotational Semantics for while

C[[while b do c]] = fix (F)

where

F (f) ={(s, s) | (s, false) ∈ B[[b]]} ∪
{(s, s′) | (s, true) ∈ B[[b]] ∧

∃s′′. (s, s′′) ∈ C[[c]] ∧ (s′′, s′) ∈ f}

308

Denotational Semantics – Example
C[[while !l ≥ 0 do m :=!l + !m ; l :=!l + (−1)]]

f0 = ∅

f1 =

{
s if !l < 0
undefined otherwise

f2 =

s if !l < 0
s + {l 7→ −1,m 7→ s(m)} if !l = 0
undefined otherwise

f3 =

s if !l < 0
s + {l 7→ −1} if !l = 0
s + {l 7→ −1,m 7→ 1+ s(m)} if !l = 1
undefined otherwise

f4 =

s if !l < 0
s + {l 7→ −1} if !l = 0
s + {l 7→ −1,m 7→ 1+ s(m)} if !l = 1
s + {l 7→ −1,m 7→ 3+ s(m)} if !l = 2
undefined otherwise

309

Fixed Points

• Why does (fixF) have a solution?
• What if there are several solutions?

(which should we take)

310

Fixed Point Theory

Definition (sub preserving)
A function F preserves suprema if for every chain X1 ⊆ X2 ⊆ . . .

F (
⋃
i

Xi) =
⋃
i

F (Xi) .

Lemma
Every suprema-preserving function F is monotone increasing.

X ⊆ Y =⇒ F (X) ⊆ F (Y)

(works for arbitrary partially ordered sets)

311

Kleene’s fixed point theorem

Theorem
Let F be a suprema-preserving function. The least fixed point of F exists
and is equal to ⋃

i≥0

F i(∅)

312

C[[while b do c]]

C[[while b do c]](s)

= fix (F)

=

C[[c]]k(s) if k ≥ 0 such that B[[b]](C[[c]]k(s)) = false

and B[[b]](C[[c]]i(s)) = true for all 0 ≤ i < k
undefined if B[[b]](C[[c]]i(s)) = true for all i ≥ 0

This may be what you would have expected, but now it is grounded on
well-known mathematics

313

Exercises

• Show that skip ; c and c ; skip are equivalent.
• What does equivalent mean in the context of denotational

semantics?
• Show that (c1 ; c2) ; c3 is equivalent to c1 ; (c2 ; c3).

314

Section 16

Partial and Total Correctness

315

Styles of semantics

Operational
Meanings for program phrases defined in terms of the steps of
computation they can take during program execution.

Denotational
Meanings for program phrases defined abstractly as elements of some
suitable mathematical structure.

Axiomatic
Meanings for program phrases defined indirectly via the axioms and
rules of some logic of program properties.

316

Styles of semantics

Operational
– how to evaluate programs (interpreter)
– close connection to implementations

Denotational
Meanings for program phrases defined abstractly as elements of some
suitable mathematical structure.

Axiomatic
Meanings for program phrases defined indirectly via the axioms and
rules of some logic of program properties.

317

Styles of semantics

Operational
– how to evaluate programs (interpreter)
– close connection to implementations

Denotational
– what programs calculate (compiler)
– simplifies equational reasoning (semantic equivalence)

Axiomatic
Meanings for program phrases defined indirectly via the axioms and
rules of some logic of program properties.

318

Styles of semantics

Operational
– how to evaluate programs (interpreter)
– close connection to implementations

Denotational
– what programs calculate (compiler)
– simplifies equational reasoning (semantic equivalence)

Axiomatic
– describes properties of programs
– allows reasoning about the correctness of programs

319

Assertions

Axiomatic semantics describe properties of programs. Hence it requires
• a language for expressing properties
• proof rules to establish the validity of properties w.r.t. programs

Examples
• value of l is greater than 0

• value of l is even
• value of l is prime
• eventually the value of l will 0
• . . .

320

Applications

• proving correctness
• documentation
• test generation
• symbolic execution
• bug finding
• malware detection
• . . .

321

Assertion Languages

• (English)
• first-order logic (∀,∃,∧,¬,=, R(x), . . .)
• temporal and modal logic (2,⋄,⊚,Until, . . .)
• special-purpose logics (Alloy, Z3, . . .)

322

Assertions as Comments
assertions are (should) be used in code regularly

/ * P recond i t i on : 0 <= i < A. leng th * /
/ * Pos tcod i t i on : re tu rns A[i] * /
p u b l i c i n t get (i n t i) {

r e t u r n A [i] ;
}

• useful as documentation or run-time checks
• no guarantee that they are correct
• sometimes not useful (e.g. /*increment i*/)

aim: make this rigorous by defining the semantics of a language using
pre- and post-conditions

323

Partial Correctness

{P} c {Q}

Meaning: if P holds before c, and c executes and terminates then Q
holds afterwards

324

Partial Correctness – Examples

• {l = 21} l := !l + !l {l = 42}
• {l = 0 ∧ m = i}
k := 0 ;
while !l ̸= !m
do

k := !k − 2 ;
l := !l + 1

{k = −i− i}

Note: i is a ghost variable
we do not use dereferencing in conditions

325

Partial Correctness – Examples

The second example is a valid partial correctness statement.

Lemma
∀s, s′. k, l,m ∈ dom(s) ∧ s(l) = 0 ∧

C[[k := 0 ; while !l ̸= !m do (k := !k − 2 ; l := !l + 1)]](s) = s′

=⇒ s′(k) = −s(m)− s(m)

326

Partial Correctness – Examples

Is the following partial correctness statement valid?
• {l = 0 ∧ m = i}
k := 0 ;
while !l ̸= !m
do

k := !k + !l ;
l := !l + 1

{k = i}

327

Total Correctness

• partial correctness specifications do not ensure termination
• sometimes termination is needed

[P] c [Q]

Meaning: if P holds, then c will terminate and Q holds afterwards

328

Total Correctness – Example

• [l = 0 ∧ m = i∧ i ≥ 0]
k := 0 ;
while !l ̸= !m
do

k := !k − 2 ;
l := !l + 1

[k = −i− i]

329

Assertions

What properties do we want to state in pre-conditions and
post-conditions; so far

• locations (program variables)
• equality
• logical/ghost variables (e.g. i)
• comparison
• we have not used ‘pointers’

choice of assertion language influences the sort of properties
we can specify

330

Assertions – Syntax
Booleans b ∈ B
Integers (Values) n ∈ Z
Locations l ∈ L = {l, l0, l1, l2, . . . }
Logical variables i ∈ LVar = {i, i0, i1, i2, . . . }

Operations aop ::= +

Expressions
aexpi ::= n | l | i | aexpi aop aexpi
assn ::= b | aexpi ≥ aexpi |

assn ∧ assn | assn ∨ assn |
assn ⇒ assn | ¬assn |
∀i. assn | ∃i. assn

Note: bexp included in assn; assn not minimal

331

Assertions – Satisfaction
when does a store s satisfy an assertion

• need interpretation for logical variables

I : LVar → Z

• denotation function AI [[]] (similar to A[[]]

AI [[n]](s, I) = n

AI [[l]](s, I) = s(l), l ∈ dom(s)

AI [[i]](s, I) = I(i), i ∈ dom(I)

AI [[a1 + a2]](s, I) = AI [[a1]](s, I) +A[[a2]](s, I)

332

Assertion Satisfaction
define satisfaction relation for assertions on a given state s

s |=I true
s |=I a1 ≥ a2 if AI [[a1]](s, I) ≥ AI [[a2]](s, I)

s |=I P1 ∧ P2 if s |=I P1 and s |=I P2

s |=I P1 ∨ P2 if s |=I P1 or s |=I P2

s |=I P1 ⇒ P2 if s ̸|=I P1 or s |=I P2

s |=I ¬P if s ̸|=I P
s |=I ∀i. P if ∀n ∈ Z. s |=I+{i 7→n} P

s |=I ∃i. P if ∃n ∈ Z. s |=I+{i 7→n} P

an assertion is valid (|= P) if it is valid in any store, under any
interpretation

∀s, I. s |=I P

333

Partial Correctness – Satisfiability

A partial correctness statement {P} c {Q} is satisfied in store s and
under interpretation I (s |=I {P} c {Q}) if

∀s′. if s |=I P and C[[c]](s) = s′ then s′ |=I Q .

334

Partial Correctness – Validity

Assertion validity
An assertion P is valid (holds) (|= P) if it is valid in any store under
interpretation.

|= P :⇐⇒ ∀s, I. s |=I P

Partial correctness validity
A partial correctness statement {P} c {Q} is valid (|= {P} c {Q}) if it is
valid in any store under interpretation.

|= {P} c {Q} :⇐⇒ ∀s, I. s |=I {P} c {Q}

335

Proving Specifications

how to proof the (partial) correctness of {P} c {Q}
• show ∀s, I.s |=I {P} c {Q}
• s |=I {P} c {Q} requires denotational semantics C

• we can do this manually, but . . .
• we can derive inference rules and axioms (axiomatic semantics)
• allows derivation of correctness statements without reasoning about

stores and interpretations

336

Section 17

Axiomatic Semantics

337

Floyd-Hoare Logic

Idea: develop proof system as an inductively-defined set; every member
will be a valid partial correctness statement

Judgement
⊢ {P} c {Q}

338

Floyd-Hoare Logic – Skip

(skip) ⊢ {P} skip {P}

339

Floyd-Hoare Logic – Assignment

(assign) ⊢ {P [a/l]} l := a {P}

Notation: P [a/l] denotes substitution of a for l in P ;
in operational semantics we wrote {a/l}P

Example
{7 = 7} l := 7 {l = 7}

340

Floyd-Hoare Logic – Incorrect Assignment

(wrong1) ⊢ {P} l := a {P [a/l]}

Example
{l = 0} l := 7 {7 = 0}

(wrong2) ⊢ {P} l := a {P [l/a]}

Example
{l = 0} l := 7 {l = 0}

341

Floyd-Hoare Logic – Sequence, If, While

(seq)
⊢ {P} c1 {R} ⊢ {R} c2 {Q}

⊢ {P} c1 ; c2 {Q}

(if)
⊢ {P ∧ b} c1 {Q} ⊢ {P ∧ ¬b} c2 {Q}

⊢ {P} if b then c1 else c2 {Q}

(while)
⊢ {P ∧ b} c {P}

⊢ {P} while b do c {P ∧ ¬b}

P acts as loop invariant

342

Floyd-Hoare Logic – Consequence

We cannot combine arbitrary triple yet

⊢ {3 = 3} l := 3 {l = 3}
(assign)

. . .

