
COMP3610/6361
Principles of Programming Languages

Peter Höfner

Oct 09, 2023

1

Section 15

Denotational Semantics

2

Operational Semantics (Reminder)

• describe how to evaluate programs
• a valid program is interpreted as sequences of steps
• small-step semantics

▶ individual steps of a computation
▶ more rules (compared to big-step)
▶ allows to reason about non-terminating programs, concurrency, . . .

• big-step semantics
▶ overall results of the executions

‘divide-and-conquer manner’
▶ can be seen as relations
▶ fewer rules, simpler proofs
▶ no non-terminating behaviour

• allow non-determinism

3

Operational vs Denotational

An operational semantics is like an interpreter

⟨E , s⟩ −→ ⟨E′ , s′⟩ and ⟨E , s⟩ ⇓ ⟨v , s′⟩

A denotational semantics is like a compiler.
A denotational semantics defines what a program means as a (partial)
function:

C[[com]] ∈ Store ⇀ Store

Allows the use of ‘standard’ mathematics

4

Big Picture

E

NForm

op. sem

E/ ≃T
Γ

[[]]≃T
Γ

Semantics

denot. sem

5

IMP – Syntax (aexp and bexp)

Booleans b ∈ B
Integers (Values) n ∈ Z
Locations l ∈ L = {l, l0, l1, l2, . . . }

Operations aop ::= +

Expressions
aexp ::= n |!l | aexp aop aexp

bexp ::= b | bexp ∧ bexp | aexp ≥ aexp

com ::= l := aexp |
if bexp then com else com |
skip | com ; com |
while bexp do com

6

Semantic Domains

C[[c]] ∈ Store ⇀ Store C[[]] : com → Store ⇀ Store

A[[a]] ∈ Store ⇀ int A[[]] : aexp → Store ⇀ int

B[[b]] ∈ Store ⇀ bool B[[]] : bexp → Store ⇀ bool

Convention: (Partial) Functions are defined point-wise.
C[[]] is the denotation function.

7

Partial Functions

Remember that partial functions can be represented as sets.
• C[[c]] can be described as a set
• the equation C[[c]] = S,

for a set S gives the definition for command c

• C[[c]](s) is a store

8

Denotational Semantics for IMP

Arithmetic Expressions

A[[n]] = {(s, n)}

A[[!l]] = {(s, s(l)) | l ∈ dom(s)}

A[[a1 + a2]] = {(s, n) | (s, n1) ∈ A[[a1]] ∧ (s, n2) ∈ A[[a2]] ∧ n = n1 + n2}

n is syntactical, n semantical value.

9

Denotational Semantics for IMP

Boolean Expressions

B[[true]] = {(s, true)}

B[[false]] = {(s, false)}

B[[b1 ∧ b2]] = {(s, b) | (s, b′) ∈ B[[b1]] ∧ (s, b′′) ∈ B[[b2]] ∧ (b = b′ ∧ b′′)}

B[[a1 ≥ a2]] = {(s, true) | (s, n1) ∈ A[[a1]] ∧ (s, n2) ∈ A[[a2]] ∧ n1 ≥ n2} ∪
{(s, false) | (s, n1) ∈ A[[a1]] ∧ (s, n2) ∈ A[[a2]] ∧ n1 < n2}

10

Denotational Semantics for IMP
Arithmetic and Boolean Expressions in Function-Style

A[[n]](s) = n

A[[!l]](s) = s(l) if l ∈ dom(s)

A[[a1 + a2]](s) = A[[a1]](s) +A[[a2]](s)

B[[true]](s) = true

B[[false]](s) = false

B[[a1 ∧ a2]](s) = B[[b1]](s) ∧ B[[b2]](s)

B[[b1 ≥ a2]](s) =

{
true if A[[a1]](s) ≥ A[[a2]](s)
false otherwise

11

Denotational Semantics for IMP

Commands

C[[skip]] = {(s, s)}

C[[l := a]] = {(s, s + {l 7→ n}) | (s, n) ∈ A[[a]]}

C[[c1 ; c2]] = {(s, s′′) | ∃s′. (s, s′) ∈ C[[c1]] ∧ (s′, s′′) ∈ C[[c2]]}

C[[if b then c1 else c2]] = {(s, s′) | (s, true) ∈ B[[b]] ∧ (s, s′) ∈ C[[c1]]} ∪
{(s, s′) | (s, false) ∈ B[[b]] ∧ (s, s′) ∈ C[[c2]]}

12

Denotational Semantics for IMP
Commands in Function-Style

C[[skip]](s) = s

C[[l := a]](s) = s + {l 7→ (A[[a]](s))}

C[[c1 ; c2]] = C[[c2]] ◦ C[[c1]]
(or C[[c1 ; c2]](s) = C[[c2]](C[[c1]](s)))

C[[if b then c1 else c2]](s) =

{
C[[c1]](s) if B[[b]](s) = true

C[[c2]](s) if B[[b]](s) = false

denotational semantics is often compositional

13

Denotational Semantics for IMP
Commands
(cont’d)

C[[while b do c]] = {(s, s) | (s, false) ∈ B[[b]]} ∪
{(s, s′) | (s, true) ∈ B[[b]] ∧

∃s′′. (s, s′′) ∈ C[[c]] ∧ (s′′, s′) ∈ C[[while b do c]]}

C[[while b do c]](s) = C[[if b then c ; (while b do c) else skip]](s)

