COMP3610/6361
 Principles of Programming Languages

Peter Höfner

Oct 09, 2023

Section 15

Denotational Semantics

Operational Semantics (Reminder)

- describe how to evaluate programs
- a valid program is interpreted as sequences of steps
- small-step semantics
- individual steps of a computation
- more rules (compared to big-step)
- allows to reason about non-terminating programs, concurrency, ...
- big-step semantics
- overall results of the executions 'divide-and-conquer manner'
- can be seen as relations
- fewer rules, simpler proofs
- no non-terminating behaviour
- allow non-determinism

Operational vs Denotational

An operational semantics is like an interpreter

$$
\langle E, s\rangle \longrightarrow\left\langle E^{\prime}, s^{\prime}\right\rangle \quad \text { and } \quad\langle E, s\rangle \Downarrow\left\langle v, s^{\prime}\right\rangle
$$

A denotational semantics is like a compiler.
A denotational semantics defines what a program means as a (partial) function:

$$
\mathcal{C} \llbracket c o m \rrbracket \in \text { Store }- \text { Store }
$$

Allows the use of 'standard' mathematics

Big Picture

IMP - Syntax (aexp and bexp)

Booleans	$b \in \mathbb{B}$
Integers (Values)	$n \in \mathbb{Z}$
Locations	$l \in \mathbb{L}=\left\{l, l_{0}, l_{1}, l_{2}, \ldots\right\}$
Operations	aop $::=+$

Expressions

$$
\begin{aligned}
\operatorname{aexp}::= & n|!l| \operatorname{aexp} \text { aop } \operatorname{aexp} \\
\operatorname{bexp}::= & b|\operatorname{bexp} \wedge \operatorname{bexp}| \operatorname{aexp} \geq \operatorname{aexp} \\
\operatorname{com}::= & l:=\operatorname{aexp} \mid \\
& \text { if bexp then com else com } \mid \\
& \text { skip | com ; com } \mid \\
& \text { while bexp do com }
\end{aligned}
$$

Semantic Domains

$$
\begin{aligned}
& \mathcal{C} \llbracket c \rrbracket \in \text { Store }- \text { Store } \\
& \mathcal{A} \llbracket a \rrbracket \in \text { Store } \rightharpoonup \text { int } \\
& \mathcal{B} \llbracket b \rrbracket \in \text { Store }- \text { bool }
\end{aligned}
$$

Convention: (Partial) Functions are defined point-wise. $\mathcal{C} \llbracket-\rrbracket$ is the denotation function.

Partial Functions

Remember that partial functions can be represented as sets.

- $\mathcal{C} \llbracket c \rrbracket$ can be described as a set
- the equation $\mathcal{C} \llbracket c \rrbracket=S$, for a set S gives the definition for command c
- $\mathcal{C} \llbracket c \rrbracket(s)$ is a store

Denotational Semantics for IMP

Arithmetic Expressions

$$
\begin{aligned}
\mathcal{A} \llbracket \underline{n} \rrbracket & =\{(s, n)\} \\
\mathcal{A} \llbracket l \rrbracket & =\{(s, s(l)) \mid l \in \operatorname{dom}(s)\} \\
\mathcal{A} \llbracket a_{1} \pm a_{2} \rrbracket & =\left\{(s, n) \mid\left(s, n_{1}\right) \in \mathcal{A} \llbracket a_{1} \rrbracket \wedge\left(s, n_{2}\right) \in \mathcal{A} \llbracket a_{2} \rrbracket \wedge n=n_{1}+n_{2}\right\}
\end{aligned}
$$

\underline{n} is syntactical, n semantical value.

Denotational Semantics for IMP

Boolean Expressions

$$
\begin{aligned}
\mathcal{B} \llbracket \text { true } \rrbracket= & \{(s, \text { true })\} \\
\mathcal{B} \llbracket \underline{\text { false } \rrbracket=}= & \{(s, \text { false })\} \\
\mathcal{B} \llbracket b_{1} \triangle b_{2} \rrbracket= & \left\{(s, b) \mid\left(s, b^{\prime}\right) \in \mathcal{B} \llbracket b_{1} \rrbracket \wedge\left(s, b^{\prime \prime}\right) \in \mathcal{B} \llbracket b_{2} \rrbracket \wedge\left(b=b^{\prime} \wedge b^{\prime \prime}\right)\right\} \\
\mathcal{B} \llbracket a_{1} \geqq a_{2} \rrbracket= & \left\{(s, \text { true }) \mid\left(s, n_{1}\right) \in \mathcal{A} \llbracket a_{1} \rrbracket \wedge\left(s, n_{2}\right) \in \mathcal{A} \llbracket a_{2} \rrbracket \wedge n_{1} \geq n_{2}\right\} \cup \\
& \left\{(s, \text { false }) \mid\left(s, n_{1}\right) \in \mathcal{A} \llbracket a_{1} \rrbracket \wedge\left(s, n_{2}\right) \in \mathcal{A} \llbracket a_{2} \rrbracket \wedge n_{1}<n_{2}\right\}
\end{aligned}
$$