⊢ {l ≥ 2} l :=!l − 2 {l ≥ 0}
⊢ {3 = 3} l := 3 ; l :=!l − 2 {l ≥ 0}

343

Floyd-Hoare Logic – Consequence

strengthen pre-conditions and weaken post-conditions

(cons)
|= P ⇒ P ′ ⊢ {P ′} c {Q′} |= Q′ ⇒ Q

⊢ {P} c {Q}

Recall: |= P ⇒ P ′ denotes assertion validity

344

Floyd-Hoare Logic – Summary

(skip) ⊢ {P} skip {P}

(assign) ⊢ {P [a/l]} l := a {P}

(seq)
⊢ {P} c1 {R} ⊢ {R} c2 {Q}

⊢ {P} c1 ; c2 {Q}

(if)
⊢ {P ∧ b} c1 {Q} ⊢ {P ∧ ¬b} c2 {Q}

⊢ {P} if b then c1 else c2 {Q}

(while)
⊢ {P ∧ b} c {P}

⊢ {P} while b do c {P ∧ ¬b}

(cons)
|= P ⇒ P ′ ⊢ {P ′} c {Q′} |= Q′ ⇒ Q

⊢ {P} c {Q}

345

Floyd-Hoare Logic – Exercise

{l0 = n ∧ n > 0}
l1 := 1 ;

while !l0 > 0 do
l1 := !l1 · !l0 ;

l0 := !l0 − 1

{l1 = n!}

346

Soundness and Completeness

how do ⊢ (judgement) and |= (validity) relate?

Soundness:
if a partial correctness statement can be derived (⊢) then is is valid (|=)

Completeness:
if the statement is valid (|=) then a derivation exists (⊢)

347

Soundness and Completeness

Theorem (Soundness)
If ⊢ {P} c {Q} then |= {P} c {Q}.

Proof.
Induction on the derivation of ⊢ {P} c {Q}. ⊓⊔

348

Soundness and Completeness

Conjecture (Completeness)
If |= {P} c {Q} then ⊢ {P} c {Q}.

Rule (cons) spoils completeness

(cons)
|= P ⇒ P ′ ⊢ {P ′} c {Q′} |= Q′ ⇒ Q

⊢ {P} c {Q}

Can we derive |= P ⇒ P ′?
No, according to Gödel’s incompleteness theorem (1931)

349

Soundness and Completeness

Theorem (Relative Completeness)
P,Q ∈ assn, c ∈ com. |= {P} c {Q} implies ⊢ {P} c {Q}.

Floyd-Hoare logic is no more incomplete than our language of assertions

Proof depends on the notion of weakest liberal preconditions.

350

Decorated Programs

Observation: once loop invariants and uses of consequence are
identified, the structure of a derivation in Floyd-Hoare logic is determined
Write “proofs” by decorating programs with:

• a precondition ({P})
• a postcondition ({Q})
• invariants ({I}while b do c)
• uses of consequence ({R} ⇒ {S})
• assertions between sequences (c1 ; {T}c2)

decorated programs describe a valid Hoare logic proof if the rest of the
proof tree’s structure is implied
(caveats: Invariants are constrained, etc.)

351

(Informal) Rules for Decoration

Idea: check whether a decorated program represents a valid proof using
local consistency checks

skip
pre and post-condition should be the same

{P}
skip
{P}

(skip) ⊢ {P} skip {P}

352

(Informal) Rules for Decoration
assignment
use the substitution from the rule

{P [a/l]}
l := a

{P}

(assign) ⊢ {P [a/l]} l := a {P}

sequencing
{P} c1 {R} and {R} c2 {Q} should be (recursively) locally consistent

{P}
c1 ;

{R}
c2
{Q}

(seq)
⊢ {P} c1 {R} ⊢ {R} c2 {Q}

⊢ {P} c1 ; c2 {Q}

353

(Informal) Rules for Decoration

if then
both branches are locally consistent; add condition to both

{P}
if b then
{P ∧ b}
c1
{Q}

else
{P ∧ ¬b}
c2
{Q}

{Q}

(if)
⊢ {P ∧ b} c1 {Q} ⊢ {P ∧ ¬b} c2 {Q}

⊢ {P} if b then c1 else c2 {Q}

354

(Informal) Rules for Decoration

while
add/create loop invariant

{P}
while b do
{P ∧ b}
c
{P}

{P ∧ ¬b}

(while)
⊢ {P ∧ b} c {P}

⊢ {P} while b do c {P ∧ ¬b}

355

(Informal) Rules for Decoration

consequence
always write a (valid) implication

{P} ⇒
{P ′}

(cons)
|= P ⇒ P ′ ⊢ {P ′} c {Q′} |= Q′ ⇒ Q

⊢ {P} c {Q}

356

Floyd-Hoare Logic – Exercise

{l0 = n ∧ n > 0}
l1 := 1 ;

while !l0 > 0 do
l1 := !l1 · l0 ;

l0 := !l0 − 1

{l1 = n!}

357

Floyd-Hoare Logic – Exercise
{l0 = n ∧ n > 0} ⇒
{1 = 1 ∧ l0 = n ∧ n > 0}
l1 := 1 ;

{l1 = 1 ∧ l0 = n ∧ n > 0} ⇒
{l1 · l0! = n! ∧ l0 ≥ 0}
while !l0 > 0 do

{l1 · l0! = n! ∧ l0 > 0 ∧ l0 ≥ 0} ⇒
{l1 · l0 · (l0 − 1)! = n! ∧ (l0 − 1) ≥ 0}
l1 := !l1 · l0 ;

{l1 · (l0 − 1)! = n! ∧ (l0 − 1) ≥ 0}
l0 := !l0 − 1

{l1 · l0! = n! ∧ l0 ≥ 0}
{l1 · l0! = n! ∧ (l0 ≥ 0) ∧ ¬(l0 > 0)} ⇒
{l1 = n!}

358

Section 18

Weakest Preconditions

359

Generating Preconditions

{ ? } c {Q}

• many possible preconditions
• some are more useful than others

360

Weakest Liberal Preconditions

Intuition: the weakest liberal precondition for c and Q is the weakest
assertion P such that {P} c {Q} is valid

Definition (Weakest Liberal Precondition)
P is a weakest liberal precondition of c and Q (wlp(c,Q)) if

∀s, I. s |=I P ⇐⇒ C[[c]](s) is undefined ∨ C[[c]](s) |=I Q

361

Weakest Preconditions

wlp(skip, Q) = Q

wlp(l := a,Q) = Q[a/l]

wlp((c1 ; c2), Q) = wlp(c1,wlp(c2, Q))

wlp(if b then c1 else c2, Q) = (b =⇒ wlp(c1, Q)) ∧
(¬b =⇒ wlp(c2, Q))

wlp(while b do c,Q) = (b =⇒ wlp(c,wlp(while b do c,Q))) ∧
(¬b =⇒ Q)

=
∧
i

Fi(Q)

where
F0(Q) = true

Fi+1(Q) = (¬b =⇒ Q) ∧ (b =⇒ wlp(c, Fi(Q)))

(Greatest fixed point)
362

Properties of Weakest Preconditions

Lemma (Correctness of wlp)
∀c ∈ com, Q ∈ assn.

|= {wlp(c,Q)} c {Q} and
∀R ∈ assn. |= {R} c {Q} implies (R =⇒ wlp(c,Q))

Lemma (Provability of wlp)
∀c ∈ com, Q ∈ assn. ⊢ {wlp(c,Q)} c {Q}

363

Soundness and Completeness

Theorem (Relative Completeness)
P,Q ∈ assn, c ∈ com. |= {P} c {Q} implies ⊢ {P} c {Q}.

Proof Sketch.
• let {P} c {Q} be a valid partial correctness specification
• by the first lemma we have |= P =⇒ wlp(c,Q)

• by the second lemma we have ⊢ {wlp(c,Q)} c {Q}
• hence ⊢ {P} c {Q}, using the Rule (cons)

⊓⊔

364

Total Correctness
Definition (Weakest Precondition)
P is a weakest precondition of c and Q (wp(c,Q)) if

∀s, I. s |=I P ⇐⇒ C[[c]](s) |=I Q

all rules are the same, except the one for while. This requires a fresh
ghost variable that guarantees termination

Lemma (Correctness of wp)
∀c ∈ com, Q ∈ assn.

|= [wp(c,Q)] c [Q] and
∀R ∈ assn. |= [R] c [Q] implies (R =⇒ wp(c,Q))

(for appropriate definition of |=)

365

Strongest Postcondition

{P} c { ? }

• wlp motivates backwards reasoning
• this seems unintuitive and unnatural
• however, often it is known what a program is supposed to do
• sometimes forward reasoning is useful, e.g. reverse engineering

366

Strongest Postcondition

sp(skip, P) = P

sp(l := a, P) = ∃v. (l = a[v/l] ∧ P [v/l])
sp((c1 ; c2), P) = sp(c2, sp(c1, P))

sp(if b then c1 else c2, P) = (sp(c1, b ∧ P)) ∨ (sp(c2,¬b ∧ P))
sp(while b do c, P) = sp(while b do c, sp(c, P ∧ b)) ∨ (¬b ∧ P)

where
F0(P) = false

Fi+1(P) = (¬b ∧ P) ∨ (sp(c, Fi(P ∧ b)))

(Least fixed point)

367

Section 19

Concurrency

368

Concurrency and Distribution

so far we concentrated on semantics for sequential computation
but the world is not sequential. . .

