
COMP3610/6361
Principles of Programming Languages

Peter Höfner

Oct 20, 2023

1

Section 25

Conclusion

2

Learning Outcome I

1. Understand the role of theoretical formalisms,
such as operational and denotational semantics

▶ IMP language
▶ operational semantics
▶ denotational semantics
▶ axiomatic semantics
▶ functions

(call-by-name, call-by-value)
▶ references
▶ extensions

(data structures, error handling, object-orientation,. . .)

3

Learning Outcome II

2. Apply these semantics in the context of programming languages

▶ IMP language + extensions
▶ configurations
▶ derivations
▶ transitions

4

Learning Outcome III

3. Evaluate differences (advantages/disadvantages) of these
theoretical formalisms

▶ small-step vs big-step
▶ operational vs denotational vs axiomatic (vs algebraic)

5

Learning Outcome IV

4. Create operational or denotational semantics of simple imperative
programs

▶ IMP + extensions + types
▶ derivations
▶ transitions

6

Learning Outcome V

5. Analyse the role of types in programming languages

▶ types
▶ subtypes
▶ progress and preservation properties
▶ Curry-Howard correspondence

7

Learning Outcome VI

6. Formalise properties and reason about programs

▶ Isabelle/HOL
▶ semantic equivalences
▶ decorated programs
▶ Floyd-Hoare logic, wlp
▶ Owicki-Gries, Rely-Guarantee

8

Learning Outcome VII

7. Apply basic principles for formalising concurrent programming
languages

▶ Guarded Command Language
▶ process algebra

(value-passing CCS and pure CCS)
▶ semantic equivalences
▶ Owicki-Gries, Rely-Guarantee

9

Learning Outcome VIII

8. Additional Outcomes

▶ structural induction
▶ substitution
▶ . . .

10

We covered A LOT

. . . but it’s only the tip of the iceberg

11

The Message I

Good language design?
• precise definition of what the language is

(so can communicate among the designers)
• technical properties

(determinacy, decidability of type checking, etc.)
• pragmatic properties

(usability in-the-large, implementability)

(that’s also an answer to LO1)

12

The Message II

What can you use semantics for?
• to understand a particular language

▶ what you can depend on as a programmer
▶ what you must provide as a compiler writer

• as a tool for language design:
▶ for clean design
▶ for expressing design choices, understanding language features and

how they interact
▶ for proving properties of a language, eg type safety, decidability of type

inference.
• as a foundation for proving properties of particular programs

verified software

13

Trend: Verified Software
• increasingly important
• “rough consensus and running code” (trial and error)

is not sufficient
• develop operational models of real-world languages/applications

• progress in verification makes it possible
build end-to-end verified systems

▶ formal semantics for (a large subset of C) [see M. Norrish]
▶ CompCert/CakeML: verified compilers

(full compiler verified in Coq/HOL4)
▶ seL4: high-assurance, high-performance operating system microkernel

(proofs in Isabelle/HOL)
▶ formal semantics for hardware (PPC, x86, ARM)

14

Are We Done

• more ‘standard’ features
▶ dependent types
▶ continuations
▶ lazy evaluation
▶ side effects

• more support for separation of concerns
▶ low-level features, such as memory models
▶ high-level features, such as broadcast

• more applications
▶ optimisations
▶ code generation

15

More Features – Dependent Types

• having “compile-time” types that depend on “run-time” values
• can avoid out-of-bounds errors

16

More Features – Dependent Types

example: typing Lists with Lengths

non-dependant type for list (similar to trees)

nil : IList
cons : int → IList → IList
hd : IList → int
tl : IList → IList
isnil : IList → bool

17

More Features – Dependent Types

Example: Typing Lists with Lengths

dependant type for list (carry around length)

nil : IList 0
cons : Πn:nat. int → (IList n) → (IList (succ n))
hd : Πn:nat. (IList (succ n)) → int
tl : Πn:nat. (IList (succ n)) → (IList n)
isnil :

18

More Features – Dependent Types

Example: typing lists with lengths
• using and checking dependent types

(fn n : nat ⇒ (fn l : IList(succ (succ n)) ⇒
(hd (succ n) l)+

(hd n (tl (succ n) l))

))

• propositions as dependent types
(Curry–Howard lens)

get : Πm : nat. Πn : nat. (Less m n) → (IList n) → int

19

More Feature – Hardware Model

Fundamental Question

What is the behaviour of memory?
• . . . at the programmer abstraction
• . . . when observed by concurrent code

20

More Feature – Hardware Model

First Model: Sequential Consistency

Multiple threads acting on a sequentially consistent (SC) shared
memory:

the result of any execution is the same as if the operations of
all the processors were executed in some sequential order, re-
specting the order specified by the program

[Lamport, 1979]

21

More Feature – Hardware Model

⟨(skip ∥ (l := 7 + !l) , {l 7→ 1}⟩ r // • + // • w // ⟨(skip ∥ (skip , {l 7→ 8}⟩

⟨(l := 1) ∥ (l := 7 + !l) , {l 7→ 0}⟩

w

55

r

))

⟨skip ∥ (l := 7 + 0) , {l 7→ 1}⟩
+

''
⟨(l := 1 + 0) ∥ (l := 7 + !l) , {l 7→ 0}⟩

+

55

r

))

⟨(l := 1) ∥ (l := 7 + 0) , {l 7→ 0}⟩

w

66

+

((

⟨skip ∥ (l := 7) , {l 7→ 1}⟩ w // ⟨skip ∥ skip , {l 7→ 7}⟩

⟨(l := 1 + !l) ∥ (l := 7 + !l) , {l 7→ 0}⟩

r

44

r

**

⟨(l := 1 + 0 ∥ (l := 7 + 0) , {l 7→ 0}⟩

+

55

+

))

