COMP3610/6361
 Principles of Programming Languages

Peter Höfner

Sep 19, 2023

Section 14

Semantic Equivalence

Operational Semantics (Reminder)

- describe how to evaluate programs
- a valid program is interpreted as sequences of steps
- small-step semantics
- individual steps of a computation
- more rules (compared to big-step)
- allows to reason about non-terminating programs, concurrency, ...
- big-step semantics
- overall results of the executions 'divide-and-conquer manner'
- can be seen as relations
- fewer rules, simpler proofs
- no non-terminating behaviour
- allow non-determinism

Motivation

When are two programs considered the 'same'

- compiler construction
- program optimisation
- refinement

CakeML

Equivalence: Intuition I

$l:=!l+2 \quad \stackrel{?}{\simeq} \quad l:=!l+(1+1) \quad \stackrel{?}{\simeq} \quad l:=!l+1 ; l:=!l+1$

- are these expressions the same
- in what sense
- different abstract syntax trees
- different reduction sequences
- in any (sequential) program one could replace one by the other without affecting the result

Note: mathematicians often take these equivalences for granted

Equivalence: Intuition II

$l:=0 ; 4 \quad \stackrel{?}{\sim} \quad l:=1 ; 3+!l$

- produce same result (for all stores)
- cannot be replaced in an arbitrary context C

For example, let $C[-]={ }_{-}+!l$

$$
\begin{gathered}
C[l:=0 ; 4]=(l:=0 ; 4)+!l \\
\\
\text { بk } \\
C[l:=1 ; 3+!l]=(l:=1 ; 3+!l)+!l
\end{gathered}
$$

On the other hand $(l:=!l+2) \simeq(l:=!l+1 ; l:=!l+1)$

Equivalence: Intuition III

From particular expressions to general laws

- $E_{1} ;\left(E_{2} ; E_{3}\right) \stackrel{?}{\sim}\left(E_{1} ; E_{2}\right) ; E_{3}$
- (if E_{1} then E_{2} else $\left.E_{3}\right) ; E \stackrel{?}{\sim}$ if E_{1} then $E_{2} ; E$ else $E_{3} ; E$
- E; (if E_{1} then E_{2} else $\left.E_{3}\right) \stackrel{?}{\sim}$ if E_{1} then $E ; E_{2}$ else $E ; E_{3}$
- $E ;\left(\right.$ if E_{1} then E_{2} else $\left.E_{3}\right) \stackrel{?}{\sim}$ if $E ; E_{1}$ then E_{2} else E_{3}

Exercise

let val x : int ref $=$ ref 0 in $(\mathbf{f n} y: \operatorname{int} \Rightarrow(x:=!x+y) ;!x)$ end
$\stackrel{?}{\sim}$
let val $x:$ int ref $=\operatorname{ref} 0$ in $(\mathbf{f n} y: \operatorname{int} \Rightarrow(x:=!x-y) ;(0-!x))$ end

Exercise II

Extend our language with location equality

$$
\begin{aligned}
& \text { op }:=\ldots \mid= \\
& (\mathrm{op}=) \quad \frac{\Gamma \vdash E_{1}: T \text { ref } \quad \Gamma \vdash E_{2}: T \text { ref }}{\Gamma \vdash E_{1}=E_{2}: \text { bool }} \\
& (\mathrm{op}=1) \quad\left\langle l=l^{\prime}, s\right\rangle \longrightarrow\langle b, s\rangle \quad \text { if } b=\left(l=l^{\prime}\right) \\
& (\mathrm{op}=2) \\
&
\end{aligned}
$$

Exercise II

$$
f \stackrel{?}{\simeq} g
$$

for

$$
\begin{aligned}
f= & \text { let val } x: \text { int ref }=\text { ref } 0 \text { in } \\
& \text { let val } y: \text { int ref }=\text { ref } 0 \text { in } \\
& (\text { fn } z: \text { int ref } \Rightarrow \text { if } z=x \text { then } y \text { else } x) \\
& \text { end end }
\end{aligned}
$$

and

$$
\begin{aligned}
g= & \text { let val } x: \text { int ref }=\text { ref } 0 \text { in } \\
& \text { let val } y: \text { int ref }=\text { ref } 0 \text { in } \\
& (\mathbf{f n} z: \text { int ref } \Rightarrow \text { if } z=y \text { then } y \text { else } x) \\
& \text { end end }
\end{aligned}
$$

Exercise II (cont'd)

$$
f \stackrel{?}{\sim} g \quad \text { NO }
$$

Consider $C[-]=t_{-}$with

$$
\begin{aligned}
t= & (\mathbf{f n} h:(\text { int ref } \rightarrow \text { int ref }) \Rightarrow \\
& \text { let val } z: \text { int ref }=\text { ref } 0 \text { in } h(h z)=h z \text { end })
\end{aligned}
$$

$$
\begin{aligned}
& \langle t f, s\rangle \longrightarrow^{*} ? \\
& \langle t g, s\rangle \longrightarrow^{*} ?
\end{aligned}
$$

A 'good' notion of semantic equivalence

We might

- understand what a program is
- prove that some particular expressions to be equivalent (e.g. efficient algorithm vs. clear specification)
- prove the soundness of general laws for equational reasoning about programs
- prove some compiler optimisations are sound (see CakeML or CertiCos)
- understand the differences between languages

What does 'good' mean?