• hardware is intrinsically parallel
• multi-processor architectures
• multi-threading (perhaps on a single processor)
• networked machines

369

Problems
aim: languages that can be used to model computations that execute in
parallel and on distributed architectures
problems

• state-space explosion
with n threads, each of which can be in 2 states, the system has 2n states

• state-spaces become complex
• computation becomes nondeterministic
• competing for access to resources may deadlock or suffer starvation
• partial failure (of some processes, of some machines in a network, of some

persistent storage devices)
• communication between different environments
• partial version change
• communication between administrative regions with partial trust (or, indeed,

no trust)
• protection against malicious attack
• . . .

370

Problems

this course can only scratch the surface

concurrency theory is a broad and active field for research

371

Process Calculi

• Observation (1970s): computers with shared-nothing architectures
communicating by sending messages to each other would be
important
[Edsger W. Dijkstra, Tony Hoare, Robin Milner, and others]

• Hoare’s Communicating Sequential Processes (CSP) is an early
and highly-influential language that capture a message passing form
of concurrency

• many languages have built on CSP including Milner’s CCS and
π-calculus, Petri nets, and others

372

IMP – Parallel Commands
we extend our while-language that is based on aexp, bexp and com

Syntax
com ::= . . . | com ∥ com

Semantics
(par1)

⟨c0 , s⟩ −→ ⟨c′0 , s′⟩
⟨c0 ∥ c1 , s⟩ −→ ⟨c′0 ∥ c1 , s′⟩

(par2)
⟨c1 , s⟩ −→ ⟨c′1 , s′⟩

⟨c0 ∥ c1 , s⟩ −→ ⟨c0 ∥ c′1 , s′⟩

373

IMP – Parallel Commands

Typing

(thread)
Γ ⊢ c :unit
Γ ⊢ c :proc

(par)
Γ ⊢ c0 :proc Γ ⊢ c1 :proc

Γ ⊢ c0 ∥ c1 :proc

374

Parallel Composition: Design Choices

• threads do not return a value
• threads do not have an identity
• termination of a thread cannot be observed within the language
• threads are not partitioned into ‘processes’ or machines
• threads cannot be killed externally

375

Asynchronous Execution
• semantics allow interleavings

⟨skip ∥ l := 2 , {l 7→ 1}⟩ // ⟨skip ∥ skip , {l 7→ 2}⟩

⟨l := 1 ∥ l := 2 , {l 7→ 0}⟩
,,

22

⟨l := 1 ∥ skip , {l 7→ 2}⟩ // ⟨skip ∥ skip , {l 7→ 1}⟩

• assignments and dereferencing are atomic
⟨skip ∥ l := 2 , {l 7→N}⟩ // ⟨skip ∥ skip , {l 7→ 2}⟩

⟨l := N ∥ l := 2 , {l 7→ 0}⟩
,,

22

⟨l := N ∥ skip , {l 7→ 2}⟩ // ⟨skip ∥ skip , {l 7→N}⟩
for N = 3498734590879238429384.
(not something as the first word of one and the second word of the other)

376

Asynchronous Execution

• interleavings in ⟨(l := 1+!l) ∥ (l := 7+!l) , {l 7→ 0}⟩

⟨(skip ∥ (l := 7+!l) , {l 7→ 1}⟩ r // • + // • w // ⟨(skip ∥ (skip , {l 7→ 8}⟩

⟨(l := 1) ∥ (l := 7+!l) , {l 7→ 0}⟩

w

66

r

((

⟨skip ∥ (l := 7 + 0) , {l 7→ 1}⟩
+

&&
⟨(l := 1 + 0) ∥ (l := 7+!l) , {l 7→ 0}⟩

+

55

r

))

⟨(l := 1) ∥ (l := 7 + 0) , {l 7→ 0}⟩

w

66

+

((

⟨skip ∥ (l := 7) , {l 7→ 1}⟩ w // ⟨skip ∥ skip , {l 7→ 7}⟩

⟨(l := 1+!l) ∥ (l := 7+!l) , {l 7→ 0}⟩

r

55

r

))

⟨(l := 1 + 0 ∥ (l := 7 + 0) , {l 7→ 0}⟩

+

66

+

((

⟨(l := 1) ∥ (l := 7) , {l 7→ 0}⟩

w

88

w

&&
⟨(l := 1+!l) ∥ (l := 7 + 0) , {l 7→ 0}⟩

r

55

+

))

⟨(l := 1 + 0) ∥ (l := 7) , {l 7→ 0}⟩

+

66

w

((

⟨(l := 1) ∥ skip , {l 7→ 7}⟩ w // ⟨skip ∥ skip , {l 7→ 1}⟩

⟨(l := 1+!l) ∥ (l := 7) , {l 7→ 0}⟩

r

66

w

((

⟨(l := 1 + 0) ∥ skip , {l 7→ 7}⟩

+

88

⟨(l := 1+!l) ∥ skip , {l 7→ 0}⟩ r // • + // • w // ⟨(skip ∥ (skip , {l 7→ 8}⟩

377

Morals

• combinatorial explosion
• drawing state-space diagrams only works for really tiny examples
• almost certainly the programmer does not want all those 3

outcomes to be possible
• complicated/impossible to analyse without formal methods

378

Parallel Commands – Nondeterminism
Semantics

(par1)
⟨c0 , s⟩ −→ ⟨c′0 , s′⟩

⟨c0 ∥ c1 , s⟩ −→ ⟨c′0 ∥ c1 , s′⟩

(par2)
⟨c1 , s⟩ −→ ⟨c′1 , s′⟩

⟨c0 ∥ c1 , s⟩ −→ ⟨c0 ∥ c′1 , s′⟩
(+maybe rules for termination)

• study of nondeterminism
• ∥ is not a partial function from state to state; big-step semantics

needs adaptation
• can we achieve parallelism by nondeterministic interleavings
• communication via shared variable

379

Study of Parallelism (or Concurrency)

includes

Study of Nondeterminism

380

Dijkstra’s Guarded Command Language (GCL)

• defined by Edsger Dijkstra for predicate transformer semantics
• combines programming concepts in a compact/abstract way
• simplicity allows correctness proofs
• closely related to Hoare logic

381

GCL – Syntax

• arithmetic expressions: aexp (as before)
• Boolean expressions: bexp (as before)
• Commands:

com ::= skip | abort | l := aexp | com ; com |
if gc fi | do gc od

• Guarded Commands:

gc ::= bexp → com |
gc [] gc

382

GCL – Semantics
• assume we have semantic rules for bexp and aexp (standard)

we skip the deref-operator from now on
• assume a new configuration fail

Guarded Commands

(pos)
⟨b , s⟩ −→ ⟨true , s⟩
⟨b→ c , s⟩ −→ ⟨c , s⟩

(neg)
⟨b , s⟩ −→ ⟨false , s⟩
⟨b→ c , s⟩ −→ fail

(par1)
⟨gc0 , s⟩ −→ ⟨c , s′⟩

⟨gc0 [] gc1 , s⟩ −→ ⟨c , s′⟩
(par2)

⟨gc1 , s⟩ −→ ⟨c , s′⟩
⟨gc0 [] gc1 , s⟩ −→ ⟨c , s′⟩

(par3)
⟨gc0 , s⟩ −→ fail ⟨gc1 , s⟩ −→ fail

⟨gc0 [] gc1 , s⟩ −→ fail

383

GCL – Semantics
Commands

• skip and sequencing ; as before (can drop determinacy)
• abort has no rules

(cond)
⟨gc , s⟩ −→ ⟨c , s′⟩

⟨if gc fi , s⟩ −→ ⟨c , s′⟩

(loop1)
⟨gc , s⟩ −→ fail

⟨do gc od , s⟩ −→ ⟨⟨s⟩⟩ †

(loop2)
⟨gc , s⟩ −→ ⟨c , s′⟩

⟨do gc od , s⟩ −→ ⟨c ; do gc od , s′⟩
† new notation: behaves like skip

384

Processes

do b1 → c1 [] · · · [] bn → cn od

• form of (nondeterministically interleaved) parallel composition
• each ci occurs atomically (uninterruptedly),

provided bi holds each time it starts

Some languages support/are based on GCL
• UNITY (Misra and Chandy)
• Hardware languages (Staunstrup)

385

GCL – Examples
• compute the maximum of x and y

if
x ≥ y → max := x

[]

y ≥ x→ max := y

fi

• Euclid’s algorithm

do
x > y → x := x− y

[]

y > x→ y := y − x

od

386

GCL and Floyd-Hoare logic

guarded commands support a neat Hoare logic and decorated programs

Hoare triple for Euclid

{x = m ∧ y = n ∧m > 0 ∧ n > 0}
Euclid
{x = y = gcd(m,n)}

387

Proving Euclid’s Algorithm Correct

• recall gcd(m,n)|m, gcd(m,n)|n and

ℓ|m,n⇒ ℓ| gcd(m,n)

• invariant: gcd(m,n) = gcd(x, y)