⟨(l := 1) ∥ (l := 7) , {l 7→ 0}⟩

w

77

w

''
⟨(l := 1 + !l) ∥ (l := 7 + 0) , {l 7→ 0}⟩

r

55

+

))

⟨(l := 1 + 0) ∥ (l := 7) , {l 7→ 0}⟩

+

66

w

((

⟨(l := 1) ∥ skip , {l 7→ 7}⟩ w // ⟨skip ∥ skip , {l 7→ 1}⟩

⟨(l := 1 + !l) ∥ (l := 7) , {l 7→ 0}⟩

r

55

w

))

⟨(l := 1 + 0) ∥ skip , {l 7→ 7}⟩

+

77

⟨(l := 1 + !l) ∥ skip , {l 7→ 0}⟩ r // • + // • w // ⟨(skip ∥ (skip , {l 7→ 8}⟩

22

More Feature – Hardware Model

• implement naive mutual exclusion
• specify concepts such as “atomic”

(see GCL)
• but on x86 hardware you have these behaviours

▶ hardware busted?
▶ program bad?
▶ model is wrong?

SC is not a good model of x86 (or of Power, ARM, Sparc, Itanium. . .)

23

More Feature – Hardware Model
New problem?

No: IBM System 370/158MP in 1972, already non-SC

24

More Feature – Hardware Model

But still a research question

• mainstream architectures and languages are key interfaces
• . . . but it is been very unclear exactly how they behave

• more fundamentally:
▶ it is been (and in significant ways still is) unclear how we can specify

that precisely
▶ if we can do that, we can build on top:

explanation, testing, emulation, static/dynamic analysis,
model-checking, proof-based verification,. . .

25

More Features – Broadcast

Motivation:
model communication

• network protocols
• communication protocols
• . . .

26

Broadcast in CCS
α.P

α−→ P
P

α−→ P ′

P +Q
α−→ P ′

Q
α−→ Q′

P +Q
α−→ Q′

P
η−→ P ′

P |Q η−→ P ′|Q
P

c−→ P ′, Q
c̄−→ Q′

P |Q τ−→ P ′|Q′

Q
η−→ Q′

P |Q η−→ P |Q′

P
ℓ−→ P ′

P [f]
f(ℓ)−→ P ′[f]

P
ℓ−→ P ′

P\c ℓ−→ P ′\c
(c̸=ℓ̸=c̄)

P
ℓ−→ P ′

A
ℓ−→ P ′

(A
def
= P)

P
b♯1−→ P ′, Q

b?X−→

P |Q b♯1−→ P ′|Q

P
b♯1−→ P ′, Q

b♯2−→ Q′

P |Q b♯−→ P ′|Q′

P
b?X−→, Q

b♯2−→ Q′

P |Q b♯2−→ P |Q′

♯1◦♯2=♯ ̸= with
◦ ! ?

! !

? ! ?

27

Broadcast in CCS

• parallel composition associative, commutative?
• all operators are a congruence?

28

Case Study: AODV

Ad Hoc On-Demand Distance Vector Protocol
• routing protocol for wireless mesh networks

(wireless networks without wired backbone)

• ad hoc (network is not static)
• on-Demand (routes are established when needed)
• distance (metric is hop count)

• developed 1997–2001 by Perkins, Beldig-Royer and Das
(University of Cincinnati)

• one of the four protocols standardised by the IETF MANET working
group (IEEE 802.11s)

29

Case Study: AODV
Main Mechanism

• if route is needed
BROADCAST RREQ

• if node has information about a destination
UNICAST RREP

• if unicast fails or link break is detected
GROUPCAST RERR

• performance improvement via
intermediate route reply

30

Case Study: AODV
Formal Specification Language (Process Algebra)

31

Case Study: AODV
Specification

32

Case Study: AODV

Full specification of AODV (IETF Standard)

Specification details
• around 5 types and 30 functions
• around 120 lines of specification

(in contrast to 40 pages English prose)

Properties of AODV
route correctness ✓
loop freedom ✓ (for some interpretations)
route discovery ✗
packet delivery ✗

33

Final Oral Exam

• 6–10 November, 2021
• 30 minutes oral examination
• read the guidelines (available via Wattle)
• send through the signed statement in time

GOOD LUCK

34

Feedback

Please provide feedback

• types of possible feedback
▶ suggestions
▶ improvements

• send feedback
▶ SELT
▶ to me (orally, written)

35

The ‘Final’ Slide

• Q/A sessions
▶ Thursday, November 2 (11am-12pm),
▶ topics: all questions you prepare
▶ no questions, no session

• I hope you. . .
▶ had some fun (I had),

even despite the challenging times
▶ learnt something useful

36

COMP3610/6361 done – what’s next?

• COMP3630/6363 (S1 2024)
Theory of Computation

• COMP4011/8011 (S2 2022)
Special Topic: Software Verification using Proof Assistants

• Individual Projects/Honour’s Theses/PhD projects . . .
(potentially casual jobs)

37

Logic Summer School
December 04 – December 15, 2021

Lectures include
• Fundamentals of Metalogic

(John Slaney, ANU)
• Defining and Reasoning About Programming Languages

(Fabian Muehlboeck, ANU)
• Propositions and Types, Proofs and Programs

(Ranald Clouston, ANU)
• Gödel’s Theorem Without Tears

(Dominik Kirst, Ben-Gurion University)
• Foundations for Type-Driven Probabilistic Modelling

(Ohad Kammar, U Edinburgh)
• . . .

Registration is A$150

http://comp.anu.edu.au/lss
38

http://comp.anu.edu.au/lss

— THE END —

39

	Conclusion

