
COMP3610/636
Principles of Programming Languages

Peter Höfner

Jul 20, 2023

1

Section 3

Types

2

Type systems

• describe when programs make sense
• prevent certain kinds of errors
• structure programs
• guide language design

Ideally, well-typed programs do not get stuck.

3

Run-time errors
Trapped errors
Cause execution to halt immediately.
Examples: jumping to an illegal address, raising a top-level exception.
Innocuous?

Untrapped errors
May go unnoticed for a while and later cause arbitrary behaviour.
Examples: accessing data past the end of an array, security loopholes in
Java abstract machines.
Insidious!

Given a precise definition of what constitutes an untrapped run-time
error, then a language is safe if all its syntactically legal programs cannot
cause such errors. Usually, safety is desirable. Moreover, we’d like as
few trapped errors as possible.

4

Formal type systems

We define a ternary relation Γ ⊢ E :T

expression E has type T , under assumptions Γ on the types of locations
that may occur in E.

For example (according to the definition coming up):
• {} ⊢ if true then 2 else 3 + 4 : int
• l1 : intref ⊢ if !l1 ≥ 3 then !l1 else 3 : int
• {} ⊬ 3 + true : T for any type T

• {} ⊬ if true then 3 else true : int

5

Types of IMP

Types of expressions

T ::= int | bool | unit

Types of locations

Tloc ::= intref

We write T and Tloc for the sets of all terms of these grammars.
• Γ ranges over TypeEnv, the finite partial function from L ⇀ Z
• notation: write l1 : intref, . . . , lk : intref instead of
{l1 7→ intref, . . . , lk 7→ intref}

6

Type Judgement (1 of 3)

(int) Γ ⊢ n : int if n ∈ Z

(bool) Γ ⊢ b :bool if b ∈ B = {true, false}

(op+)
Γ ⊢ E1 : int Γ ⊢ E2 : int

Γ ⊢ E1 + E2 : int

(op≥)
Γ ⊢ E1 : int Γ ⊢ E2 : int

Γ ⊢ E1 ≥ E2 :bool

(if)
Γ ⊢ E1 :bool Γ ⊢ E2 :T Γ ⊢ E3 :T

Γ ⊢ if E1 then E2 else E3 :T

7

Type Judgement – Example

Prove that {} ⊢ if false then 2 else 3 + 4 : int.

{} ⊢ false :bool
(BOOL)

{} ⊢ 2 : int
(INT)

(INT)
{} ⊢ 3 : int {} ⊢ 4 : int

(INT)

{} ⊢ 3 + 4 : int
(OP+)

{} ⊢ if false then 2 else 3 + 4 : int
(IF)

8

Type Judgement (2 of 3)

(assign)
Γ(l) = intref Γ ⊢ E : int

Γ ⊢ l := E :unit

(deref)
Γ(l) = intref
Γ ⊢ !l : int

Here, (for the moment) Γ(l) = intref means l ∈ dom(Γ)

9

Type Judgement (3 of 3)

(skip) Γ ⊢ skip :unit

(seq)
Γ ⊢ E1 :unit Γ ⊢ E2 :T

Γ ⊢ E1 ; E2 :T

(while)
Γ ⊢ E1 :bool Γ ⊢ E2 :unit
Γ ⊢ while E1 do E2 :unit

10

Type Judgement – Properties

Theorem (Progress)
If Γ ⊢ E :T and dom(Γ) ⊆ dom(s) then either E is a value or there exist
E′ and s′ such that ⟨E , s⟩ −→ ⟨E′ , s′⟩.

Theorem (Type Preservation)
If Γ ⊢ E :T , dom(Γ) ⊆ dom(s) and ⟨E , s⟩ −→ ⟨E′ , s′⟩ then Γ ⊢ E′ :T
and dom(Γ) ⊆ dom(s′).

11

Type Safety

Main result: Well-typed programs do not get stuck.

Theorem (Type Safety)
If Γ ⊢ E :T , dom(Γ) ⊆ dom(s), and ⟨E , s⟩ −→∗ ⟨E′ , s′⟩ then either E′ is
a value with Γ ⊢ E′ :T , or there exist E′′, s′′ such that
⟨E′ , s′⟩ −→ ⟨E′′ , s′′⟩, Γ ⊢ E′′ :T and dom(Γ) ⊆ dom(s′′).

Here, −→∗ means arbitrary many steps in the transition system.

12

Type checking, typeability, and type inference

Type checking problem for a type system:
given Γ, E and T , is Γ ⊢ E :T derivable?

Type inference problem:
given Γ and E, find a type T such that Γ ⊢ E :T is derivable, or show
there is none.

Type inference is usually harder than type checking, for a type T needs
to be computed.

For our type system, though, both are easy.

13

Properties

Theorem (Type inference)
Given Γ and E , one can find T such that Γ ⊢ E :T , or show that there is
none.

Theorem (Decidability of type checking)
Given Γ, E and T , one can decide whether Γ ⊢ E :T holds.

Moreover

Theorem (Uniqueness of typing)
If Γ ⊢ E :T and Γ ⊢ E :T ′ then T = T ′.

14

	Types

