
COMP3610/6361
Principles of Programming Languages

Peter Höfner

Sep 27, 2023

1

Section 17

Axiomatic Semantics

2

Floyd-Hoare Logic

Idea: develop proof system as an inductively-defined set; every member
will be a valid partial correctness statement

Judgement
⊢ {P} c {Q}

3

Floyd-Hoare Logic – Skip

(skip) ⊢ {P} skip {P}

4

Floyd-Hoare Logic – Assignment

(assign) ⊢ {P [a/l]} l := a {P}

Notation: P [a/l] denotes substitution of a for l in P ;
in operational semantics we wrote {a/l}P

Example
{7 = 7} l := 7 {l = 7}

5

Floyd-Hoare Logic – Incorrect Assignment

(wrong1) ⊢ {P} l := a {P [a/l]}

Example
{l = 0} l := 7 {7 = 0}

(wrong2) ⊢ {P} l := a {P [l/a]}

Example
{l = 0} l := 7 {l = 0}

6

Floyd-Hoare Logic – Sequence, If, While

(seq)
⊢ {P} c1 {R} ⊢ {R} c2 {Q}

⊢ {P} c1 ; c2 {Q}

(if)
⊢ {P ∧ b} c1 {Q} ⊢ {P ∧ ¬b} c2 {Q}

⊢ {P} if b then c1 else c2 {Q}

(while)
⊢ {P ∧ b} c {P}

⊢ {P} while b do c {P ∧ ¬b}

P acts as loop invariant

7

Floyd-Hoare Logic – Consequence

We cannot combine arbitrary triple yet

⊢ {3 = 3} l := 3 {l = 3}
(assign)

. . .

⊢ {l ≥ 2} l :=!l − 2 {l ≥ 0}
⊢ {3 = 3} l := 3 ; l :=!l − 2 {l ≥ 0}

8

Floyd-Hoare Logic – Consequence

strengthen pre-conditions and weaken post-conditions

(cons)
|= P ⇒ P ′ ⊢ {P ′} c {Q′} |= Q′ ⇒ Q

⊢ {P} c {Q}

Recall: |= P ⇒ P ′ denotes assertion validity

9

Floyd-Hoare Logic – Summary

(skip) ⊢ {P} skip {P}

(assign) ⊢ {P [a/l]} l := a {P}

(seq)
⊢ {P} c1 {R} ⊢ {R} c2 {Q}

⊢ {P} c1 ; c2 {Q}

(if)
⊢ {P ∧ b} c1 {Q} ⊢ {P ∧ ¬b} c2 {Q}

⊢ {P} if b then c1 else c2 {Q}

(while)
⊢ {P ∧ b} c {P}

⊢ {P} while b do c {P ∧ ¬b}

(cons)
|= P ⇒ P ′ ⊢ {P ′} c {Q′} |= Q′ ⇒ Q

⊢ {P} c {Q}

10

Floyd-Hoare Logic – Exercise

{l0 = n ∧ n > 0}
l1 := 1 ;

while !l0 > 0 do
l1 := !l1 · !l0 ;

l0 := !l0 − 1

{l1 = n!}

11

Soundness and Completeness

how do ⊢ (judgement) and |= (validity) relate?

Soundness:
if a partial correctness statement can be derived (⊢) then is is valid (|=)

Completeness:
if the statement is valid (|=) then a derivation exists (⊢)

12

Soundness and Completeness

Theorem (Soundness)
If ⊢ {P} c {Q} then |= {P} c {Q}.

Proof.
Induction on the derivation of ⊢ {P} c {Q}. ⊓⊔

13

Soundness and Completeness

Conjecture (Completeness)
If |= {P} c {Q} then ⊢ {P} c {Q}.

Rule (cons) spoils completeness

(cons)
|= P ⇒ P ′ ⊢ {P ′} c {Q′} |= Q′ ⇒ Q

⊢ {P} c {Q}

Can we derive |= P ⇒ P ′?
No, according to Gödel’s incompleteness theorem (1931)

14

Soundness and Completeness

Theorem (Relative Completeness)
P,Q ∈ assn, c ∈ com. |= {P} c {Q} implies ⊢ {P} c {Q}.

Floyd-Hoare logic is no more incomplete than our language of assertions

Proof depends on the notion of weakest liberal preconditions.

15

Decorated Programs

Observation: once loop invariants and uses of consequence are
identified, the structure of a derivation in Floyd-Hoare logic is determined
Write “proofs” by decorating programs with:

• a precondition ({P})
• a postcondition ({Q})
• invariants ({I}while b do c)
• uses of consequence ({R} ⇒ {S})
• assertions between sequences (c1 ; {T}c2)

decorated programs describe a valid Hoare logic proof if the rest of the
proof tree’s structure is implied
(caveats: Invariants are constrained, etc.)

16

(Informal) Rules for Decoration

Idea: check whether a decorated program represents a valid proof using
local consistency checks

skip
pre and post-condition should be the same

{P}
skip
{P}

(skip) ⊢ {P} skip {P}

17

(Informal) Rules for Decoration
assignment
use the substitution from the rule

{P [a/l]}
l := a

{P}

(assign) ⊢ {P [a/l]} l := a {P}

sequencing
{P} c1 {R} and {R} c2 {Q} should be (recursively) locally consistent

{P}
c1 ;

{R}
c2
{Q}

(seq)
⊢ {P} c1 {R} ⊢ {R} c2 {Q}

⊢ {P} c1 ; c2 {Q}

18

(Informal) Rules for Decoration

if then
both branches are locally consistent; add condition to both

{P}
if b then
{P ∧ b}
c1
{Q}

else
{P ∧ ¬b}
c2
{Q}

{Q}

(if)
⊢ {P ∧ b} c1 {Q} ⊢ {P ∧ ¬b} c2 {Q}

⊢ {P} if b then c1 else c2 {Q}

19

(Informal) Rules for Decoration

while
add/create loop invariant

{P}
while b do
{P ∧ b}
c
{P}

{P ∧ ¬b}

(while)
⊢ {P ∧ b} c {P}

⊢ {P} while b do c {P ∧ ¬b}

20

(Informal) Rules for Decoration

consequence
always write a (valid) implication

{P} ⇒
{P ′}

(cons)
|= P ⇒ P ′ ⊢ {P ′} c {Q′} |= Q′ ⇒ Q

⊢ {P} c {Q}

21

Floyd-Hoare Logic – Exercise

{l0 = n ∧ n > 0}
l1 := 1 ;

while !l0 > 0 do
l1 := !l1 · l0 ;

l0 := !l0 − 1

{l1 = n!}

22

Floyd-Hoare Logic – Exercise
{l0 = n ∧ n > 0} ⇒
{1 = 1 ∧ l0 = n ∧ n > 0}
l1 := 1 ;

{l1 = 1 ∧ l0 = n ∧ n > 0} ⇒
{l1 · l0! = n! ∧ l0 ≥ 0}
while !l0 > 0 do

{l1 · l0! = n! ∧ l0 > 0 ∧ l0 ≥ 0} ⇒
{l1 · l0 · (l0 − 1)! = n! ∧ (l0 − 1) ≥ 0}
l1 := !l1 · l0 ;

{l1 · (l0 − 1)! = n! ∧ (l0 − 1) ≥ 0}
l0 := !l0 − 1

{l1 · l0! = n! ∧ l0 ≥ 0}
{l1 · l0! = n! ∧ (l0 ≥ 0) ∧ ¬(l0 > 0)} ⇒
{l1 = n!}

23

	Axiomatic Semantics