Denotational Semantics for IMP

Arithmetic and Boolean Expressions in Function-Style

$$
\begin{aligned}
\mathcal{A} \llbracket \underline{n} \rrbracket(s) & =n \\
\mathcal{A} \llbracket!l \rrbracket(s) & =s(l) \quad \text { if } l \in \operatorname{dom}(s) \\
\mathcal{A} \llbracket a_{1} \pm a_{2} \rrbracket(s) & =\mathcal{A} \llbracket a_{1} \rrbracket(s)+\mathcal{A} \llbracket a_{2} \rrbracket(s) \\
\mathcal{B} \llbracket \text { true } \rrbracket(s) & =\text { true } \\
\mathcal{B} \llbracket \text { false } \rrbracket(s) & =\text { false } \\
\mathcal{B} \llbracket a_{1} \underline{\wedge} a_{2} \rrbracket(s) & =\mathcal{B} \llbracket b_{1} \rrbracket(s) \wedge \mathcal{B} \llbracket b_{2} \rrbracket(s) \\
\mathcal{B} \llbracket b_{1} \geqq a_{2} \rrbracket(s) & = \begin{cases}\text { true } & \text { if } \mathcal{A} \llbracket a_{1} \rrbracket(s) \geq \mathcal{A} \llbracket a_{2} \rrbracket(s) \\
\text { false } & \text { otherwise }\end{cases}
\end{aligned}
$$

Denotational Semantics for IMP

Commands

$$
\begin{aligned}
\mathcal{C} \llbracket \mathbf{s k i p} \rrbracket & =\{(s, s)\} \\
\mathcal{C} \llbracket l:=a \rrbracket & =\{(s, s+\{l \mapsto n\}) \mid(s, n) \in \mathcal{A} \llbracket a \rrbracket\} \\
\mathcal{C} \llbracket c_{1} ; c_{2} \rrbracket & =\left\{\left(s, s^{\prime \prime}\right) \mid \exists s^{\prime} .\left(s, s^{\prime}\right) \in \mathcal{C} \llbracket c_{1} \rrbracket \wedge\left(s^{\prime}, s^{\prime \prime}\right) \in \mathcal{C} \llbracket c_{2} \rrbracket\right\}
\end{aligned}
$$

$\mathcal{C} \llbracket i \mathbf{i f} b$ then c_{1} else $c_{2} \rrbracket=\left\{\left(s, s^{\prime}\right) \mid(s\right.$, true $\left.) \in \mathcal{B} \llbracket b \rrbracket \wedge\left(s, s^{\prime}\right) \in \mathcal{C} \llbracket c_{1} \rrbracket\right\} \cup$ $\left\{\left(s, s^{\prime}\right) \mid(s\right.$, false $\left.) \in \mathcal{B} \llbracket b \rrbracket \wedge\left(s, s^{\prime}\right) \in \mathcal{C} \llbracket c_{2} \rrbracket\right\}$

Denotational Semantics for IMP
 Commands in Function-Style

$$
\begin{aligned}
\mathcal{C} \llbracket \mathbf{s k i p} \rrbracket(s) & =s \\
\mathcal{C} \llbracket l:=a \rrbracket(s) & =s+\{l \mapsto(\mathcal{A} \llbracket a \rrbracket(s))\} \\
\mathcal{C} \llbracket c_{1} ; c_{2} \rrbracket & =\mathcal{C} \llbracket c_{2} \rrbracket \circ \mathcal{C} \llbracket c_{1} \rrbracket \\
\left(\text { or } \mathcal{C} \llbracket c_{1} ; c_{2} \rrbracket(s)\right. & \left.=\mathcal{C} \llbracket c_{2} \rrbracket\left(\mathcal{C} \llbracket c_{1} \rrbracket(s)\right)\right) \\
\mathcal{C} \llbracket \text { if } b \text { then } c_{1} \text { else } c_{2} \rrbracket(s) & = \begin{cases}\mathcal{C} \llbracket c_{1} \rrbracket(s) & \text { if } \mathcal{B} \llbracket b \rrbracket(s)=\text { true } \\
\mathcal{C} \llbracket c_{2} \rrbracket(s) & \text { if } \mathcal{B} \llbracket b \rrbracket(s)=\text { false }\end{cases}
\end{aligned}
$$

