COMP3610/6361
 Principles of Programming Languages

Peter Höfner

Oct 20, 2023

Section 1

Semantic Equivalences

Labelled Transition Systems

CCS naturally implies a graphical model of computation.
a labelled transition system (LTS) is a pair (S, \Rightarrow) with

- S a set (of states or processes), and
- $\Rightarrow \subseteq S \times$ Act $\times S$, the transition relation.
here $A c t=A \uplus\{\tau\}$ is a set of actions, containing visible actions $a, b, c, \ldots \in A$, and the invisible action τ.
a finite path is a sequence $p_{0} \xrightarrow{\lambda_{1}} p_{1} \xrightarrow{\lambda_{2}} \cdots \xrightarrow{\lambda_{n}} p_{n}$ with $p_{i} \in S$ for $i=0, \ldots, n$ and $\left(p_{i-1}, \lambda_{i}, p_{i}\right) \in \Rightarrow$ for all $i=1, \ldots, n$.

Trace equivalence

- if such a path exists, then the sequence $\lambda_{1} \lambda_{2} \ldots \lambda_{n}$ is a (partial) trace of the process p_{0}
- two processes p and q are (partial) trace equivalent if they have the same (partial) traces.

Four Kinds of Trace Equivalence

Let $T^{*}(p)$ be the set of (partial) traces of process $p \in S$.
Let $T^{\infty}(p)$ be the set of infinite traces of p.
Let $C T^{*}(p)$ be the set of completed traces of p.
Let $C T^{\infty}(p):=C T^{*}(p) \uplus T^{\infty}(p)$.
A finite trace is complete if it last state has no outgoing transition.
Write $p={ }_{T}^{*} q$ if $T^{*}(p)=T^{*}(q)$ - (partial) trace equivalence.
Write $p=_{C T}^{*} q$ if $C T^{*}(p)=C T^{*}(q)$ and $T^{*}(p)=T^{*}(q)$ -
completed trace equivalence
Write $p={ }_{T}^{\infty} q$ if $T^{\infty}(p)=T^{\infty}(q)$ and $T^{*}(p)=T^{*}(q)$ -
infinitary trace equivalence
Write $p={ }_{C T}^{\infty}$ if $C T^{\infty}(p)=C T^{\infty}(q)$ - infinitary completed tr. eq.

A Lattice of Semantic Equivalence Relations

A relation $\sim \subseteq S \times S$ on processes is an equivalence relation if it is

- reflexive: $p \sim p$,
- symmetric: if $p \sim q$ then $q \sim p$,
- and transitive: if $p \sim q$ and $q \sim r$ then $p \sim r$.

Let $[p]_{\sim}$ be the equivalence class of p : the set of all processes that are \sim-equivalent to p.

$$
[p]_{\sim}:=\{q \in S \mid q \sim p\} .
$$

Equivalence relation \sim is finer than equivalence relation \approx iff

$$
p \sim q \Rightarrow p \approx q .
$$

Thus if $\sim \subseteq \approx$. In that case each equivalence class of \sim is included in an equivalence class of \approx.

Four Additional Trace Equivalence

A weak trace is obtained from a strong one by deleting all $\tau \mathrm{s}$.
Let $W T^{*}(p):=\left\{\operatorname{detau}(\sigma) \mid \sigma \in T^{*}(p)\right\}$.
This leads to weak trace equivalences $={ }_{W T}^{*},=W_{W T}^{\infty},={ }_{W C T}^{*},={ }_{W C T}^{\infty}$.

