COMP3610/6361
 Principles of Programming Languages

Peter Höfner

Oct 17, 2023

Section 23

The Owicki-Gries Method

Motivation

- nondeterminism and concurrency required
- handle interleaving
- Floyd-Hoare logic only for sequential programs
- Owicki-Gries Logic/Method
- a.k.a. interference freedom
- Susan Owicki and PhD supervisor David Gries
- add a construct to the programming language for threads
- study the impact for Hoare triples

Floyd-Hoare Logic and Decorated Programs

Notation: processes: individual program system: overall (concurrent) program will be

Floyd-Hoare logic

- each of the individual processes has an assertion
- before its first statement (precondition)
- between every pair of its statements (pre-/postcondition), and
- after its last statement (postcondition)
- Hoare-triples can be checked (local correctness)
- Floyd-Hoare logic is compositional

Motivation

add pre- and postcondition for system, and a rule

$$
\frac{\left\{P_{1}\right\} c_{1}\left\{Q_{1}\right\} \quad\left\{P_{2}\right\} c_{2}\left\{Q_{2}\right\}}{\left\{P_{1} \wedge P_{2}\right\} c_{1} \| c_{2}\left\{Q_{1} \wedge Q_{2}\right\}}
$$

but this rule is incorrect

Note: we are considering an interleaving semantics

Simple Example

$$
\begin{array}{ccc}
& \{x==0\} & \\
\{x==0 \vee x==2\} & & \{x==0 \vee x==1\} \\
x:=x+1 & & x:=x+2 \\
\{x==1 \vee x==3\} & & \{x==2 \vee x==3\} \\
& & \{x==3\}
\end{array}
$$

What would we have to show?

The Rule of Owicki Gries

all rules of Floyd-Hoare logic remain valid

$$
\frac{\left\{P_{1}\right\} c_{1}\left\{Q_{1}\right\} \ldots\left\{P_{n}\right\} c_{n}\left\{Q_{n}\right\} \quad \text { interference freedom }}{\left\{P_{1} \wedge \cdots \wedge P_{n}\right\} c_{1}\|\cdots\| c_{n}\left\{Q_{1} \wedge \cdots \wedge Q_{n}\right\}} \text { (par) }
$$

Interference Freedom

Interference freedom is a property of proofs of the $\left\{P_{i}\right\} c_{i}\left\{Q_{i}\right\}$

- suppose we have a proof for $\left\{P_{i}\right\} c_{i}\left\{Q_{i}\right\}$
- prove that the execution of any other statement c_{j} does not validate the reasoning for $\left\{P_{i}\right\} c_{i}\left\{Q_{i}\right\}$
it is a bit tricky
- interference freedom is a property of proofs, not Hoare triples
- identifying which parts of a proof need to be considered requires some effort

Formalising Interference Freedom

In a decorated program D and command c of the program, let

- pre (D, c) be the precondition (assumption/predicate) immediately before c, and
- $\operatorname{post}(D, c)$ the postcondition immediately after c
- remember $\{P\} c\{Q\}$ valid if there is a decorated program D with $\operatorname{pre}(D, c)=P$ and $\operatorname{post}(D, c)=Q$

Formalising Interference Freedom

$$
\frac{\left\{P_{1}\right\} c_{1}\left\{Q_{1}\right\} \ldots\left\{P_{n}\right\} c_{n}\left\{Q_{n}\right\} \quad \text { interference freedom }}{\left\{P_{1} \wedge \cdots \wedge P_{n}\right\} c_{1}\|\cdots\| c_{n}\left\{Q_{1} \wedge \cdots \wedge Q_{n}\right\}} \text { (par) }
$$

Suppose every c_{i} has a decorated program $D_{c_{i}}$.
Definition
$D_{c_{i}}$ is interference-free with respect to $D_{c_{j}}(i \neq j)$ if for each statement c_{i}^{\prime} in c_{i} and c_{j}^{\prime} in c_{j}

- $\left\{\operatorname{pre}\left(D_{c_{i}}, c_{i}^{\prime}\right) \wedge \operatorname{pre}\left(D_{c_{j}}, c_{j}^{\prime}\right)\right\} c_{j}^{\prime}\left\{\operatorname{pre}\left(D_{c_{i}}, c_{i}^{\prime}\right)\right\}$
- $\left.\left\{\operatorname{post}\left(D_{c_{i}}, c_{i}^{\prime}\right) \wedge \operatorname{pre}\left(D_{c_{j}}, c_{j}^{\prime}\right)\right\} c_{j}^{\prime}\left\{\operatorname{post}\left(D_{c_{i}}, c_{i}^{\prime}\right)\right)\right\}$

The $D_{c_{1}}, D_{c_{1}}, \ldots D_{c_{n}}$ are interference-free if they are pairwise interference-free with respect to one other.

Interference Freedom - Remark

- applying the Rule (par) requires the development of interference-free decorated programs for the c_{i}
- proving interference-freedom of $D_{c_{i}}$ with respect to $D_{c_{j}}$ focusses on
- preconditions of each statement in c_{i} and postcondition of $D_{c_{i}}$

Simple Example

Why is interference freedom violated?

$$
\begin{array}{ccc}
& \{x==0\} & \\
\{x==0\} & & \{x==0\} \\
x:=x+1 & \| & x:=x+2 \\
\{x==1\} & & \{x==1\} \\
& & \\
& \{x==1\} &
\end{array}
$$

Soundness

Theorem

If $\{P\} c\{Q\}$ is derivable using the proof rules seen so far then c is valid

Completeness

Can every correct Hoare triple be derived?