=

{
C[[while b do c]](C[[c]](s)) if B[[b]](s) = true

C[[skip]](s) if B[[b]](s) = false

Problem: this is not a function definition;
it is a recursive equation, we require its solution

14

Recursive Equations – Example

f(x) =

{
0 if x = 0
f(x− 1) + 2x− 1 otherwise

Question: What function(s) satisfy this equation?
Answer: f(x) = x2

15

Recursive Equations – Example II

g(x) = g(x) + 1

Question: What function(s) satisfy this equation?
Answer: none

16

Recursive Equations – Example III

h(x) = 4 · h
(x
2

)

Question: What function(s) satisfy this equation?
Answer: multiple

17

Solving Recursive Equations
Build a solution by approximation (interpret functions as sets)

f0 = ∅

f1 =

{
0 if x = 0
f0(x− 1) + 2x− 1 otherwise

= {(0, 0)}

f2 =

{
0 if x = 0
f1(x− 1) + 2x− 1 otherwise

= {(0, 0), (1, 1)}

f3 =

{
0 if x = 0
f2(x− 1) + 2x− 1 otherwise

= {(0, 0), (1, 1), (2, 4)}

18

Solving Recursive Equations

Model this process as higher-order function F that takes the
approximation fk as input and returns the next approximation.

F : (IN ⇀ IN) → (IN ⇀ IN)

where

(F (f))(x) =

{
0 if x = 0
f(x− 1) + 2x− 1 otherwise

Iterate till a fixed point is reached (f = F (f))

19

Fixed Point

Definition
Given a function F : A → A, a ∈ A is a fixed point of F if F (a) = a.
Notation: Write a = fix (F) to indicate that a is a fixed point of F .

Idea: Compute fixed points iteratively, starting from the completely
undefined function. The fixed point is the limit of this process:

f =fix (F)

=f0 ∪ f1 ∪ f2 ∪ . . .

=∅ ∪ F (∅) ∪ F (F (∅)) ∪ . . .

=

∞⋃
i≥0

F i(∅)

20

Denotational Semantics for while

C[[while b do c]] = fix (F)

where

F (f) ={(s, s) | (s, false) ∈ B[[b]]} ∪
{(s, s′) | (s, true) ∈ B[[b]] ∧

∃s′′. (s, s′′) ∈ C[[c]] ∧ (s′′, s′) ∈ f}

21

Denotational Semantics – Example
C[[while !l ≥ 0 do m :=!l + !m ; l :=!l + (−1)]]

f0 = ∅

f1 =

{
s if !l < 0
undefined otherwise

f2 =

s if !l < 0
s + {l 7→ −1,m 7→ s(m)} if !l = 0
undefined otherwise

f3 =

s if !l < 0
s + {l 7→ −1} if !l = 0
s + {l 7→ −1,m 7→ 1+ s(m)} if !l = 1
undefined otherwise

f4 =

s if !l < 0
s + {l 7→ −1} if !l = 0
s + {l 7→ −1,m 7→ 1+ s(m)} if !l = 1
s + {l 7→ −1,m 7→ 3+ s(m)} if !l = 2
undefined otherwise

22

Fixed Points

• Why does (fixF) have a solution?
• What if there are several solutions?

(which should we take)

23

Fixed Point Theory

Definition (sub preserving)
A function F preserves suprema if for every chain X1 ⊆ X2 ⊆ . . .

F (
⋃
i

Xi) =
⋃
i

F (Xi) .

Lemma
Every suprema-preserving function F is monotone increasing.

X ⊆ Y =⇒ F (X) ⊆ F (Y)

(works for arbitrary partially ordered sets)

24

Kleene’s fixed point theorem

Theorem
Let F be a suprema-preserving function. The least fixed point of F exists
and is equal to ⋃

i≥0

F i(∅)

25

C[[while b do c]]

C[[while b do c]](s)

= fix (F)

=

C[[c]]k(s) if k ≥ 0 such that B[[b]](C[[c]]k(s)) = false

and B[[b]](C[[c]]i(s)) = true for all 0 ≤ i < k
undefined if B[[b]](C[[c]]i(s)) = true for all i ≥ 0

This may be what you would have expected, but now it is grounded on
well-known mathematics

26

Exercises

• Show that skip ; c and c ; skip are equivalent.
• What does equivalent mean in the context of denotational

semantics?
• Show that (c1 ; c2) ; c3 is equivalent to c1 ; (c2 ; c3).

27

	Admin
	Lecturer
	CoLecturer and Tutors
	Plan/Schedule
	About the Course
	Academic Integrity

	Introduction
	Foundational Knowledge of Disciplines
	Programming Languages

	IMP and its Operational Semantics
	Types
	Proofs (Structural Induction)
	Functions
	Typing for Call-By-Value
	Recursion
	Data
	Exceptions
	Subtyping
	(Imperative) Objects Case Study
	Implementing IMP
	IMP in Isabelle/HOL
	Big-step semantics (in Isabelle/HOL)
	Are big and small-step semantics equivalent?

	Semantic Equivalence
	Denotational Semantics
	Partial and Total Correctness
	Axiomatic Semantics
	Weakest Preconditions
	Concurrency
	The Process Algebra CCS
	Pure CCS