Safety and Liveness Properties

A safety property says that something bad will never happen.
A liveness property says that something good will happen eventually.
If we deem two processes p and q semantically equivalent we often want them to have the same safety and/or liveness properties.

$$
a b \stackrel{?}{\sim} a b+a
$$

Weak partial trace equivalence respects safety properties.

$$
a g \stackrel{?}{\sim} a g+a
$$

We need at least completed traces to deal with liveness properties

Compositionality

If $p \sim q$ then $C[p] \sim C[q]$.
Here $C[]$ is a context, made from operators of some language.
For instance ($-\mid \bar{b} \cdot \bar{a}$. nil $) \backslash\{a, b\}$ is a CCS-context.
If $p \sim q$ then $\quad(p \mid \bar{b} . \bar{a}$. nil $) \backslash\{a, b\} \sim(q \mid \bar{b} \cdot \bar{a}$. nil $) \backslash\{a, b\}$.
Then \sim is a congruence for the language, or the language if compositional for \sim.

$$
p \sim p^{\prime} \Rightarrow \quad(p|p| \ldots \mid p) \backslash L \sim\left(p^{\prime}\left|p^{\prime}\right| \ldots \mid p^{\prime}\right) \backslash L
$$

$a . b+a . c={ }_{C T}^{*} a .(b+c)$ but
$((a . b+a . c) \mid \bar{a} \cdot \bar{b}) \backslash\{a, b\} \not \neq C T_{*}(a .(b+c) \mid \bar{a} \cdot \bar{b}) \backslash\{a, b\}$.
Thus $=_{C T}^{*}$ is a not a congruence for CCS.

Congruence closure

Theorem: Given any equivalence \approx that need not be a congruence for some language \mathcal{L}, there exists a coarsest congruence \sim for \mathcal{L} that is finer than \sim.

In fact, \sim can be defined by

$$
p \sim q \quad: \Leftrightarrow \quad C[p] \approx C[q] \text { for any } \mathcal{L} \text {-context } C[] .
$$

Bisimulation equivalence

A relation $\mathcal{R} \subseteq S \times S$ is a bisimulation if it satisfies:

- if $p \mathcal{R} q$ and $p \xrightarrow{\lambda} p^{\prime}$ then $\exists q^{\prime}$ s.t. $q \xrightarrow{\lambda} q^{\prime}$ and $p^{\prime} \mathcal{R} q^{\prime}$, and
- if $p \mathcal{R} q$ and $q \xrightarrow{\lambda} q^{\prime}$ then $\exists p^{\prime}$ s.t. $p \xrightarrow{\lambda} p^{\prime}$ and $p^{\prime} \mathcal{R} q^{\prime}$.

Two processes $p, q \in S$ are bisimulation equivalent or bisimilar -notation $p={ }_{B} q$-if $p \mathcal{R} q$ for some bisimulation \mathcal{R}.

Examples:

$$
a . b+a . c \neq{ }_{B} a .(b+c)
$$

$$
a . b+a . b={ }_{B} a . b
$$

Weak bisimulation equivalence

A relation $\mathcal{R} \subseteq S \times S$ is a weak bisimulation if it satisfies:

- if $p \mathcal{R} q$ and $p \xrightarrow{\lambda} p^{\prime}$ then $\exists q^{\prime}$ s.t. $q \Longrightarrow \xrightarrow{(\lambda)} \Longrightarrow q^{\prime}$ and $p^{\prime} \mathcal{R} q^{\prime}$, and
- if $p \mathcal{R} q$ and $q \xrightarrow{\lambda} q^{\prime}$ then $\exists p^{\prime}$ s.t. $p \Longrightarrow \xrightarrow{(\lambda)} \Longrightarrow p^{\prime}$ and $p^{\prime} \mathcal{R} q^{\prime}$.

Here \Longrightarrow denotes a finite sequence of τ-steps, and (λ) means λ, except that it is optional in case $\lambda=\tau$.
(That is, $p \xrightarrow{(\lambda)} q$ iff $p \xrightarrow{\lambda} q \vee(\lambda=\tau \wedge q=p)$.)
Two processes $p, q \in S$ are weakly bisimilar
-notation $p={ }_{W B} q$-if $p \mathcal{R} q$ for some bisimulation \mathcal{R}.

Examples:

$$
\tau . b+c \neq W B b+c
$$

$$
\tau . b+b={ }_{W B} b
$$

Semantic Equivalences - Summary

- relate to systems (via LTSs)
- can be extended to states carrying stores
- sos-rules give raise to LTSs in a straightforward way
- reduce complicated (big) systems to simpler ones
- smaller systems may be easier to verify
- understand which properties are preserved