1. programs that result in observably-different values (for some store) must not be equivalent

$$
\begin{aligned}
& \left(\exists s, s_{1}, s_{2}, v_{1}, v_{2}\right. \\
& \quad\left\langle E_{1}, s\right\rangle \longrightarrow^{*}\left\langle v_{1}, s_{1}\right\rangle \wedge \\
& \quad\left\langle E_{2}, s\right\rangle \longrightarrow^{*}\left\langle v_{2}, s_{2}\right\rangle \wedge \\
& \left.\quad v_{1} \neq v_{2}\right) \\
& \Rightarrow \\
& E_{1} \nsim E_{2}
\end{aligned}
$$

2. programs that terminate must not be equivalent to programs that do not terminate

What does 'good' mean?

3. \simeq must be an equivalence relation, i.e.

$$
\begin{array}{ll}
\text { reflexivity } & E \simeq E \\
\text { symmetry } & E_{1} \simeq E_{2} \Rightarrow E_{2} \simeq E_{1} \\
\text { transitivity } & E_{1} \simeq E_{2} \wedge E_{2} \simeq E_{3} \Rightarrow E_{1} \simeq E_{3}
\end{array}
$$

4. \simeq must be a congruence, i.e,
if $E_{1} \simeq E_{2}$ then for any context C we must have $C\left[E_{1}\right] \simeq C\left[E_{2}\right]$
(for example, $\left(E_{1} \simeq E_{2}\right) \Rightarrow\left(E_{1} ; E \simeq E_{2} ; E\right)$)
5. \simeq should relate as many programs as possible

- an equivalence relation that is a congruence is sometimes called congruence relation
- this semantic equivalence, is called observable operational or contextual equivalence
- congruence proofs are often tedious, and incredible hard when it comes to recursion

Semantic Equivalence for (simple) Typed IMP

Definition

$E_{1} \simeq_{\Gamma}^{T} E_{2}$ iff for all stores s with $\operatorname{dom}(\Gamma) \subseteq \operatorname{dom}(s)$ we have

$$
\Gamma \vdash E_{1}: T \text { and } \quad \Gamma \vdash E_{2}: T,
$$

and either
(i) $\left\langle E_{1}, s\right\rangle \longrightarrow^{\omega}$ and $\left\langle E_{2}, s\right\rangle \longrightarrow^{\omega}$, or
(ii) for some v, s^{\prime} we have $\left\langle E_{1}, s\right\rangle \longrightarrow^{*}\left\langle v, s^{\prime}\right\rangle$ and $\left\langle E_{2}, s\right\rangle \longrightarrow^{*}\left\langle v, s^{\prime}\right\rangle$.
$\longrightarrow{ }^{\omega}$: infinite sequence
\longrightarrow : finite sequence (reflexive transitive closure)

Justification

Part (ii) requires same value v and same store s^{\prime}. If a program generates different stores, we can distinguish them using contexts:

- If $T=$ unit then $C[-]={ }_{-} ;!l$
- If $T=$ bool then $C[-]=$ if ${ }_{-}$then $!l$ else $!l$
- If $T=$ int then $C[-]=\left(l_{1}:={ }_{-} ;!\right)$

Equivalence Relation

Theorem
The relation \simeq_{Γ}^{T} is an equivalence relation.
Proof.
trivial

Congruence for (simple) Typed IMP

contexts are:

$$
\begin{aligned}
& C[-]::={ }_{-} \text {op } E_{2} \mid E_{1} \text { op _ } \mid \\
& \text { if }{ }_{-} \text {then } E_{2} \text { else } E_{3} \\
& \text { if } E_{1} \text { then else } E_{3} \text { | } \\
& \text { if } E_{1} \text { then } E_{2} \text { else }{ }_{-} \\
& l:=\text { - } \mid \\
& { }_{-} ; E_{2} \mid E_{1} \text {; } \\
& \text { while _ do } E_{2} \mid \text { while } E_{1} \text { do _ }
\end{aligned}
$$

Definition

The relation \simeq_{Γ}^{T} has the congruence property if, for all E_{1} and E_{2}, whenever $E_{1} \simeq_{\Gamma}^{T} E_{2}$ we have for all C and T^{\prime}, if $\Gamma \vdash C\left[E_{1}\right]: T^{\prime}$ and $\Gamma \vdash C\left[E_{2}\right]: T^{\prime}$ then

$$
C\left[E_{1}\right] \simeq_{\Gamma}^{T^{\prime}} C\left[E_{2}\right]
$$

Congruence Property

Theorem (Congruence for (simple) typed IMP)
The relation \simeq_{Γ}^{T} has the congruence property.