• key properties:

gcd(m,n) = gcd(m− n, n) if m > n

gcd(m,n) = gcd(m,n−m) if n > m

gcd(m,m) = m

388

Synchronised Communication

• communication by “handshake”
• possible exchange of value

(localised to process-process (CSP) or to a channel (CCS))
• abstracts from the protocol underlying coordination
• invented by Hoare (CSP) and Milner (CCS)

389

Extending GCL

• allow processes to send and receive values on channels
α!a evaluate expression a and send value on channel α
α?x receive value on channel α and store it in x

• all interactions between parallel processes is by sending / receiving
values on channels

• communication is synchronised (no broadcast yet)
• allow send and receive in commands c and in guards g:

do y < 100 ∧ α?x → α!(x · x) ∥ y := y + 1 od

390

Extending GCL – Semantics
transitions may carry labels when possibility of interaction

⟨α?x , s⟩ α?n−→ ⟨⟨s+ {x 7→ n}⟩⟩

⟨a , s⟩ −→ ⟨n , s⟩

⟨α!a , s⟩ α!n−→ ⟨⟨s⟩⟩

⟨c0 , s⟩
λ−→ ⟨c′0 , s′⟩

⟨c0 ∥ c1 , s⟩
λ−→ ⟨c′0 ∥ c1 , s′⟩

(+ symmetric)

⟨c0 , s⟩
α?n−→ ⟨c′0 , s′⟩ ⟨c1 , s⟩

α!n−→ ⟨c′1 , s⟩
⟨c0 ∥ c1 , s⟩ −→ ⟨c′0 ∥ c′1 , s′⟩

(+ symmetric)

⟨c , s⟩ λ−→ ⟨c′ , s′⟩

⟨c\α , s⟩ λ−→ ⟨c′\α , s′⟩
λ ̸∈ {α?n, α!n}

λ may be the empty label
391

Examples

• forwarder:
do α?x→ β!x od

• buffer of capacity 2: (
do α?x→ β!x od

∥ do β?x→ γ!x od
)
\β

392

External vs Internal Choice
the following two processes are not equivalent w.r.t. deadlock capabilities

if (true ∧ α?x→ c0) [] (true ∧ β?x→ c1) fi

if (true → α?x ; c0) [] (true → β?x ; c1) fi

393

Section 20

The Process Algebra CCS

394

Towards an Abstract Mechanism for Concurrency

The Calculus of Communicating Systems (CCS)
• introduced by Robin Milner in 1980
• first process calculus developed with its operational semantics
• supports algebraic reasoning about equivalence
• simplifies Dijkstra’s GCL by removing the store

395

Actions and Communications

• processes communicate values (numbers) on channels
• communication is synchronous and between two processes
• a is an arithmetic expression; evaluation is written a→ n

• input: α?x
• output α!a
• silent actions τ (internal to a process)
• λ will range over all the kinds of actions, including τ

396

(Decorated) CCS – Syntax

Expressions:
arithmetic a and Boolean b

Processes:
p ::= nil nil process

| (τ → p) silent/internal action
| (α!a→ p) output
| (α?x→ p) input
| (b→ p) Boolean guard
| p+ p nondeterministic choice
| p ∥ p parallel composition
| p\L restriction (L a set of channel identifiers)
| p[f] relabelling (f a function on channel identifiers)
| P (a1, . . . , ak) process identifier

397

(Decorated) CCS – Syntax

Process Definitions:

P (x1, . . . , xk)
def
= p

(free variables of p ⊆ {x1, . . . , xk})

398

Restriction and Relabelling – Examples

• p\L: disallow external interaction on channels in L
• p[f]: rename external interface to channels by f

399

Operational semantics of CCS
Guarded processes

silent action
(τ → p)

τ−→ p

output
a −→ n

(α!a→ p)
α!n−→ p

input
(α?x→ p)

α?n−→ p[n/x]

Boolean
b→ true p

λ−→ p′

(b→ p)
λ−→ p′

400

Operational semantics of CCS
Sum

p0
λ−→ p′0

p0 + p1
λ−→ p′0

p1
λ−→ p′1

p0 + p1
λ−→ p′1

Parallel composition

p0
λ−→ p′0

p0 ∥ p1
λ−→ p′0 ∥ p1

p0
α?n−→ p′0 p1

α!n−→ p′1

p0 ∥ p1
τ−→ p′0 ∥ p′1

p1
λ−→ p′1

p0 ∥ p1
λ−→ p0 ∥ p′1

p0
α!n−→ p′0 p1

α?n−→ p′1

p0 ∥ p1
τ−→ p′0 ∥ p′1

401

Operational semantics of CCS
Restriction

p
λ−→ p′

p\L λ−→ p′\L
if λ ∈ {α?n, α!n} then α ̸∈ L

Relabelling p
λ−→ p′

p[f]
f(λ)−→ p′[f]

where f is extended to labels as f(τ) = τ and f(α?n) = f(α)?n and
f(α!n) = f(α)!n

Identifiers p[a1/x1, . . . , an/xn]
λ−→ p′

P (a1, . . . , an)
λ−→ p′

P (x1, . . . , xn)
def
= p

Nil process
no rules

402

A Derivation

(((α!3 → nil+P) ∥ τ → nil) ∥α?x→ nil)\{α} τ−→ ((nil ∥ τ → nil) ∥nil)\{α}

403

More Examples

• Mixed choice α!2 → nil + τ → β!3 → nil
α!2

vv

τ

))
nil β!3 → nil

β!3

��
nil

404

Linking Process
(some syntactic sugar)

Let

P
def
=in?x→ out!x→ P

Q
def
=in?y → out!y → Q

Connect P ’s output port to Q’s input port

P ∩ Q = (P [c/out] ∥Q[c/in])\{c}

where c is a fresh channel name

405

Euclid’s algorithm in CSS

E(x, y)
def
= x = y → gcd!x→ nil

+ x < y → E(x, y − x)

+ y < x→ E(x− y, x)

Euclid
def
= in?x→ in?y → E(x, y)

406

Section 21

Pure CCS

407

Towards a more basic language
aim: removal of variables to reveal symmetry of input and output

• transitions for value-passing carry labels τ , a?n, a!n

α?x→ p
α?0 //

α?n %%

p[0/x]

p[n/x]

• this suggests introducing prefix α?n.p (as well as α!n.p) and
view α?x→ p as a (infinite) sum

∑
n α?n.p[n/x]

• view α?n and α!n as complementary actions
• synchronisation can only occur on complementary actions

408

Pure CCS
• Actions: a, b, c, . . .
• Complementary actions: ā, b̄, c̄,. . .
• Internal action: τ
• Notational convention: ¯̄a = a

• Processes:
p ::= λ.p prefix λ ranges over τ, a, ā for any action

|
∑
i∈I pi sum I is an index set

| p0 ∥ p1 parallel
| p\L restriction L a set of actions
| p[f] relabelling f a relabelling function on actions
| P process identifier

• Process definitions:
P

def
= p

409

Pure CCS – Semantics
Guarded processes (prefixing)

λ.p
λ−→ p

Sum
pj

λ−→ p′∑
i∈I pi

λ−→ p′
j ∈ I

Parallel composition

p0
λ−→ p′0

p0 ∥ p1
λ−→ p′0 ∥ p1

p1
λ−→ p′1

p0 ∥ p1
λ−→ p0 ∥ p′1

p0
a−→ p′0 p1

ā−→ p′1

p0 ∥ p1
τ−→ p′0 ∥ p′1

410

Pure CCS – Semantics
Restriction

p
λ−→ p′

p\L λ−→ p′\L
λ ̸∈ L ∪ L

where L = {ā | a ∈ L}

Relabelling
p

λ−→ p′

p[f]
λ−→ p′[f]

where f is a function such that f(τ) = τ and f(ā) = f(a)

Identifiers
p

λ−→ p′

P
λ−→ p′

P
def
= p

411

From Value-passing to Pure CCS
translation from a value-passing CCS closed termp to a pure CCS term p̂

p p̂

nil nil
(τ → p) τ.p̂
(α!a→ p) αm.p̂ where a evaluates to m
(α?x→ p)

∑
m∈int αm.p̂[m/x]

(b→ p) p̂ if b evaluates to true
nil if b evaluates to false

p0 + p1 p̂0 + p̂1
p0 ∥ p1 p̂0 ∥ p̂1
p\L p̂\{αm | α ∈ L ∧m ∈ int}
P (a1, . . . , ak) Pm1,...,mk

where ai evaluates to mi

For every definition P (x1, . . . , xk) we have a collection of definitions
Pm1,...,mk

indexed by m1,. . . ,mk ∈ int
412

Correspondence

Theorem

p
λ−→ p′ iff p̂

λ̂−→ p̂′

413

Section 22

Semantic Equivalences

414

Labelled Transition Systems

CCS naturally implies a graphical model of computation.

a labelled transition system (LTS) is a pair (S,⇒) with
• S a set (of states or processes), and
• ⇒ ⊆ S ×Act× S, the transition relation.

here Act = A ⊎ {τ} is a set of actions, containing visible actions
a, b, c, ... ∈ A, and the invisible action τ .

a finite path is a sequence p0
λ1−→ p1

λ2−→ · · · λn−→ pn with pi ∈ S for
i = 0, ..., n and (pi−1, λi, pi) ∈ ⇒ for all i = 1, ..., n.

415

Trace equivalence

• if such a path exists, then the sequence λ1λ2 . . . λn is a (partial)
trace of the process p0

• two processes p and q are (partial) trace equivalent if they have the
same (partial) traces.

416

Four Kinds of Trace Equivalence

Let T ∗(p) be the set of (partial) traces of process p ∈ S.
Let T∞(p) be the set of infinite traces of p.
Let CT ∗(p) be the set of completed traces of p.
Let CT∞(p) := CT ∗(p) ⊎ T∞(p).

A finite trace is complete if it last state has no outgoing transition.

