
COMP3610/6361
Principles of Programming Languages

Peter Höfner

Aug 22, 2023

1



Section 10

Subtyping

2



Motivation (I)

• so far we carried around types explicitly to avoid ambiguity of types
• programming languages use polymorphisms to allow different types
• some of it can be captured by subtyping
• common in all object-oriented languages
• subtyping is cross-cutting extension, interacting with most other

language features

3



Polymorphism

Ability to use expressions at many different types
• ad-hoc polymorphism (overloading),

e.g. + can be used to add two integers and two reals,
see Haskell type classes

• Parametric Polymorphism (e.g. ML or Isabelle)
write a function that for any type α takes an argument of type α list
and computes its length (parametric – uniform in whatever α is)

• Subtype polymorphism – as in various OO languages. See here.

4



Motivation (II)

(app)
Γ ⊢ E1 :T → T ′ Γ ⊢ E2 :T

Γ ⊢ E1 E2 :T ′

we cannot type

Γ ⊬ (fn x : {p : int} ⇒ #p x) {p = 3, q = 4} : int
Γ ⊬ (fn x : int ⇒ x) 3 : int (assuming 3 is of type nat)

even though the function gets a ‘better’ argument, with more structure

5



Subsumption

better: any term of type {p : int, q : int} can be used wherever a term of
type {p : int} is expected.

Introduce a subtyping relation between types
• T is a subtype of T ′ (a T is useful in more contexts than a T ′ )

T <: T ′

• should include {p : int, q : int} <: {p : int} <: {}
• introduce subsumption rule

(sub)
Γ ⊢ E :T T <: T ′

Γ ⊢ E :T ′

6



Example

x : {p:int} ⊢ x :{p:int}
(var)

x : {p:int} ⊢ #p x : int
(recordproj)

{} ⊢ (fn x : {p:int} ⇒ #p x) :{p:int} → int
(fn)

{} ⊢ 3 : int
(var)

{} ⊢ 4 : int
(var)

{} ⊢ {p=3, q=4} :{p:int, q:int}
(record) {p:int, q:int} <: {p:int}

{} ⊢ {p=3, q=4} :{p:int}
(sub)

{} ⊢ (fn x : {p:int} ⇒ #p x) {p=3, q=4} : int
(app)

7



The Subtype Relation <:

(s-refl) T <: T

(s-trans)
T <: T ′ T ′ <: T ′′

T <: T ′′

the subtype order is not anti-symmetric – it is a preorder

8



Subtyping – Records

(s-rcd1) {lab1:T1, . . . , labk:Tk, labk+1:Tk+1, .., labk+n:Tk+n}
<: {lab1:T1, . . . , labk:Tk}

e.g. {p:int, q:int} <: {p:int}

(s-rcd2)
T1 <: T ′

1 . . . Tk <: T ′
k

{lab1:T1, . . . , labk:Tk} <: {lab1 : T ′
1, . . . , labk:T

′
k}

(s-rcd3)
π a permutation of 1, . . . , k

{lab1:T1, . . . , labk:Tk} <: {labπ(1) : Tπ(1), . . . , labπ(k):Tπ(k)}

9



Subtyping – Functions (I)

(s-fn)
T ′
1 <: T1 T2 <: T ′

2

T1 → T2 <: T ′
1 → T ′

2

• contravariant on the left of →
• covariant on the right of →

10



Subtyping – Functions (II)

If f : T1 → T2 then
– f can use any argument which is a subtype of T1;
– the result of f can be regarded as any supertype of T2

Example: let f = (fn x : {p:int} ⇒ {p=#p x, q=42})
we have

Γ ⊢ f :{p:int} → {p:int, q:int}
Γ ⊢ f :{p:int} → {p:int}
Γ ⊢ f :{p:int, q:int} → {p:int, q:int}
Γ ⊢ f :{p:int, q:int} → {p:int}

11



Subtyping – Functions (III)

Example: let f = (fn x : {p:int, q:int} ⇒ {p=(#p x) + (#q x)})

we have

Γ ⊢ f :{p:int, q:int} → {p:int}
Γ ⊬ f :{p:int} → T

Γ ⊬ f :T → {p:int, q:int}

12



Subtyping – Top and Bottom

(s-top) T <: Top

• not strictly necessary, but convenient
• corresponds to Object found in most OO languages

Does it make sense to have a bottom type Bot?
(see B. Pierce for an answer)

13



Subtyping – Products and Sums

Products

(s-pair)
T1 <: T ′

1 T2 <: T ′
2

T1 ∗ T2 <: T ′
1 ∗ T ′

2

Sums

Exercise

14



Subtyping – References (I)

Does one of the following make sense?

T <: T ′

T ref <: T ′ ref
T ′ <: T

T ref <: T ′ ref

No

15



Subtyping – References (II)

(s-ref)
T <: T ′ T ′ <: T

T ref <: T ′ ref

• ref needs to be an invariant
• a more refined analysis of references is possible

(using Source – capability to read –, and Sink – capability to write)

Example:
{a:int, b:bool} ref <: {b:bool, a:int} ref

16



Typing – Remarks

Semantics
no change required (we did not change the grammar for expressions)

Properties
Type preservation, progress and type safety hold

Implementation
Type inference is more complicated; good run-time is also tricky due to
re-ordering

17



Down Casts

The rule (sub) permits up-casting. How down-casting?

E ::= . . . | (T )E

Typing rule
Γ ⊢ E :T ′

Γ ⊢ (T )E :T

• requires dynamic type checking
(verify type safety of a program at runtime)

• gives flexibility, at the cost of potential run-time errors
• better handled by parametric polymorphism, a.k.a. generics (for

example Java)

18


	Exceptions