Proof.

By case distinction, considering all contexts C.
For each context C (and arbitrary expression E and store s) consider the possible reduction sequence

$$
\langle C[E], s\rangle \longrightarrow\left\langle E_{1}, s_{1}\right\rangle \longrightarrow\left\langle E_{2}, s_{2}\right\rangle \longrightarrow \ldots
$$

and deduce the behaviour of E :

$$
\langle E, s\rangle \longrightarrow\left\langle\hat{E}_{1}, s_{1}\right\rangle \longrightarrow \ldots
$$

Use $E \simeq_{\Gamma}^{T} E^{\prime}$ find a similar reduction sequence of E^{\prime} and use the reduction rules to construct a sequence of $C\left[E^{\prime}\right]$.

Proof of Congruence Property

Case $C=\left(l:={ }_{-}\right)$
Suppose $E \simeq_{\Gamma}^{T} E^{\prime}, \Gamma \vdash l:=E: T^{\prime}$ and $\Gamma \vdash l:=E^{\prime}: T^{\prime}$.
By examination of the typing rule, we have $T=$ int and $T^{\prime}=$ unit. To show $(l:=E) \simeq_{\Gamma}^{T^{\prime}}\left(l:=E^{\prime}\right)$ we have to show that for all stores s if $\operatorname{dom}(\Gamma) \subseteq \operatorname{dom}(s)$ then

- $\Gamma \vdash l:=E: T^{\prime}$, (obvious)
- $\Gamma \vdash l:=E^{\prime}: T^{\prime}$,(obvious)
- and either
(i) $\langle l:=E, s\rangle \longrightarrow^{\omega}$ and $\left\langle l:=E^{\prime}, s\right\rangle \longrightarrow^{\omega}$
(ii) for some v, s^{\prime} we have $\langle l:=E, s\rangle \longrightarrow^{*}\left\langle v, s^{\prime}\right\rangle$ and

$$
\left\langle l:=E^{\prime}, s\right\rangle \longrightarrow^{*}\left\langle v, s^{\prime}\right\rangle .
$$

Proof of Congruence Property

Subcase $\langle l:=E, s\rangle \longrightarrow^{\omega}$
That is

$$
\langle l:=E, s\rangle \longrightarrow\left\langle E_{1}, s_{1}\right\rangle \longrightarrow\left\langle E_{2}, s_{2}\right\rangle \longrightarrow \ldots
$$

All these must be instances of Rule (assign2), with

$$
\langle E, s\rangle \longrightarrow\left\langle\hat{E}_{1}, s_{1}\right\rangle \longrightarrow\left\langle\hat{E}_{2}, s_{2}\right\rangle \longrightarrow \ldots
$$

and $E_{1}=\left(l:=\hat{E}_{1}\right), E_{2}=\left(l:=\hat{E}_{2}\right), \ldots$
By $E \simeq \simeq_{\Gamma}^{T} E^{\prime}$ there is an infinite reduction sequence of $\left\langle E^{\prime}, s\right\rangle$. Using Rule (assign2) there is an infinite reduction sequence of $\left\langle l:=E^{\prime}, s\right\rangle$.

We made the proof simple by staying in a deterministic language with unique derivation trees.

Proof of Congruence Property

Subcase $\neg\left(\langle l:=E, s\rangle \longrightarrow^{\omega}\right)$

That is

$$
\langle l:=E, s\rangle \longrightarrow\left\langle E_{1}, s_{1}\right\rangle \longrightarrow\left\langle E_{2}, s_{2}\right\rangle \longrightarrow \ldots \longrightarrow\left\langle E_{k}, s_{k}\right\rangle \nrightarrow
$$

All these must be instances of Rule (assign2), except the last step which is an instance of (assign1)

$$
\langle E, s\rangle \longrightarrow\left\langle\hat{E}_{1}, s_{1}\right\rangle \longrightarrow\left\langle\hat{E}_{2}, s_{2}\right\rangle \longrightarrow \ldots \longrightarrow\left\langle\hat{E}_{k-1}, s_{k-1}\right\rangle
$$

and $E_{1}=\left(l:=\hat{E}_{1}\right), E_{2}=\left(l:=\hat{E}_{2}\right), \ldots, E_{k-1}=\left(l:=\hat{E}_{k-1}\right)$ and $\hat{E}_{k-1}=n, E_{k}=\mathbf{s k i p}$ and $s_{k}=s_{k-1}+\{l \mapsto n\}$, for some n.