denotational semantics is often compositional

Denotational Semantics for IMP

Commands
(cont'd)

$$
\begin{aligned}
\mathcal{C} \llbracket \text { while } b \text { do } c \rrbracket=\{(s, s) \mid & (s, \text { false }) \in \mathcal{B} \llbracket b \rrbracket\} \cup \\
& \left\{\left(s, s^{\prime}\right) \mid(s, \text { true }) \in \mathcal{B} \llbracket b \rrbracket \wedge\right. \\
& \left.\exists s^{\prime \prime} .\left(s, s^{\prime \prime}\right) \in \mathcal{C} \llbracket c \rrbracket \wedge\left(s^{\prime \prime}, s^{\prime}\right) \in \mathcal{C} \llbracket \text { while } b \text { do } c \rrbracket\right\}
\end{aligned}
$$

$\mathcal{C} \llbracket$ while b do $c \rrbracket(s)=\mathcal{C} \llbracket i f b$ then $c ;($ while b do $c)$ else skip $\rrbracket(s)$

$$
= \begin{cases}\mathcal{C} \llbracket \mathbf{w h i l e} b \text { do } c \rrbracket(\mathcal{C} \llbracket c \rrbracket(s)) & \text { if } \mathcal{B} \llbracket b \rrbracket(s)=\text { true } \\ \mathcal{C} \llbracket \mathbf{s k i p} \rrbracket(s) & \text { if } \mathcal{B} \llbracket b \rrbracket(s)=\text { fals }\end{cases}
$$

Problem: this is not a function definition;
it is a recursive equation, we require its solution

Recursive Equations - Example

$$
f(x)= \begin{cases}0 & \text { if } x=0 \\ f(x-1)+2 x-1 & \text { otherwise }\end{cases}
$$

Question: What function(s) satisfy this equation?
Answer: $f(x)=x^{2}$

Recursive Equations - Example II

$$
g(x)=g(x)+1
$$

Question: What function(s) satisfy this equation?
Answer: none

Recursive Equations - Example III

$$
h(x)=4 \cdot h\left(\frac{x}{2}\right)
$$

Question: What function(s) satisfy this equation?
Answer: multiple

Solving Recursive Equations

Build a solution by approximation (interpret functions as sets)

$$
\begin{aligned}
f_{0} & =\emptyset \\
f_{1} & = \begin{cases}0 & \text { if } x=0 \\
f_{0}(x-1)+2 x-1 & \text { otherwise }\end{cases} \\
& =\{(0,0)\} \\
f_{2} & = \begin{cases}0 & \text { if } x=0 \\
f_{1}(x-1)+2 x-1 & \text { otherwise }\end{cases} \\
& =\{(0,0),(1,1)\} \\
f_{3} & = \begin{cases}0 & \text { if } x=0 \\
f_{2}(x-1)+2 x-1 & \text { otherwise }\end{cases} \\
& =\{(0,0),(1,1),(2,4)\}
\end{aligned}
$$

Solving Recursive Equations

Model this process as higher-order function F that takes the approximation f_{k} as input and returns the next approximation.

$$
F:(\mathbb{N} \rightharpoonup \mathbb{N}) \rightarrow(\mathbb{N} \rightharpoonup \mathbb{N})
$$

where

$$
(F(f))(x)= \begin{cases}0 & \text { if } x=0 \\ f(x-1)+2 x-1 & \text { otherwise }\end{cases}
$$

Iterate till a fixed point is reached $(f=F(f))$

Fixed Point

Definition

Given a function $F: A \rightarrow A, a \in A$ is a fixed point of F if $F(a)=a$.
Notation: Write $a=\mathrm{fix}(F)$ to indicate that a is a fixed point of F.
Idea: Compute fixed points iteratively, starting from the completely undefined function. The fixed point is the limit of this process:

$$
\begin{aligned}
f & =\mathrm{fix}(F) \\
& =f_{0} \cup f_{1} \cup f_{2} \cup \ldots \\
& =\emptyset \cup F(\emptyset) \cup F(F(\emptyset)) \cup \ldots \\
& =\bigcup_{i \geq 0}^{\infty} F^{i}(\emptyset)
\end{aligned}
$$