Write p =∗
T q if T ∗(p) = T ∗(q) — (partial) trace equivalence.

Write p =∗
CT q if CT ∗(p) = CT ∗(q) and T ∗(p) = T ∗(q) —

completed trace equivalence
Write p =∞

T q if T∞(p) = T∞(q) and T ∗(p) = T ∗(q) —
infinitary trace equivalence

Write p =∞
CT if CT∞(p) = CT∞(q) — infinitary completed tr. eq.

417

A Lattice of Semantic Equivalence Relations
A relation ∼ ⊆ S × S on processes is an equivalence relation if it is

• reflexive: p ∼ p,
• symmetric: if p ∼ q then q ∼ p,
• and transitive: if p ∼ q and q ∼ r then p ∼ r.

Let [p]∼ be the equivalence class of p: the set of all processes that are
∼-equivalent to p.

[p]∼ := {q ∈ S | q ∼ p}.

Equivalence relation ∼ is finer than equivalence relation ≈ iff

p ∼ q ⇒ p ≈ q.

Thus if ∼ ⊆ ≈. In that case each equivalence class of ∼ is included in an
equivalence class of ≈.

418

Four Additional Trace Equivalence

A weak trace is obtained from a strong one by deleting all τs.
Let WT ∗(p) := {detau(σ) | σ ∈ T ∗(p)}.

This leads to weak trace equivalences =∗
WT , =∞

WT , =∗
WCT , =∞

WCT .

419

Safety and Liveness Properties

A safety property says that something bad will never happen.
A liveness property says that something good will happen eventually.

If we deem two processes p and q semantically equivalent we often want
them to have the same safety and/or liveness properties.

ab
?∼ ab+ a

Weak partial trace equivalence respects safety properties.

ag
?∼ ag + a

We need at least completed traces to deal with liveness properties

420

Compositionality
If p ∼ q then C[p] ∼ C[q].
Here C[] is a context, made from operators of some language.

For instance (|b̄.ā.nil)\{a, b} is a CCS-context.
If p ∼ q then (p|b̄.ā.nil)\{a, b} ∼ (q|b̄.ā.nil)\{a, b}.

Then ∼ is a congruence for the language,
or the language if compositional for ∼.

p ∼ p′ ⇒ (p|p|...|p)\L ∼ (p′|p′|...|p′)\L.

a.b+ a.c =∗
CT a.(b+ c) but

((a.b+ a.c)|ā.b̄)\{a, b} ≠∗
CT (a.(b+ c)|ā.b̄)\{a, b}.

Thus =∗
CT is a not a congruence for CCS.

421

Congruence closure

Theorem: Given any equivalence ≈ that need not be a congruence for
some language L, there exists a coarsest congruence ∼ for L that is
finer than ∼.

In fact, ∼ can be defined by

p ∼ q :⇔ C[p] ≈ C[q] for any L-context C[].

422

Bisimulation equivalence

A relation R ⊆ S × S is a bisimulation if it satisfies:

• if pRq and p λ−→ p′ then ∃q′ s.t. q λ−→ q′ and p′Rq′, and

• if pRq and q λ−→ q′ then ∃p′ s.t. p λ−→ p′ and p′Rq′.
Two processes p, q ∈ S are bisimulation equivalent or bisimilar
—notation p =B q—if pRq for some bisimulation R.

Examples: a.b+ a.c ̸=B a.(b+ c) a.b+ a.b =B a.b

423

Weak bisimulation equivalence

A relation R ⊆ S × S is a weak bisimulation if it satisfies:

• if pRq and p λ−→ p′ then ∃q′ s.t. q =⇒ (λ)−→=⇒ q′ and p′Rq′,
and

• if pRq and q λ−→ q′ then ∃p′ s.t. p =⇒ (λ)−→=⇒ p′ and p′Rq′.
Here =⇒ denotes a finite sequence of τ -steps,
and (λ) means λ, except that it is optional in case λ = τ .

(That is, p
(λ)−→ q iff p λ−→ q ∨ (λ = τ ∧ q = p).)

Two processes p, q ∈ S are weakly bisimilar
—notation p =WB q—if pRq for some bisimulation R.

Examples: τ.b+ c ̸=WB b+ c τ.b+ b =WB b

424

Semantic Equivalences – Summary

• relate to systems (via LTSs)
• can be extended to states carrying stores
• sos-rules give raise to LTSs in a straightforward way
• reduce complicated (big) systems to simpler ones
• smaller systems may be easier to verify
• understand which properties are preserved

425

Section 23

The Owicki-Gries Method

426

Motivation

• nondeterminism and concurrency required
• handle interleaving
• Floyd-Hoare logic only for sequential programs

• Owicki-Gries Logic/Method
▶ a.k.a. interference freedom
▶ Susan Owicki and PhD supervisor David Gries
▶ add a construct to the programming language for threads
▶ study the impact for Hoare triples

427

Floyd-Hoare Logic and Decorated Programs

Notation: processes: individual program
system: overall (concurrent) program will be

Floyd-Hoare logic
• each of the individual processes has an assertion

▶ before its first statement (precondition)
▶ between every pair of its statements (pre-/postcondition), and
▶ after its last statement (postcondition)

• Hoare-triples can be checked (local correctness)
• Floyd-Hoare logic is compositional

428

Motivation
add pre- and postcondition for system, and a rule

{P1} c1 {Q1} {P2} c2 {Q2}
{P1 ∧ P2} c1 ∥ c2 {Q1 ∧Q2}

but this rule is incorrect

Note: we are considering an interleaving semantics

429

Simple Example

{x == 0}

{x == 0 ∨ x == 2} {x == 0 ∨ x == 1}

x := x+ 1 ∥ x := x+ 2

{x == 1 ∨ x == 3} {x == 2 ∨ x == 3}

{x == 3}

What would we have to show?

430

The Rule of Owicki Gries

all rules of Floyd-Hoare logic remain valid

{P1} c1 {Q1} . . . {Pn} cn {Qn} interference freedom
{P1 ∧ · · · ∧ Pn} c1 ∥ · · · ∥ cn {Q1 ∧ · · · ∧Qn}

(par)

431

Interference Freedom

Interference freedom is a property of proofs of the {Pi} ci {Qi}
• suppose we have a proof for {Pi} ci {Qi}
• prove that the execution of any other statement cj does not validate

the reasoning for {Pi} ci {Qi}

it is a bit tricky
• interference freedom is a property of proofs, not Hoare triples
• identifying which parts of a proof need to be considered requires

some effort

432

Formalising Interference Freedom

In a decorated program D and command c of the program, let
• pre(D, c) be the precondition (assumption/predicate) immediately

before c, and
• post(D, c) the postcondition immediately after c
• remember {P} c {Q} valid if there is a decorated program D with

pre(D, c) = P and post(D, c) = Q

433

Formalising Interference Freedom

{P1} c1 {Q1} . . . {Pn} cn {Qn} interference freedom
{P1 ∧ · · · ∧ Pn} c1 ∥ · · · ∥ cn {Q1 ∧ · · · ∧Qn}

(par)

Suppose every ci has a decorated program Dci .

Definition
Dci is interference-free with respect to Dcj (i ̸= j) if for each statement c′i
in ci and c′j in cj

• {pre(Dci , c
′
i) ∧ pre(Dcj , c

′
j)} c′j {pre(Dci , c

′
i)}

• {post(Dci , c
′
i) ∧ pre(Dcj , c

′
j)} c′j {post(Dci , c

′
i))}

The Dc1 , Dc1 , . . .Dcn are interference-free if they are pairwise
interference-free with respect to one other.

434

Interference Freedom – Remark

• applying the Rule (par) requires the development of
interference-free decorated programs for the ci

• proving interference-freedom of Dci with respect to Dcj focusses on
▶ preconditions of each statement in ci and postcondition of Dci

435

Simple Example

Why is interference freedom violated?

{x == 0}

{x == 0} {x == 0}

x := x+ 1 ∥ x := x+ 2

{x == 1} {x == 1}

{x == 1}

436

Soundness

Theorem
If {P} c {Q} is derivable using the proof rules seen so far then c is valid

437

Completeness

Can every correct Hoare triple be derived?

• completeness does not hold
• neither does relative completeness

438

Incompleteness
Lemma
The following valid Hoare triple cannot be derived using the rules so far.

{true} x := x+ 2 ∥ x := 0 {x == 0 ∨ x == 2}

Proof.
By contradiction. Suppose there were such a proof. Then there would be Q, R such that

{true} x := x+ 2 {Q}
{true} x := 0 {R}

Q ∧R =⇒ x == 0 ∨ x == 2

By (assign)
(
{P [a/l]} l := a {P}

)
, true =⇒ Q[x+ 2/x] holds. Similarly, R[0/x] holds.

By (par), {R ∧ true} x := x+ 2 {R} holds, meaning R ⇒ R[x+ 2/x] is valid.
But then by induction, ∀x. (x ≥ 0 ∧ even(x)) =⇒ R is true. Since
Q ∧R =⇒ x = 0 ∨ x = 2, it follows that

∀x. (x ≥ 0 ∧ even(x)) =⇒ (x == 0 ∨ x == 2) ,

which is a contradiction. ⊓⊔
439

Fixing the Problem

We showed
• R must hold for all even, positive x
• R must hold after execution of x := 0

• R must also hold both before and after execution of x := x+ 2

we need the capability in R to say that
until x := x+ 2 is executed, x = 0 holds.