Proof of Congruence Property

Subcase $\neg\left(\langle l:=E, s\rangle \longrightarrow^{\omega}\right)$ (cont'd)

Hence there is some n and s_{k-1} such that

$$
\langle E, s\rangle \longrightarrow^{*}\left\langle n, s_{k-1}\right\rangle \quad \text { and } \quad\langle l:=E, s\rangle \longrightarrow\left\langle\mathbf{s k i p}, s_{k-1}+\{l \mapsto n\}\right\rangle .
$$

By $E \simeq_{\Gamma}^{T} E^{\prime}$ we have $\left\langle E^{\prime}, s\right\rangle \longrightarrow^{*}\left\langle n, s_{k-1}\right\rangle$.
Using Rules (assign2) and (assign1)

$$
\left\langle l:=E^{\prime}, s\right\rangle \longrightarrow^{*}\left\langle l:=n, s_{k-1}\right\rangle \rightarrow\left\langle\mathbf{s k i p}, s_{k-1}+\{l \mapsto n\}\right\rangle .
$$

Congruence Proofs

Congruence proofs are

- tedious
- long
- mostly boring (up to the point where they brake)
- error prone
- recursion is often the killer case

There are dozens of different semantic equivalences (and each requires a proof)

Back to Examples

- $1+1 \simeq_{\Gamma}^{\text {int }} 2$ for any Γ
- $(l:=0 ; 4) \not \nsim_{\Gamma}^{\text {int }}(l:=1 ; 3+!l)$ for any Γ
- $(l:=!l+1) ;(l:=!l+1) \simeq_{\Gamma}^{\text {unit }}(l:=!l+2)$ for any Γ including l : intref

General Laws

Conjecture

$E_{1} ;\left(E_{2} ; E_{3}\right) \simeq_{\Gamma}^{T}\left(E_{1} ; E_{2}\right) ; E_{3}$
for any Γ, T, E_{1}, E_{2} and E_{3} such that $\Gamma \vdash E_{1}:$ unit, $\Gamma \vdash E_{2}:$ unit and $\Gamma \vdash E_{3}: T$.

Conjecture
$\left(\left(\right.\right.$ if E_{1} then E_{2} else $\left.\left.E_{3}\right) ; E\right) \simeq_{\Gamma}^{T}\left(\right.$ if E_{1} then $E_{2} ; E$ else $\left.E_{3} ; E\right)$ for any $\Gamma, T, E, E_{1}, E_{2}$ and E_{3} such that $\Gamma \vdash E_{1}$: bool, $\Gamma \vdash E_{2}$: unit, $\Gamma \vdash E_{3}:$ unit, and $\Gamma \vdash E: T$.

Conjecture

$\left(E ;\left(\right.\right.$ if E_{1} then E_{2} else $\left.\left.E_{3}\right)\right) \not 千_{\Gamma}^{T}\left(\right.$ if E_{1} then $E ; E_{2}$ else $\left.E ; E_{3}\right)$

General Laws

Suppose $\Gamma \vdash E_{1}$: unit and $\Gamma \vdash E_{2}$: unit.
When is $E_{1} ; E_{2} \simeq{ }_{\Gamma}^{\text {unit }} E_{2} ; E_{1}$?

A Philosophical Question

What is a typed expression $\Gamma \vdash E: T$?
for example l : intref \vdash if $!l \geq 0$ then skip else (skip $; l:=0$) : unit.

1. a list of tokens (after parsing) [IF, DEREF, LOC "1", GTEQ, ...]
2. an abstract syntax tree
3. the function taking store s to the reduction sequence

$$
\langle E, s\rangle \longrightarrow\left\langle E_{1}, s_{1}\right\rangle \longrightarrow\left\langle E_{2}, s_{2}\right\rangle \longrightarrow \ldots
$$

4. the equivalence class $\left\{E^{\prime} \mid E \simeq_{\Gamma}^{T} E^{\prime}\right\}$
5. the partial function $\llbracket E \rrbracket_{\Gamma}$ that takes any store s with $\operatorname{dom}(s)=\operatorname{dom}(\Gamma)$ and either is undefined if $\langle E, s\rangle \longrightarrow^{\omega}$, or is $\left\langle v, s^{\prime}\right\rangle$, if $\langle E, s\rangle \longrightarrow^{*}\left\langle v, s^{\prime}\right\rangle$