Denotational Semantics for while

$$
\mathcal{C} \llbracket \text { while } b \text { do } c \rrbracket=\mathrm{fix}(F)
$$

where

$$
\begin{aligned}
F(f)=\{(s, s) \mid & (s, \text { false }) \in \mathcal{B} \llbracket b \rrbracket\} \cup \\
\left\{\left(s, s^{\prime}\right) \mid\right. & (s, \text { true }) \in \mathcal{B} \llbracket b \rrbracket \wedge \\
& \left.\exists s^{\prime \prime} .\left(s, s^{\prime \prime}\right) \in \mathcal{C} \llbracket c \rrbracket \wedge\left(s^{\prime \prime}, s^{\prime}\right) \in f\right\}
\end{aligned}
$$

Denotational Semantics - Example

$\mathcal{C} \llbracket$ while $!l \geq 0$ do $m:=!l+!m ; l:=!l+(-1) \rrbracket$

$$
\begin{aligned}
& f_{0}=\emptyset \\
& f_{1}= \begin{cases}s & \text { if }!l<0 \\
\text { undefined } & \text { otherwise }\end{cases} \\
& f_{2}= \begin{cases}s & \text { if }!l<0 \\
s+\{l \mapsto-1, m \mapsto s(m)\} & \text { if }!l=0 \\
\text { undefined } & \text { otherwise }\end{cases} \\
& f_{3}= \begin{cases}s & \text { if } l l<0 \\
s+\{l \mapsto-1\} & \text { if } l l=0 \\
s+\{l \mapsto-1, m \mapsto 1+s(m)\} & \text { if }!l=1 \\
\text { undefined } & \text { otherwise }\end{cases} \\
& f_{4}= \begin{cases}s & \text { if }!l<0 \\
s+\{l \mapsto-1\} & \text { if } l l=0 \\
s+\{l \mapsto-1, m \mapsto 1+s(m)\} & \text { if } l l=1 \\
s+\{l \mapsto-1, m \mapsto 3+s(m)\} & \text { if }!l=2 \\
\text { undefined } & \text { otherwise }\end{cases}
\end{aligned}
$$

Fixed Points

- Why does (fix F) have a solution?
- What if there are several solutions? (which should we take)

Fixed Point Theory

Definition (sub preserving)

A function F preserves suprema if for every chain $X_{1} \subseteq X_{2} \subseteq \ldots$.

$$
F\left(\bigcup_{i} X_{i}\right)=\bigcup_{i} F\left(X_{i}\right)
$$

Lemma

Every suprema-preserving function F is monotone increasing.

$$
X \subseteq Y \Longrightarrow F(X) \subseteq F(Y)
$$

(works for arbitrary partially ordered sets)

Kleene's fixed point theorem

Theorem

Let F be a suprema-preserving function. The least fixed point of F exists and is equal to

$$
\bigcup_{i \geq 0} F^{i}(\emptyset)
$$

$\mathcal{C} \llbracket$ while b do $c \rrbracket$

$$
\begin{aligned}
& \mathcal{C} \llbracket \text { while } b \text { do } c \rrbracket(s) \\
= & \text { fix }(F) \\
= & \begin{cases}\mathcal{C} \llbracket c \rrbracket^{k}(s) & \text { if } k \geq 0 \text { such that } \mathcal{B} \llbracket b \rrbracket\left(\mathcal{C} \llbracket c \rrbracket^{k}(s)\right)=\text { false } \\
& \text { and } \mathcal{B} \llbracket b \rrbracket\left(\mathcal{C} \llbracket c \rrbracket^{i}(s)\right)=\text { true for all } 0 \leq i<k \\
\text { undefined } & \text { if } \mathcal{B} \llbracket b \rrbracket\left(\mathcal{C} \llbracket c \rrbracket^{i}(s)\right)=\text { true for all } i \geq 0\end{cases}
\end{aligned}
$$

This may be what you would have expected, but now it is grounded on well-known mathematics

Exercises

- Show that skip ; c and c; skip are equivalent.
- What does equivalent mean in the context of denotational semantics?
- Show that $\left(c_{1} ; c_{2}\right) ; c_{3}$ is equivalent to $c_{1} ;\left(c_{2} ; c_{3}\right)$.