440

Auxiliary Variables
variables that are put into a program just to reason about progress in
other processes

done := 0 ;

(

x,done := x+ 2, 1

∥
x := 0

)

• requires synchronous/atomic assignment
• proof is now possible

441

Decorated Programs with Auxiliary Variables

{true}
done := 0 ;

{done == 0}
(

{done == 0}
x, done := x+ 2, 1

{true}
∥

{true}
x := 0

{(x == 0 ∨ x == 2) ∧ (done == 0 ⇒ x == 0)}
)

{c == 0 ∨ x == 2}

Note: some implications skipped in the decorated program

442

Relative Completeness
• adding auxiliary variables enables proofs
• we do not want these variables to be in our code

{P} c {Q} x not free in Q x auxiliary in c
{P} c′ {Q}

(aux)

where c′ is c with all references to x removed.

Theorem (Relative Completeness)
Adding Rules (par) and (aux) to the other rules of Floyd-Hoare logic
yields a relatively complete proof system.

443

Problem

The Owicki-Griess Methods is not compositional.

444

Peterson’s Algorithm for Mutual exclusion

the following 4 lines of (symmetric) code took 15 years to discover
(mid 60’s to early 80s)

let a, b be Booleans and t : {A,B}

{¬a ∧ ¬b}
other code of A other code of B
a := true b := true

t := A t := B
await (¬b ∨ t == B) await (¬a ∨ t == A)

critical section A critical section B
a := false b := false

445

Notes on Peterson’s Algorithm

• protects critical sections from mutual destructive interference
• guarantees fair treatment of A and B

• how do we show that A (or B) is never perpetually ignored in favour
of B (A)?

▶ requires liveness in this case
▶ a topic for another course/research project
▶ in fact there is one line that could potentially violate liveness

(requires knowledge about hardware)

• 4 correct lines of code in 15 years is a coding rate of roughly
1 LoC every 4 years

446

Yet Another Example

FindFirstPositive

i := 0 ; j := 1 ; x := |A| ; y := |A| ;

while i < min(x, y) do
if A[i] > 0 then
x := i

else
i := i+ 2

∥
while j < min(x, y) do

if A[j] > 0 then
y := j

else
j := j + 2

r := min(x, y)

447

i := 0 ; j := 1 ; x := |A| ; y := |A| ;
{P1 ∧ P2}

{P1}
while i < min(x, y) do
{P1 ∧ i < x ∧ i < |A|}
if A[i] > 0 then
{P1 ∧ i < x ∧ i < |A| ∧A[i] > 0}
x := i
{P1}

else
{P1 ∧ i < x ∧ i < |A| ∧A[i] ≤ 0}
i := i+ 2
{P1}

{P1}
{P1 ∧ i ≥ min(x, y)}

∥

{P2}
while j < min(x, y) do
{P2 ∧ j < y ∧ j < |A|}
if A[j] > 0 then

{P2 ∧ j < y ∧ j < |A| ∧A[j] > 0}
y := j
{P2}

else
{P2 ∧ j < y ∧ j < |A| ∧A[j] ≤ 0}
j := j + 2
{P2}

{P2}
{P2 ∧ j ≥ min(x, y)}

{P1 ∧ P2 ∧ i ≥ min(x, y) ∧ j ≥ min(x, y)}
r := min(x, y)

{r ≤ |A| ∧ (∀k. 0 ≤ k < r ⇒ A[k] ≤ 0) ∧ (r < |A| ⇒ A[r] > 0)}

P1 = x ≤ |A| ∧ (∀k. 0 ≤ k < i ∧ k even ⇒ A[k] ≤ 0) ∧ i even ∧ (x < |A| ⇒ A[x] > 0)

P2 = y ≤ |A| ∧ (∀k. 0 ≤ k < j ∧ k odd ⇒ A[k] ≤ 0) ∧ j odd ∧ (y < |A| ⇒ A[y] > 0)

448

Section 24

Rely-Guarantee

449

Motivation

• Owicki-Gries is not compositional
• generalise it to make it compositional

{P} c ∥ E {Q}

⃝ // ⃝ +3 ⃝ // Q

P // ⃝ c +3⃝ // ⃝ //⃝ c +3

##

⃝ // ⃝ //

7?

⃝ +3 ⃝ // ⃝ +3 Q

⃝ +3 ⃝ // ⃝ +3 Q

450

Motivation

P
∗ // ⃝ c +3⃝ ∗ // ⃝ c +3⃝ ∗ // Q

∗−→: any state transition that can be done by any other thread, repeated zero or more
times

451

Rely-Guarantee

{P,R} c {G,Q}

If
• the initial state satisfies P , and
• every state change by another thread satisfies the rely condition R,

and
then c is executed and terminates,

then
• every final state satisfies Q, and
• every state change in c satisfies the guarantee condition G.

452

Rely-Guarantee – Parallel Rule

{P1, R ∨G2} c1 {G1, Q1} {P2, R ∨G1} c2 {G2, Q2}
{P1 ∧ P2, R} c1 ∥ c2 {G1 ∨G2, Q1 ∧Q2}

453

Rely-Guarantee – Consequence Rule

R⇒ R′ {P,R′} c {G′, Q} G′ ⇒ G

{P,R} c {G,Q}

Note: both rules can be packed in a single rule.

454

From Floyd-Hoare to Rely-Guarantee

{P} c {Q} ???

{P,R} c {G,Q}

R R R R R

P

{

// P

{

// P {

+3 Q

{

// Q

{
// Q
{
// Q

G

455

Back to Stores

{P} c {Q} P stable under R Q stable under R c is contained in G
{P,R} c {G,Q}

P stable under R: ∀s, s′. P (s) ∧R(s, s′) =⇒ P (s′)

c contained in G: ∀s, s′. P (s) ∧ (s, s′) ∈ C[[c]] =⇒ G(s, s′)

456

Making Assertions Stable

Assume

R = (x 7→ n ⇝ x 7→ n− 1)

= {(s, s′) | ∃n. s(x) = n ∧ s′(x) = s+ {x 7→ n− 1}}
G = (x 7→ n ⇝ x 7→ n+ 1)

= {(s, s′) | ∃n. s(x) = n ∧ s′(x) = s+ {x 7→ n+ 1}}

{x == 2, R} x := x+ 1 {G, x == 3}

457

Making Assertions Stable

Assume

R = (x 7→ n ⇝ x 7→ n− 1)

= {(s, s′) | ∃n. s(x) = n ∧ s′(x) = s+ {x 7→ n− 1}}
G = (x 7→ n ⇝ x 7→ n+ 1)

= {(s, s′) | ∃n. s(x) = n ∧ s′(x) = s+ {x 7→ n+ 1}}

{x ≤ 2, R} x := x+ 1 {G, x ≤ 3}

458

FindFirstPositive
i := 0 ; j := 1 ; x := |A| ; y := |A| ;

{P1 ∧ P2}

{P1,G2}
while i < min(x, y) do

{P1 ∧ i < x ∧ i < |A|}
. . .
{P1}

{G1, P1 ∧ i ≥ min(x, y)}

∥
{P2,G1}
while j < min(x, y) do

{P2 ∧ j < y ∧ j < |A|}
. . .
{P2}

{G2, P2 ∧ j ≥ min(x, y)}

{P1 ∧ P2 ∧ i ≥ min(x, y) ∧ j ≥ min(x, y)}
r := min(x, y)

{r ≤ |A| ∧ (∀k. 0 ≤ k < r ⇒ A[k] ≤ 0) ∧ (r < |A| ⇒ A[r] > 0)}

P1 = x ≤ |A| ∧ (∀k. 0 ≤ k < i ∧ k even ⇒ A[k] ≤ 0) ∧ i even ∧ (x < |A| ⇒ A[x] > 0)

P2 = y ≤ |A| ∧ (∀k. 0 ≤ k < j ∧ k odd ⇒ A[k] ≤ 0) ∧ j odd ∧ (y < |A| ⇒ A[y] > 0)

G1 = {(s, s′)|s′(y) = s(y) ∧ s′(j) = s(j) ∧ s′(x) ≤ s(x)}
G2 = {(s, s′)|s′(x) = s(x) ∧ s′(i) = s(i) ∧ s′(y) ≤ s(y)}

459

Rely-Guarantee Abstraction

Forgets
• which thread performs the action
• in what order the actions are performed
• how many times the action is performed

Usually, this is fine. . .

460

Verify This
{x == 0}

{x == 0 ∨ x == 1} {x == 0 ∨ x == 1}

x := x+ 1 ∥ x := x+ 1

{x == 1 ∨ x == 2} {x == 1 ∨ x == 2}

{x == 2}

G1, G2 = (x 7→ n ⇝ x 7→ n+ 1)

461

Verify This
{x == 0}

{∃n ≥ 0. x 7→ n,G2} {∃n ≥ 0. x 7→ n,G1}

x := x+ 1 ∥ x := x+ 1

{G1,∃n ≥ 1. x 7→ n} {G2,∃n ≥ 1. x 7→ n}

{∃n ≥ 1. x 7→ n}

G1, G2 = (x 7→ n ⇝ x 7→ n+ 1)

462

From Floyd-Hoare to Rely-Guarantee (recap)

{P} c {Q} ???

{P,R} c {G,Q}
P stable under R if and only if {P} R∗ {P}

R R R R R

P

{

// P

{

// P {

+3 Q

{

// Q

{
// Q
{
// Q

G

463

Section 25

Conclusion

464

Learning Outcome I

1. Understand the role of theoretical formalisms,
such as operational and denotational semantics

▶ IMP language
▶ operational semantics
▶ denotational semantics
▶ axiomatic semantics
▶ functions

(call-by-name, call-by-value)
▶ references
▶ extensions

(data structures, error handling, object-orientation,. . .)

