
COMP3610/6361
Principles of Programming Languages

Peter Höfner

Jul 26, 2023

1

Section 1

Introduction

2

Foundational Knowledge of Disciplines
Mechanical Engineering
Students learn about torque

d(r × ω)

dt
= r × dω

dt
+

dr

dt
× ω

Figure: Sydney Harbour Bridge under construction [NMA]

3

Foundational Knowledge of Disciplines
Electrical Engineering / Astro Physics
Students learn about complex impedance

ejωt = cos(ωt) + j sin(ωt)

Figure: Geomagnetic Storm alters Earth’s Magnetic field [Wikipedia]

4

Foundational Knowledge of Disciplines
Civil Engineering / Surveying
Students learn about trigonometry

sin(θ + ϕ) = sin θ cosϕ+ cos θ sinϕ

Figure: Surveying Swan River, WA [Wikipedia]

5

Foundational Knowledge of Disciplines
Software Engineering / Computer Science
Students learn about ???

Figure: First Ariane 5 Flight, 1996 [ESA] Figure: Heartbleed, 2014 [Wikipedia]

6

Programming Languages

Programming Languages: basic tools of computing
• what are programming languages?
• do they provide basic laws of software engineering?
• do they allow formal reasoning in the sense of above laws?

7

Constituents

• the syntax of programs:
the alphabet of symbols and a description of the well-formed
expressions, phrases, programs, etc.

• the semantics:
the meaning of programs, or how they behave

• often also the pragmatics:
description and examples of how the various features of the
language are intended to be used

8

Use of Semantics

• understand a particular language
what you can depend on as a programmer;
what you must provide as a compiler writer

• as a tool for language design:
▶ clear language design
▶ express design choices, understand language features and interaction
▶ for proving properties of a language, eg type safety, decidability of type

inference.
• prove properties of particular programs

9

Style of Description (Syntax and Semantics)

• natural language
• definition ‘by’ compiler behaviour
• mathematically

10

Introductory Examples: C

In C, if initially x has value 3, what is the value of the following?

x++ + x++ + x++ + x++

Is it different to the following?

x++ + x++ + ++x + ++x

11

Introductory Examples: C♯

In C♯, what is the output of the following?

delegate i n t IntThunk () ;
c lass C {

p u b l i c s t a t i c vo id Main () {
IntThunk [] funcs = new IntThunk [1 1] ;
f o r (i n t i = 0 ; i <= 10; i ++)
{

funcs [i] = delegate () { r e t u r n i ; } ;
}
foreach (IntThunk f i n funcs)
{

System . Console . Wr i teL ine (f ()) ;
}

}
}

12

Introductory Examples: JavaScript

f u n c t i o n bar (x) {
r e t u r n f u n c t i o n () {

var x = x ;
r e t u r n x ;

} ;
}

var f = bar (2 0 0) ;

f ()

13

About This Course

• background: mathematical description of syntax by means of formal
grammars, e.g. BNF (see COMP1600)
clear, concise and precise

• aim I: mathematical definitions of semantics/behaviour
• aim II: understand principles of program design

(for a toy language)
• aim III: reasoning about programs

14

Use of formal, mathematical semantics

Implementation issues
Machine-independent specification of behaviour. Correctness of program
analyses and optimisations.

Language design
Can bring to light ambiguities and unforeseen subtleties in programming
language constructs. Mathematical tools used for semantics can suggest
useful new programming styles. (E.g. influence of Church’s lambda
calculus (circa 1934) on functional programming).

Verification
Basis of methods for reasoning about program properties and program
specifications.

15

Styles of semantics

Operational
Meanings for program phrases defined in terms of the steps of
computation they can take during program execution.

Denotational
Meanings for program phrases defined abstractly as elements of some
suitable mathematical structure.

Axiomatic
Meanings for program phrases defined indirectly via the axioms and
rules of some logic of program properties.

16

	IMP and its Operational Semantics