- completeness does not hold
- neither does relative completeness

Incompleteness
 Lemma

The following valid Hoare triple cannot be derived using the rules so far.

$$
\{\text { true }\} \quad x:=x+2 \| x:=0 \quad\{x==0 \vee x==2\}
$$

Proof.

By contradiction. Suppose there were such a proof. Then there would be Q, R such that

$$
\begin{array}{r}
\{\text { true }\}:=x+2\{Q\} \\
\{\text { true }\} x:=0\{R\} \\
Q \wedge R \Longrightarrow x==0 \vee x==2
\end{array}
$$

By (assign) $(\{P[a / l]\} l:=a\{P\})$, true $\Longrightarrow Q[x+2 / x]$ holds. Similarly, $R[0 / x]$ holds.
By (par), $\{R \wedge$ true $\} x:=x+2\{R\}$ holds, meaning $R \Rightarrow R[x+2 / x]$ is valid.
But then by induction, $\forall x .(x \geq 0 \wedge$ even $(x)) \Longrightarrow R$ is true. Since
$Q \wedge R \Longrightarrow x=0 \vee x=2$, it follows that

$$
\forall x .(x \geq 0 \wedge \operatorname{even}(x)) \Longrightarrow(x==0 \vee x==2),
$$

which is a contradiction.

Fixing the Problem

We showed

- R must hold for all even, positive x
- R must hold after execution of $x:=0$
- R must also hold both before and after execution of $x:=x+2$
we need the capability in R to say that

$$
\text { until } x:=x+2 \text { is executed, } x=0 \text { holds. }
$$

Auxiliary Variables

variables that are put into a program just to reason about progress in other processes

```
done := 0;
(
    x, done := x+2,1
|
    x:=0
)
```

- requires synchronous/atomic assignment
- proof is now possible

Decorated Programs with Auxiliary Variables

```
{true}
done := 0;
{done == 0}
(
    {done == 0}
    x, done :=x+2,1
    {true}
|
    {true}
    x:=0
    {(x== 0\veex==2)\wedge(done == 0=>x== 0)}
)
{c==0 0\veex==2}
```

Note: some implications skipped in the decorated program

Relative Completeness

- adding auxiliary variables enables proofs
- we do not want these variables to be in our code

$$
\frac{\{P\} c\{Q\} \quad x \text { not free in } Q \quad x \text { auxiliary in } c}{\{P\} c^{\prime}\{Q\}}(\text { aux })
$$

where c^{\prime} is c with all references to x removed.

Theorem (Relative Completeness)

Adding Rules (par) and (aux) to the other rules of Floyd-Hoare logic yields a relatively complete proof system.

Problem

The Owicki-Griess Methods is not compositional.

Peterson's Algorithm for Mutual exclusion

the following 4 lines of (symmetric) code took 15 years to discover (mid 60's to early 80s)
let a, b be Booleans and $t:\{A, B\}$

$$
\{\neg a \wedge \neg b\}
$$

other code of A
$a:=$ true
$t:=A$
await $(\neg b \vee t==B)$
critical section A
$a:=\mathrm{false}$
other code of B
$b:=$ true
$t:=B$
await ($\neg a \vee t==A$)
critical section B
$b:=$ false

Notes on Peterson's Algorithm

- protects critical sections from mutual destructive interference
- guarantees fair treatment of A and B
- how do we show that A (or B) is never perpetually ignored in favour of $B(A)$?
- requires liveness in this case
- a topic for another course/research project
- in fact there is one line that could potentially violate liveness (requires knowledge about hardware)
- 4 correct lines of code in 15 years is a coding rate of roughly 1 LoC every 4 years

Yet Another Example

FindFirstPositive

$$
i:=0 ; j:=1 ; x:=|A| ; y:=|A| ;
$$

while $i<\min (x, y)$ do
if $A[i]>0$ then
$x:=i$
else
$i:=i+2$
while $j<\min (x, y)$ do if $A[j]>0$ then $y:=j$
else
$j:=j+2$

$$
r:=\min (x, y)
$$

$$
\begin{aligned}
i:=0 ; j:= & 1 ; x:=|A| ; y:=|A| ; \\
& \left\{P_{1} \wedge P_{2}\right\}
\end{aligned}
$$

$\left\{P_{1}\right\}$

```
while \(i<\min (x, y)\) do
    \(\left\{P_{1} \wedge i<x \wedge i<|A|\right\}\)
    if \(A[i]>0\) then
        \(\left\{P_{1} \wedge i<x \wedge i<|A| \wedge A[i]>0\right\}\)
        \(x:=i\)
        \(\left\{P_{1}\right\}\)
    else
        \(\left\{P_{1} \wedge i<x \wedge i<|A| \wedge A[i] \leq 0\right\}\)
        \(i:=i+2\)
        \(\left\{P_{1}\right\}\)
    \(\left\{P_{1}\right\}\)
\(\left\{P_{1} \wedge i \geq \min (x, y)\right\}\)
```

 \(\left\{P_{1} \wedge P_{2} \wedge i \geq \min (x, y) \wedge j \geq \min (x, y)\right\}\)
 \(r:=\min (x, y)\)
 \(\{r \leq|A| \wedge(\forall k .0 \leq k<r \Rightarrow A[k] \leq 0) \wedge(r<|A| \Rightarrow A[r]>0)\}\)
 $P_{1}=x \leq|A| \wedge(\forall k .0 \leq k<i \wedge k$ even $\Rightarrow A[k] \leq 0) \wedge i$ even $\wedge(x<|A| \Rightarrow A[x]>0)$
$P_{2}=y \leq|A| \wedge(\forall k .0 \leq k<j \wedge k$ odd $\Rightarrow A[k] \leq 0) \wedge j$ odd $\wedge(y<|A| \Rightarrow A[y]>0)$