465

Learning Outcome II

2. Apply these semantics in the context of programming languages

▶ IMP language + extensions
▶ configurations
▶ derivations
▶ transitions

466

Learning Outcome III

3. Evaluate differences (advantages/disadvantages) of these
theoretical formalisms

▶ small-step vs big-step
▶ operational vs denotational vs axiomatic (vs algebraic)

467

Learning Outcome IV

4. Create operational or denotational semantics of simple imperative
programs

▶ IMP + extensions + types
▶ derivations
▶ transitions

468

Learning Outcome V

5. Analyse the role of types in programming languages

▶ types
▶ subtypes
▶ progress and preservation properties
▶ Curry-Howard correspondence

469

Learning Outcome VI

6. Formalise properties and reason about programs

▶ Isabelle/HOL
▶ semantic equivalences
▶ decorated programs
▶ Floyd-Hoare logic, wlp
▶ Owicki-Gries, Rely-Guarantee

470

Learning Outcome VII

7. Apply basic principles for formalising concurrent programming
languages

▶ Guarded Command Language
▶ process algebra

(value-passing CCS and pure CCS)
▶ semantic equivalences
▶ Owicki-Gries, Rely-Guarantee

471

Learning Outcome VIII

8. Additional Outcomes

▶ structural induction
▶ substitution
▶ . . .

472

We covered A LOT

. . . but that’s only the tip of the iceberg

473

The Message I

Good language design?
• precise definition of what the language is

(so can communicate among the designers)
• technical properties

(determinacy, decidability of type checking, etc.)
• pragmatic properties

(usability in-the-large, implementability)

(that’s also an answer to LO1)

474

The Message II

What can you use semantics for?
• to understand a particular language

▶ what you can depend on as a programmer
▶ what you must provide as a compiler writer

• as a tool for language design:
▶ for clean design
▶ for expressing design choices, understanding language features and

how they interact
▶ for proving properties of a language, eg type safety, decidability of type

inference.
• as a foundation for proving properties of particular programs

verified software

475

Trend: Verified Software
• increasingly important
• “rough consensus and running code” (trial and error)

is not sufficient
• develop operational models of real-world languages/applications

• progress in verification makes it possible
build end-to-end verified systems

▶ formal semantics for (a large subset of C) [see M. Norrish]
▶ CompCert/CakeML: verified compilers

(full compiler verified in Coq/HOL4)
▶ seL4: high-assurance, high-performance operating system microkernel

(proofs in Isabelle/HOL)
▶ formal semantics for hardware (PPC, x86, ARM)

476

Are We Done

• more ‘standard’ features
▶ dependent types
▶ continuations
▶ lazy evaluation
▶ side effects

• more support for separation of concerns
▶ low-level features, such as memory models
▶ high-level features, such as broadcast

• more applications
▶ optimisations
▶ code generation

477

More Features – Dependent Types

• having “compile-time” types that depend on “run-time” values
• can avoid out-of-bounds errors

478

More Features – Dependent Types

example: typing Lists with Lengths

non-dependant type for list (similar to trees)

nil : IList
cons : int → IList → IList
hd : IList → int
tl : IList → IList
isnil : IList → bool

479

More Features – Dependent Types

Example: Typing Lists with Lengths

dependant type for list (carry around length)

nil : IList 0
cons : Πn:nat. int → (IList n) → (IList (succ n))
hd : Πn:nat. (IList (succ n)) → int
tl : Πn:nat. (IList (succ n)) → (IList n)
isnil :

480

More Features – Dependent Types
Example: typing lists with lengths

• using and checking dependent types

(fn n : nat ⇒ (fn l : IList(succ (succ n)) ⇒
(hd (succ n) l)+
(hd n (tl (succ n) l))

))

• propositions as dependent types
(Curry–Howard lens)

get : Πm : nat. Πn : nat. (Less m n) → (IList n) → int

481

More Feature – Hardware Model

Fundamental Question

What is the behaviour of memory?
• . . . at the programmer abstraction
• . . . when observed by concurrent code

482

More Feature – Hardware Model

First Model: Sequential Consistency

Multiple threads acting on a sequentially consistent (SC) shared
memory:

the result of any execution is the same as if the operations of
all the processors were executed in some sequential order, re-
specting the order specified by the program

[Lamport, 1979]

483

More Feature – Hardware Model

⟨(skip ∥ (l := 7 + !l) , {l 7→ 1}⟩ r // • + // • w // ⟨(skip ∥ (skip , {l 7→ 8}⟩

⟨(l := 1) ∥ (l := 7 + !l) , {l 7→ 0}⟩

w

55

r

))

⟨skip ∥ (l := 7 + 0) , {l 7→ 1}⟩
+

''
⟨(l := 1 + 0) ∥ (l := 7 + !l) , {l 7→ 0}⟩

+

55

r

))

⟨(l := 1) ∥ (l := 7 + 0) , {l 7→ 0}⟩

w

66

+

((

⟨skip ∥ (l := 7) , {l 7→ 1}⟩ w // ⟨skip ∥ skip , {l 7→ 7}⟩

⟨(l := 1 + !l) ∥ (l := 7 + !l) , {l 7→ 0}⟩

r

44

r

**

⟨(l := 1 + 0 ∥ (l := 7 + 0) , {l 7→ 0}⟩

+

55

+

))

⟨(l := 1) ∥ (l := 7) , {l 7→ 0}⟩

w

77

w

''
⟨(l := 1 + !l) ∥ (l := 7 + 0) , {l 7→ 0}⟩

r

55

+

))

⟨(l := 1 + 0) ∥ (l := 7) , {l 7→ 0}⟩

+

66

w

((

⟨(l := 1) ∥ skip , {l 7→ 7}⟩ w // ⟨skip ∥ skip , {l 7→ 1}⟩

⟨(l := 1 + !l) ∥ (l := 7) , {l 7→ 0}⟩

r

55

w

))

⟨(l := 1 + 0) ∥ skip , {l 7→ 7}⟩

+

77

⟨(l := 1 + !l) ∥ skip , {l 7→ 0}⟩ r // • + // • w // ⟨(skip ∥ (skip , {l 7→ 8}⟩

484

More Feature – Hardware Model

• implement naive mutual exclusion
• specify concepts such as “atomic”

(see GCL)
• but on x86 hardware you have these behaviours

▶ hardware busted?
▶ program bad?
▶ model is wrong?

SC is not a good model of x86 (or of Power, ARM, Sparc, Itanium. . .)

485

More Feature – Hardware Model
New problem?

No: IBM System 370/158MP in 1972, already non-SC

486

More Feature – Hardware Model

But still a research question

• mainstream architectures and languages are key interfaces
• . . . but it is been very unclear exactly how they behave

• more fundamentally:
▶ it has been (and in significant ways still is) unclear how we can specify

that precisely
▶ if we can do that, we can build on top:

explanation, testing, emulation, static/dynamic analysis,
model-checking, proof-based verification,. . .

487

More Features – Broadcast

Motivation:
model communication

• network protocols
• communication protocols
• . . .

488

Broadcast in CCS
α.P

α−→ P
P

α−→ P ′

P +Q
α−→ P ′

Q
α−→ Q′

P +Q
α−→ Q′

P
η−→ P ′

P |Q η−→ P ′|Q
P

c−→ P ′, Q
c̄−→ Q′

P |Q τ−→ P ′|Q′

Q
η−→ Q′

P |Q η−→ P |Q′

P
ℓ−→ P ′

P [f]
f(ℓ)−→ P ′[f]

P
ℓ−→ P ′

P\c ℓ−→ P ′\c
(c̸=ℓ̸=c̄)

P
ℓ−→ P ′

A
ℓ−→ P ′

(A
def
= P)

P
b♯1−→ P ′, Q

b?X−→

P |Q b♯1−→ P ′|Q

P
b♯1−→ P ′, Q

b♯2−→ Q′

P |Q b♯−→ P ′|Q′

P
b?X−→, Q

b♯2−→ Q′

P |Q b♯2−→ P |Q′

♯1◦♯2=♯ ̸= with
◦ ! ?

! !

? ! ?

489

Broadcast in CCS

• parallel composition associative, commutative?
• all operators are a congruence?

490

Case Study: AODV
Ad Hoc On-Demand Distance Vector Protocol

• routing protocol for wireless mesh networks
(wireless networks without wired backbone)

• ad hoc (network is not static)
• on-Demand (routes are established when needed)
• distance (metric is hop count)

• developed 1997–2001 by Perkins, Beldig-Royer and Das
(University of Cincinnati)

• one of the four protocols standardised by the IETF MANET working
group (IEEE 802.11s)

491

Case Study: AODV
Main Mechanism

• if route is needed
BROADCAST RREQ

• if node has information about a destination
UNICAST RREP

• if unicast fails or link break is detected
GROUPCAST RERR

• performance improvement via
intermediate route reply

492

Case Study: AODV
Formal Specification Language (Process Algebra)

493

Case Study: AODV
Specification

494

Case Study: AODV

Full specification of AODV (IETF Standard)

Specification details
• around 5 types and 30 functions
• around 120 lines of specification

(in contrast to 40 pages English prose)

Properties of AODV
route correctness ✓
loop freedom ✓ (for some interpretations)
route discovery ✗
packet delivery ✗

495

Final Oral Exam

• 6–10 November, 2021
• 30 minutes oral examination
• read the guidelines (available via course webpage)
• send through the signed statement in time

GOOD LUCK

496

Feedback

Please provide feedback

• types of possible feedback
▶ suggestions
▶ improvements

• send feedback
▶ SELT
▶ to me (orally, written)

497

The ‘Final’ Slide

• Q/A sessions
▶ Thursday, November 2 (11am-12pm),

Marie Reay room 5.02
▶ topics: all questions you prepare
▶ no questions, no session

• I hope you. . .
▶ had some fun (I had),

even despite the challenging times
▶ learnt something useful

498

COMP3610/6361 done – what’s next?

• COMP3630/6363 (S1 2024)
Theory of Computation

• COMP4011/8011 (S2 2022)
Special Topic: Software Verification using Proof Assistants

• Individual Projects/Honour’s Theses/PhD projects . . .
(potentially casual jobs)

499

Logic Summer School
December 04 – December 15, 2021

Lectures include
• Fundamentals of Metalogic

(John Slaney, ANU)
• Defining and Reasoning About Programming Languages

(Fabian Muehlboeck, ANU)
• Propositions and Types, Proofs and Programs

(Ranald Clouston, ANU)
• Gödel’s Theorem Without Tears

(Dominik Kirst, Ben-Gurion University)
• Foundations for Type-Driven Probabilistic Modelling

(Ohad Kammar, U Edinburgh)
• . . .

Registration is A$150

http://comp.anu.edu.au/lss
500

http://comp.anu.edu.au/lss

— THE END —

501

Section 27

Add-On
Program Algebras:

Floyd-Hoare Logic meets Regular Expressions

502

Motivation

• CCS and other process algebra yield algebraic expressions, e.g.

a.b.nil + c.nil

• they also give rise to algebraic (semantic) equalities, e.g.

a.nil + a.nil = a.nil

• but how does algebra relate to Hoare triples

503

Beyond Floyd-Hoare Logic

some ‘optimisations’ are not possible within Floyd-Hoare logic

{P} if b then c else c {Q}
{P} c {Q}

(trivially) unprovable in Floyd-Hoare logic

504

Trace Model – Intuition

a program can be interpreted as set of program runs/traces

sets of traces s0c1s1c2 . . . sn−1cn1sn

A ⊆ Σ× (Act× Σ)∗

non-deterministic choice A ∪B
sequential composition AB = {asb | xs ∈ A ∧ sb ∈ B}
iteration A∗ =

⋃
n≥0 = A0 ∪A1 ∪A2 . . .

skip 1 = Σ (all traces of length 0)
fail/abort 0 = ∅

505

Guarded Commands – Intuition

a program can be interpreted as set of guarded commands

sets of guarded strings α0c1α1c2 . . . αn−1cn1αn
(α, β, . . . Boolean expressions)

non-deterministic choice A ∪B
sequential composition AB = {aαb | xα ∈ A ∧ αb ∈ B}
iteration A∗ =

⋃
n≥0 = A0 ∪A1 ∪A2 . . .

skip 1 = {all Boolean expressions}
fail/abort 0 = ∅

506

Properties

• associativity: a(bc) = (ab)c

• neutrality: 1a = a = a1

• distributivity: (a+ b)c = ac+ bc
a(b+ c) = ab+ ac (?)

• absorption: 0a = 0 = a0

• iteration: (ab)∗a = a(ba)∗

507

Regular expressions

we know these rules from regular expressions, finite automata and
formal languages

508

Kleene Algebra (KA)

is the algebra of regular expressions
(traces/guarded commands without ‘states’)

Examples
• ab+ ba
{ab, ba}

• (ab)∗a = a(ba)∗

{a, aba, ababa, . . . }

• (a+ b)∗ = (a∗b)∗a∗

{all strings over a,b}

509

Regular Sets – Intuition

regular sets over Σ

non-deterministic choice (+, |) A ∪B
sequential composition AB = {ab | x ∈ A ∧ b ∈ B}
iteration A∗ =

⋃
n≥0 = A0 ∪A1 ∪A2 . . .

neutral 1 = {ε}
(language containing the empty word)

empty language 0 = ∅

510

Axioms of Kleene Algebra

A Kleene algebra is a structure (K,+, ·, 0, 1,∗) such that
• K is an idempotent semiring under +, ·, 0, 1

(a+ b) + c = a+ (b+ c) (a, ·b) · c = a · (b · c)
a+ b = b+ a a · 1 = 1 · a = a
a+ a = a a · 0 = 0 · a = 0
a+ 0 = a

a · (b+ c) = a · b+ a · c
(a+ b) · c = a · c+ b · c

• a∗b = least x such that b+ ax ≤ x

• ba∗ = least x such that b+ xa ≤ x

x ≤ y ⇔ x+ y = y
multiplication symbol is omitted

511

Characterising Iteration
• complete semiring/quantales (suprema exist)

a∗ = Σn≥0 a
n

supremum with respect to ≤

• Horn axiomatisation
▶ a∗b = least x such that b+ ax ≤ x:

1 + aa∗ ≤ a∗
b+ ax ≤ x ⇒ a∗b ≤ x

▶ ba∗ = least x such that b+ xa ≤ x:

1 + a∗a ≤ a∗
b+ ax ≤ x ⇒ ba∗ ≤ x

512

Models & Properties

regular expressions, traces and guarded strings form Kleene algebras

abstract laws: (ab)∗a ≤ a(ba)∗

(proof is a simple exercise)

applies to all models

guarded strings/commands have more structure (assertions)

513

Kleene Algebra with Tests (KAT)

A Kleene algebra with tests is a structure (K,B,+, ·,∗ ,¬, 0, 1), such that
• (K,+, ·,∗ , 0, 1) is a Kleene algebra
• (B,+, ·,¬, 0, 1) is a Boolean algebra
• B ⊆ K

• a, b, c, . . . range over K
• p, q, r, . . . range over B

514

Kleene Algebra with Tests (KAT)

+, ·, 0, 1 serve double duty
• applied to programs, denote choice, composition, fail, and skip, resp.
• applied to tests, denote disjunction, conjunction, falsity, and truth,

resp.
• these usages do not conflict

pq = p ∧ q p+ q = p ∨ q

515

Models

• Trace models
K: sets of traces s0c1s1c2 . . . sn−1cn1sn
B: sets of traces of length 0

• Language-theoretic models K: sets of guarded strings
α0c1α1c2 . . . αn−1cn1

αn
B: atoms of a finite free Boolean algebra

516

Modelling Programs
[Fischer & Ladner 79]

• a ; b = ab

• if p then a else c = pa+ ¬pc
• while p do c = (pc)∗¬p

517

Floyd-Hoare Logic vs KAT

Theorem
KAT subsumes propositional Floyd-Hoare logic (PHL)
(Floyd-Hoare logic without assignment rule)

{p} c {q} modeled by pc = pcq (or pc¬q = 0, or pc¬q ≤ 0)

518

Floyd-Hoare logic

{p} a {q} {q} b {r}
{p} ab {r} pa¬q = 0 ∧ qb¬r = 0 =⇒ pab¬r = 0

{p ∧ r} a {q} {p ∧ ¬r} b {q}
{p} if r then a else b {q} pra¬q = 0 ∧ p¬rb¬q = 0 =⇒ p(ra+ ¬rb)¬q = 0

{p ∧ r} a {p}
{p} while r do a {¬r ∧ p} pra¬p = 0 =⇒ p(ap)∗¬(¬rp) = 0

519

Crucial Theorems

Theorem
These are all theorems of KAT
(proof is an exercise)

Theorem (Completeness Theorem)
All valid rules of the form

{p1} c1 {q1} . . . {pn} cn {qn}
{p} c {q}

are derivable in KAT (not so in PDL)

520

Advantages of Kleene Algebra

• unifying approach
• equational reasoning + Horn clauses

some decidability & automation
• but, missing out assignment rule of Floyd-Hoare logic

521

Other Applications of KA(T)
There are more applications

• automata and formal languages
▶ regular expressions

• relational algebra
• program logic and verification

▶ dynamic Logic
▶ program analysis
▶ optimisation

• design and analysis of algorithms
▶ shortest paths
▶ connectivity

• others
▶ hybrid systems
▶ . . .

522

Rely-Guarantee Reasoning
Hoare triple

{p} c {q} ⇔ pc¬q = 0

But what about {P,R} c {G,Q}?

{p, aR} c {bG, q} ⇔ {p} aR ∥ c {q} ∧ c ≤ bG

⇔ p(aR ∥ c)¬q = 0 ∧ c ≤ bG

needs algebra featuring parallel (we have seen one)
• R ∥ (S + T) = R ∥ S +R ∥ T
• R ∥ (S · T) = (R ∥ S) · (R ∥ T)
• R ∥ (S ∥ T) = (R ∥ S) ∥ (R ∥ T)

523

Rely-Guarantee Reasoning
Hoare triple

{p} c {q} ⇔ pc¬q = 0

But what about {P,R} c {G,Q}?

{p, aR} c {bG, q} ⇔ {p} aR ∥ c {q} ∧ c ≤ bG

⇔ p(aR ∥ c)¬q = 0 ∧ c ≤ bG

needs algebra featuring parallel (we have seen one)
• R ∥ (S + T) = R ∥ S +R ∥ T
• R ∥ (S · T) = (R ∥ S) · (R ∥ T)
• R ∥ (S ∥ T) = (R ∥ S) ∥ (R ∥ T)

524

	Admin
	Lecturer
	CoLecturer and Tutors
	Plan/Schedule
	About the Course
	Academic Integrity

	Introduction
	Foundational Knowledge of Disciplines
	Programming Languages

	IMP and its Operational Semantics
	Types
	Proofs (Structural Induction)
	Functions
	Typing for Call-By-Value
	Recursion
	Data
	Exceptions
	Subtyping
	(Imperative) Objects Case Study
	Implementing IMP
	IMP in Isabelle/HOL
	Big-step semantics (in Isabelle/HOL)
	Are big and small-step semantics equivalent?

	Semantic Equivalence
	Denotational Semantics
	Partial and Total Correctness
	Axiomatic Semantics
	Weakest Preconditions
	Concurrency
	The Process Algebra CCS
	Pure CCS
	Semantic Equivalences
	The Owicki-Gries Method
	Rely-Guarantee
	Conclusion
	
	

	Add-On Program Algebras: Floyd-Hoare Logic meets Regular Expressions

